Properties

Label 112.3.d.b
Level $112$
Weight $3$
Character orbit 112.d
Analytic conductor $3.052$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,3,Mod(15,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.15"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 112.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.05177896084\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - \beta_{2}) q^{3} + (\beta_1 - 1) q^{5} + \beta_{3} q^{7} + (2 \beta_1 - 1) q^{9} + (2 \beta_{3} + 2 \beta_{2}) q^{11} + (3 \beta_1 - 7) q^{13} + ( - 4 \beta_{3} + 8 \beta_{2}) q^{15} + ( - 2 \beta_1 + 16) q^{17}+ \cdots + (10 \beta_{3} + 26 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} - 4 q^{9} - 28 q^{13} + 64 q^{17} - 28 q^{21} - 12 q^{25} + 32 q^{29} - 32 q^{33} + 32 q^{37} - 80 q^{41} + 172 q^{45} - 28 q^{49} - 184 q^{53} - 280 q^{57} + 204 q^{61} + 280 q^{65} + 16 q^{69}+ \cdots + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - x^{2} - 2x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -\nu^{3} + \nu^{2} + 3\nu + 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{3} - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - \beta_{2} + \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + 3\beta_{2} + \beta _1 + 3 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{3} + 5 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
15.1
−0.895644 1.09445i
1.39564 0.228425i
1.39564 + 0.228425i
−0.895644 + 1.09445i
0 4.37780i 0 −5.58258 0 2.64575i 0 −10.1652 0
15.2 0 0.913701i 0 3.58258 0 2.64575i 0 8.16515 0
15.3 0 0.913701i 0 3.58258 0 2.64575i 0 8.16515 0
15.4 0 4.37780i 0 −5.58258 0 2.64575i 0 −10.1652 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 112.3.d.b 4
3.b odd 2 1 1008.3.m.d 4
4.b odd 2 1 inner 112.3.d.b 4
7.b odd 2 1 784.3.d.j 4
7.c even 3 1 784.3.r.j 4
7.c even 3 1 784.3.r.o 4
7.d odd 6 1 784.3.r.i 4
7.d odd 6 1 784.3.r.n 4
8.b even 2 1 448.3.d.b 4
8.d odd 2 1 448.3.d.b 4
12.b even 2 1 1008.3.m.d 4
16.e even 4 2 1792.3.g.e 8
16.f odd 4 2 1792.3.g.e 8
28.d even 2 1 784.3.d.j 4
28.f even 6 1 784.3.r.i 4
28.f even 6 1 784.3.r.n 4
28.g odd 6 1 784.3.r.j 4
28.g odd 6 1 784.3.r.o 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
112.3.d.b 4 1.a even 1 1 trivial
112.3.d.b 4 4.b odd 2 1 inner
448.3.d.b 4 8.b even 2 1
448.3.d.b 4 8.d odd 2 1
784.3.d.j 4 7.b odd 2 1
784.3.d.j 4 28.d even 2 1
784.3.r.i 4 7.d odd 6 1
784.3.r.i 4 28.f even 6 1
784.3.r.j 4 7.c even 3 1
784.3.r.j 4 28.g odd 6 1
784.3.r.n 4 7.d odd 6 1
784.3.r.n 4 28.f even 6 1
784.3.r.o 4 7.c even 3 1
784.3.r.o 4 28.g odd 6 1
1008.3.m.d 4 3.b odd 2 1
1008.3.m.d 4 12.b even 2 1
1792.3.g.e 8 16.e even 4 2
1792.3.g.e 8 16.f odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 20T_{3}^{2} + 16 \) acting on \(S_{3}^{\mathrm{new}}(112, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 20T^{2} + 16 \) Copy content Toggle raw display
$5$ \( (T^{2} + 2 T - 20)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 80T^{2} + 256 \) Copy content Toggle raw display
$13$ \( (T^{2} + 14 T - 140)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 32 T + 172)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 980 T^{2} + 38416 \) Copy content Toggle raw display
$23$ \( T^{4} + 608T^{2} + 6400 \) Copy content Toggle raw display
$29$ \( (T^{2} - 16 T - 2036)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 4560 T^{2} + 3154176 \) Copy content Toggle raw display
$37$ \( (T^{2} - 16 T - 20)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 40 T - 356)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 5456 T^{2} + 7139584 \) Copy content Toggle raw display
$47$ \( T^{4} + 4752 T^{2} + 4665600 \) Copy content Toggle raw display
$53$ \( (T + 46)^{4} \) Copy content Toggle raw display
$59$ \( T^{4} + 15956 T^{2} + 58186384 \) Copy content Toggle raw display
$61$ \( (T^{2} - 102 T + 2076)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 18528 T^{2} + 78854400 \) Copy content Toggle raw display
$71$ \( T^{4} + 6464 T^{2} + 5607424 \) Copy content Toggle raw display
$73$ \( (T^{2} - 92 T - 6284)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 2880 T^{2} + 331776 \) Copy content Toggle raw display
$83$ \( T^{4} + 23540 T^{2} + 59660176 \) Copy content Toggle raw display
$89$ \( (T^{2} + 28 T - 5180)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 16 T - 20)^{2} \) Copy content Toggle raw display
show more
show less