Properties

Label 112.10.i.f.65.7
Level $112$
Weight $10$
Character 112.65
Analytic conductor $57.684$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(65,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.65"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,91] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} - 58021 x^{16} + 299572 x^{15} + 1344281856 x^{14} - 13223849184 x^{13} + \cdots + 45\!\cdots\!49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{64}\cdot 3^{9}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 65.7
Root \(71.8084 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 112.65
Dual form 112.10.i.f.81.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(76.8084 + 133.036i) q^{3} +(-1042.94 + 1806.43i) q^{5} +(489.665 - 6333.55i) q^{7} +(-1957.55 + 3390.58i) q^{9} +(-2801.38 - 4852.13i) q^{11} +115400. q^{13} -320427. q^{15} +(-272172. - 471416. i) q^{17} +(44741.2 - 77494.0i) q^{19} +(880200. - 421327. i) q^{21} +(967252. - 1.67533e6i) q^{23} +(-1.19890e6 - 2.07656e6i) q^{25} +2.42221e6 q^{27} -2.89342e6 q^{29} +(767039. + 1.32855e6i) q^{31} +(430339. - 745368. i) q^{33} +(1.09304e7 + 7.49008e6i) q^{35} +(7.31613e6 - 1.26719e7i) q^{37} +(8.86371e6 + 1.53524e7i) q^{39} +1.32906e7 q^{41} -6.41291e6 q^{43} +(-4.08323e6 - 7.07237e6i) q^{45} +(-2.47708e7 + 4.29043e7i) q^{47} +(-3.98741e7 - 6.20263e6i) q^{49} +(4.18102e7 - 7.24174e7i) q^{51} +(-3.02532e7 - 5.24001e7i) q^{53} +1.16867e7 q^{55} +1.37460e7 q^{57} +(6.25964e7 + 1.08420e8i) q^{59} +(5.29946e7 - 9.17893e7i) q^{61} +(2.05159e7 + 1.40585e7i) q^{63} +(-1.20356e8 + 2.08463e8i) q^{65} +(1.16276e8 + 2.01395e8i) q^{67} +2.97172e8 q^{69} -1.09836e8 q^{71} +(1.35469e8 + 2.34639e8i) q^{73} +(1.84171e8 - 3.18994e8i) q^{75} +(-3.21029e7 + 1.53667e7i) q^{77} +(1.39854e8 - 2.42235e8i) q^{79} +(2.24577e8 + 3.88978e8i) q^{81} +2.55171e8 q^{83} +1.13544e9 q^{85} +(-2.22239e8 - 3.84929e8i) q^{87} +(5.80101e8 - 1.00476e9i) q^{89} +(5.65075e7 - 7.30893e8i) q^{91} +(-1.17830e8 + 2.04088e8i) q^{93} +(9.33251e7 + 1.61644e8i) q^{95} +1.67001e8 q^{97} +2.19354e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 91 q^{3} + 801 q^{5} + 4820 q^{7} - 55886 q^{9} + 42719 q^{11} + 301620 q^{13} - 318842 q^{15} + 11357 q^{17} + 1237749 q^{19} - 352965 q^{21} - 95019 q^{23} - 848460 q^{25} - 983570 q^{27} + 12010116 q^{29}+ \cdots - 654760036 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 76.8084 + 133.036i 0.547473 + 0.948251i 0.998447 + 0.0557142i \(0.0177436\pi\)
−0.450974 + 0.892537i \(0.648923\pi\)
\(4\) 0 0
\(5\) −1042.94 + 1806.43i −0.746270 + 1.29258i 0.203329 + 0.979110i \(0.434824\pi\)
−0.949599 + 0.313467i \(0.898510\pi\)
\(6\) 0 0
\(7\) 489.665 6333.55i 0.0770828 0.997025i
\(8\) 0 0
\(9\) −1957.55 + 3390.58i −0.0994539 + 0.172259i
\(10\) 0 0
\(11\) −2801.38 4852.13i −0.0576905 0.0999230i 0.835738 0.549129i \(-0.185040\pi\)
−0.893428 + 0.449206i \(0.851707\pi\)
\(12\) 0 0
\(13\) 115400. 1.12063 0.560314 0.828280i \(-0.310680\pi\)
0.560314 + 0.828280i \(0.310680\pi\)
\(14\) 0 0
\(15\) −320427. −1.63425
\(16\) 0 0
\(17\) −272172. 471416.i −0.790357 1.36894i −0.925746 0.378146i \(-0.876562\pi\)
0.135389 0.990793i \(-0.456772\pi\)
\(18\) 0 0
\(19\) 44741.2 77494.0i 0.0787619 0.136420i −0.823954 0.566657i \(-0.808237\pi\)
0.902716 + 0.430237i \(0.141570\pi\)
\(20\) 0 0
\(21\) 880200. 421327.i 0.987631 0.472750i
\(22\) 0 0
\(23\) 967252. 1.67533e6i 0.720716 1.24832i −0.239997 0.970774i \(-0.577146\pi\)
0.960713 0.277544i \(-0.0895203\pi\)
\(24\) 0 0
\(25\) −1.19890e6 2.07656e6i −0.613837 1.06320i
\(26\) 0 0
\(27\) 2.42221e6 0.877153
\(28\) 0 0
\(29\) −2.89342e6 −0.759663 −0.379831 0.925056i \(-0.624018\pi\)
−0.379831 + 0.925056i \(0.624018\pi\)
\(30\) 0 0
\(31\) 767039. + 1.32855e6i 0.149173 + 0.258375i 0.930922 0.365218i \(-0.119006\pi\)
−0.781749 + 0.623593i \(0.785672\pi\)
\(32\) 0 0
\(33\) 430339. 745368.i 0.0631681 0.109410i
\(34\) 0 0
\(35\) 1.09304e7 + 7.49008e6i 1.23121 + 0.843685i
\(36\) 0 0
\(37\) 7.31613e6 1.26719e7i 0.641762 1.11156i −0.343277 0.939234i \(-0.611537\pi\)
0.985039 0.172330i \(-0.0551296\pi\)
\(38\) 0 0
\(39\) 8.86371e6 + 1.53524e7i 0.613514 + 1.06264i
\(40\) 0 0
\(41\) 1.32906e7 0.734543 0.367271 0.930114i \(-0.380292\pi\)
0.367271 + 0.930114i \(0.380292\pi\)
\(42\) 0 0
\(43\) −6.41291e6 −0.286053 −0.143027 0.989719i \(-0.545683\pi\)
−0.143027 + 0.989719i \(0.545683\pi\)
\(44\) 0 0
\(45\) −4.08323e6 7.07237e6i −0.148439 0.257104i
\(46\) 0 0
\(47\) −2.47708e7 + 4.29043e7i −0.740457 + 1.28251i 0.211830 + 0.977307i \(0.432058\pi\)
−0.952287 + 0.305203i \(0.901276\pi\)
\(48\) 0 0
\(49\) −3.98741e7 6.20263e6i −0.988116 0.153707i
\(50\) 0 0
\(51\) 4.18102e7 7.24174e7i 0.865399 1.49891i
\(52\) 0 0
\(53\) −3.02532e7 5.24001e7i −0.526660 0.912202i −0.999517 0.0310630i \(-0.990111\pi\)
0.472857 0.881139i \(-0.343223\pi\)
\(54\) 0 0
\(55\) 1.16867e7 0.172211
\(56\) 0 0
\(57\) 1.37460e7 0.172480
\(58\) 0 0
\(59\) 6.25964e7 + 1.08420e8i 0.672536 + 1.16487i 0.977183 + 0.212401i \(0.0681283\pi\)
−0.304647 + 0.952465i \(0.598538\pi\)
\(60\) 0 0
\(61\) 5.29946e7 9.17893e7i 0.490058 0.848805i −0.509877 0.860247i \(-0.670309\pi\)
0.999935 + 0.0114427i \(0.00364241\pi\)
\(62\) 0 0
\(63\) 2.05159e7 + 1.40585e7i 0.164081 + 0.112436i
\(64\) 0 0
\(65\) −1.20356e8 + 2.08463e8i −0.836292 + 1.44850i
\(66\) 0 0
\(67\) 1.16276e8 + 2.01395e8i 0.704939 + 1.22099i 0.966713 + 0.255862i \(0.0823591\pi\)
−0.261774 + 0.965129i \(0.584308\pi\)
\(68\) 0 0
\(69\) 2.97172e8 1.57829
\(70\) 0 0
\(71\) −1.09836e8 −0.512958 −0.256479 0.966550i \(-0.582562\pi\)
−0.256479 + 0.966550i \(0.582562\pi\)
\(72\) 0 0
\(73\) 1.35469e8 + 2.34639e8i 0.558323 + 0.967044i 0.997637 + 0.0687105i \(0.0218885\pi\)
−0.439313 + 0.898334i \(0.644778\pi\)
\(74\) 0 0
\(75\) 1.84171e8 3.18994e8i 0.672119 1.16414i
\(76\) 0 0
\(77\) −3.21029e7 + 1.53667e7i −0.104073 + 0.0498166i
\(78\) 0 0
\(79\) 1.39854e8 2.42235e8i 0.403975 0.699705i −0.590227 0.807238i \(-0.700962\pi\)
0.994202 + 0.107532i \(0.0342949\pi\)
\(80\) 0 0
\(81\) 2.24577e8 + 3.88978e8i 0.579672 + 1.00402i
\(82\) 0 0
\(83\) 2.55171e8 0.590173 0.295086 0.955471i \(-0.404652\pi\)
0.295086 + 0.955471i \(0.404652\pi\)
\(84\) 0 0
\(85\) 1.13544e9 2.35928
\(86\) 0 0
\(87\) −2.22239e8 3.84929e8i −0.415895 0.720351i
\(88\) 0 0
\(89\) 5.80101e8 1.00476e9i 0.980050 1.69750i 0.317902 0.948124i \(-0.397022\pi\)
0.662148 0.749373i \(-0.269645\pi\)
\(90\) 0 0
\(91\) 5.65075e7 7.30893e8i 0.0863812 1.11729i
\(92\) 0 0
\(93\) −1.17830e8 + 2.04088e8i −0.163336 + 0.282907i
\(94\) 0 0
\(95\) 9.33251e7 + 1.61644e8i 0.117555 + 0.203612i
\(96\) 0 0
\(97\) 1.67001e8 0.191534 0.0957671 0.995404i \(-0.469470\pi\)
0.0957671 + 0.995404i \(0.469470\pi\)
\(98\) 0 0
\(99\) 2.19354e7 0.0229502
\(100\) 0 0
\(101\) −9.45369e8 1.63743e9i −0.903972 1.56573i −0.822291 0.569067i \(-0.807304\pi\)
−0.0816814 0.996658i \(-0.526029\pi\)
\(102\) 0 0
\(103\) 3.89696e8 6.74973e8i 0.341160 0.590907i −0.643488 0.765456i \(-0.722513\pi\)
0.984648 + 0.174549i \(0.0558468\pi\)
\(104\) 0 0
\(105\) −1.56902e8 + 2.02944e9i −0.125973 + 1.62939i
\(106\) 0 0
\(107\) 5.82472e8 1.00887e9i 0.429584 0.744061i −0.567252 0.823544i \(-0.691994\pi\)
0.996836 + 0.0794829i \(0.0253269\pi\)
\(108\) 0 0
\(109\) 9.74921e8 + 1.68861e9i 0.661531 + 1.14581i 0.980213 + 0.197944i \(0.0634264\pi\)
−0.318682 + 0.947862i \(0.603240\pi\)
\(110\) 0 0
\(111\) 2.24776e9 1.40539
\(112\) 0 0
\(113\) 5.31881e7 0.0306875 0.0153437 0.999882i \(-0.495116\pi\)
0.0153437 + 0.999882i \(0.495116\pi\)
\(114\) 0 0
\(115\) 2.01758e9 + 3.49455e9i 1.07570 + 1.86316i
\(116\) 0 0
\(117\) −2.25902e8 + 3.91274e8i −0.111451 + 0.193039i
\(118\) 0 0
\(119\) −3.11901e9 + 1.49298e9i −1.42579 + 0.682484i
\(120\) 0 0
\(121\) 1.16328e9 2.01486e9i 0.493344 0.854496i
\(122\) 0 0
\(123\) 1.02083e9 + 1.76813e9i 0.402143 + 0.696531i
\(124\) 0 0
\(125\) 9.27546e8 0.339813
\(126\) 0 0
\(127\) −3.56359e9 −1.21555 −0.607773 0.794111i \(-0.707937\pi\)
−0.607773 + 0.794111i \(0.707937\pi\)
\(128\) 0 0
\(129\) −4.92565e8 8.53148e8i −0.156607 0.271250i
\(130\) 0 0
\(131\) −2.49530e8 + 4.32198e8i −0.0740290 + 0.128222i −0.900664 0.434517i \(-0.856919\pi\)
0.826635 + 0.562739i \(0.190252\pi\)
\(132\) 0 0
\(133\) −4.68904e8 3.21317e8i −0.129943 0.0890432i
\(134\) 0 0
\(135\) −2.52623e9 + 4.37556e9i −0.654593 + 1.13379i
\(136\) 0 0
\(137\) −1.03847e9 1.79867e9i −0.251854 0.436224i 0.712182 0.701995i \(-0.247707\pi\)
−0.964036 + 0.265770i \(0.914374\pi\)
\(138\) 0 0
\(139\) 8.36456e9 1.90054 0.950268 0.311432i \(-0.100809\pi\)
0.950268 + 0.311432i \(0.100809\pi\)
\(140\) 0 0
\(141\) −7.61043e9 −1.62152
\(142\) 0 0
\(143\) −3.23280e8 5.59937e8i −0.0646497 0.111977i
\(144\) 0 0
\(145\) 3.01768e9 5.22677e9i 0.566913 0.981923i
\(146\) 0 0
\(147\) −2.23749e9 5.78110e9i −0.395214 1.02113i
\(148\) 0 0
\(149\) −4.25680e9 + 7.37299e9i −0.707530 + 1.22548i 0.258241 + 0.966081i \(0.416857\pi\)
−0.965771 + 0.259397i \(0.916476\pi\)
\(150\) 0 0
\(151\) 4.83281e8 + 8.37068e8i 0.0756491 + 0.131028i 0.901368 0.433053i \(-0.142564\pi\)
−0.825719 + 0.564081i \(0.809230\pi\)
\(152\) 0 0
\(153\) 2.13116e9 0.314416
\(154\) 0 0
\(155\) −3.19992e9 −0.445293
\(156\) 0 0
\(157\) −4.03263e9 6.98472e9i −0.529712 0.917488i −0.999399 0.0346553i \(-0.988967\pi\)
0.469687 0.882833i \(-0.344367\pi\)
\(158\) 0 0
\(159\) 4.64740e9 8.04954e9i 0.576665 0.998812i
\(160\) 0 0
\(161\) −1.01372e10 6.94649e9i −1.18905 0.814796i
\(162\) 0 0
\(163\) −2.44707e8 + 4.23845e8i −0.0271520 + 0.0470287i −0.879282 0.476301i \(-0.841977\pi\)
0.852130 + 0.523330i \(0.175310\pi\)
\(164\) 0 0
\(165\) 8.97638e8 + 1.55475e9i 0.0942808 + 0.163299i
\(166\) 0 0
\(167\) −1.68953e10 −1.68090 −0.840450 0.541889i \(-0.817709\pi\)
−0.840450 + 0.541889i \(0.817709\pi\)
\(168\) 0 0
\(169\) 2.71273e9 0.255809
\(170\) 0 0
\(171\) 1.75166e8 + 3.03397e8i 0.0156664 + 0.0271349i
\(172\) 0 0
\(173\) 1.44389e9 2.50089e9i 0.122554 0.212269i −0.798220 0.602366i \(-0.794225\pi\)
0.920774 + 0.390096i \(0.127558\pi\)
\(174\) 0 0
\(175\) −1.37390e10 + 6.57648e9i −1.10735 + 0.530057i
\(176\) 0 0
\(177\) −9.61586e9 + 1.66552e10i −0.736391 + 1.27547i
\(178\) 0 0
\(179\) −1.04854e10 1.81612e10i −0.763388 1.32223i −0.941095 0.338143i \(-0.890201\pi\)
0.177707 0.984083i \(-0.443132\pi\)
\(180\) 0 0
\(181\) 1.86322e10 1.29036 0.645179 0.764031i \(-0.276783\pi\)
0.645179 + 0.764031i \(0.276783\pi\)
\(182\) 0 0
\(183\) 1.62817e10 1.07317
\(184\) 0 0
\(185\) 1.52606e10 + 2.64322e10i 0.957855 + 1.65905i
\(186\) 0 0
\(187\) −1.52491e9 + 2.64123e9i −0.0911923 + 0.157950i
\(188\) 0 0
\(189\) 1.18607e9 1.53412e10i 0.0676134 0.874543i
\(190\) 0 0
\(191\) 3.20581e9 5.55262e9i 0.174296 0.301890i −0.765621 0.643291i \(-0.777568\pi\)
0.939917 + 0.341402i \(0.110902\pi\)
\(192\) 0 0
\(193\) 5.34416e8 + 9.25636e8i 0.0277250 + 0.0480211i 0.879555 0.475797i \(-0.157840\pi\)
−0.851830 + 0.523818i \(0.824507\pi\)
\(194\) 0 0
\(195\) −3.69774e10 −1.83139
\(196\) 0 0
\(197\) −1.99832e10 −0.945293 −0.472647 0.881252i \(-0.656701\pi\)
−0.472647 + 0.881252i \(0.656701\pi\)
\(198\) 0 0
\(199\) −7.90634e9 1.36942e10i −0.357385 0.619009i 0.630138 0.776483i \(-0.282998\pi\)
−0.987523 + 0.157474i \(0.949665\pi\)
\(200\) 0 0
\(201\) −1.78619e10 + 3.09377e10i −0.771871 + 1.33692i
\(202\) 0 0
\(203\) −1.41681e9 + 1.83256e10i −0.0585569 + 0.757402i
\(204\) 0 0
\(205\) −1.38613e10 + 2.40086e10i −0.548167 + 0.949453i
\(206\) 0 0
\(207\) 3.78689e9 + 6.55909e9i 0.143356 + 0.248300i
\(208\) 0 0
\(209\) −5.01348e8 −0.0181753
\(210\) 0 0
\(211\) 8.38594e9 0.291260 0.145630 0.989339i \(-0.453479\pi\)
0.145630 + 0.989339i \(0.453479\pi\)
\(212\) 0 0
\(213\) −8.43631e9 1.46121e10i −0.280831 0.486413i
\(214\) 0 0
\(215\) 6.68830e9 1.15845e10i 0.213473 0.369746i
\(216\) 0 0
\(217\) 8.79003e9 4.20754e9i 0.269105 0.128813i
\(218\) 0 0
\(219\) −2.08102e10 + 3.60444e10i −0.611334 + 1.05886i
\(220\) 0 0
\(221\) −3.14087e10 5.44015e10i −0.885697 1.53407i
\(222\) 0 0
\(223\) 3.61200e10 0.978084 0.489042 0.872260i \(-0.337347\pi\)
0.489042 + 0.872260i \(0.337347\pi\)
\(224\) 0 0
\(225\) 9.38764e9 0.244194
\(226\) 0 0
\(227\) 2.64920e10 + 4.58855e10i 0.662215 + 1.14699i 0.980032 + 0.198838i \(0.0637166\pi\)
−0.317818 + 0.948152i \(0.602950\pi\)
\(228\) 0 0
\(229\) 1.15511e10 2.00071e10i 0.277565 0.480756i −0.693214 0.720732i \(-0.743806\pi\)
0.970779 + 0.239975i \(0.0771393\pi\)
\(230\) 0 0
\(231\) −4.51010e9 3.09055e9i −0.104216 0.0714138i
\(232\) 0 0
\(233\) −7.82668e9 + 1.35562e10i −0.173971 + 0.301326i −0.939805 0.341712i \(-0.888993\pi\)
0.765834 + 0.643038i \(0.222326\pi\)
\(234\) 0 0
\(235\) −5.16692e10 8.94936e10i −1.10516 1.91420i
\(236\) 0 0
\(237\) 4.29680e10 0.884662
\(238\) 0 0
\(239\) 8.37136e10 1.65961 0.829804 0.558055i \(-0.188452\pi\)
0.829804 + 0.558055i \(0.188452\pi\)
\(240\) 0 0
\(241\) −1.68849e10 2.92456e10i −0.322420 0.558449i 0.658566 0.752523i \(-0.271163\pi\)
−0.980987 + 0.194074i \(0.937830\pi\)
\(242\) 0 0
\(243\) −1.06605e10 + 1.84646e10i −0.196133 + 0.339712i
\(244\) 0 0
\(245\) 5.27910e10 6.55608e10i 0.936080 1.16251i
\(246\) 0 0
\(247\) 5.16315e9 8.94283e9i 0.0882629 0.152876i
\(248\) 0 0
\(249\) 1.95992e10 + 3.39469e10i 0.323104 + 0.559632i
\(250\) 0 0
\(251\) 5.05222e10 0.803435 0.401717 0.915764i \(-0.368413\pi\)
0.401717 + 0.915764i \(0.368413\pi\)
\(252\) 0 0
\(253\) −1.08386e10 −0.166314
\(254\) 0 0
\(255\) 8.72113e10 + 1.51054e11i 1.29164 + 2.23719i
\(256\) 0 0
\(257\) −1.21395e10 + 2.10262e10i −0.173581 + 0.300651i −0.939669 0.342084i \(-0.888867\pi\)
0.766088 + 0.642735i \(0.222200\pi\)
\(258\) 0 0
\(259\) −7.66757e10 5.25421e10i −1.05879 0.725535i
\(260\) 0 0
\(261\) 5.66402e9 9.81038e9i 0.0755514 0.130859i
\(262\) 0 0
\(263\) −7.90491e9 1.36917e10i −0.101882 0.176464i 0.810578 0.585630i \(-0.199153\pi\)
−0.912460 + 0.409166i \(0.865820\pi\)
\(264\) 0 0
\(265\) 1.26210e11 1.57212
\(266\) 0 0
\(267\) 1.78226e11 2.14620
\(268\) 0 0
\(269\) −2.72894e10 4.72666e10i −0.317767 0.550389i 0.662255 0.749279i \(-0.269600\pi\)
−0.980022 + 0.198890i \(0.936266\pi\)
\(270\) 0 0
\(271\) 6.53339e9 1.13162e10i 0.0735829 0.127449i −0.826886 0.562369i \(-0.809890\pi\)
0.900469 + 0.434920i \(0.143223\pi\)
\(272\) 0 0
\(273\) 1.01575e11 4.86212e10i 1.10677 0.529778i
\(274\) 0 0
\(275\) −6.71715e9 + 1.16344e10i −0.0708252 + 0.122673i
\(276\) 0 0
\(277\) −4.58397e9 7.93967e9i −0.0467825 0.0810296i 0.841686 0.539967i \(-0.181563\pi\)
−0.888468 + 0.458938i \(0.848230\pi\)
\(278\) 0 0
\(279\) −6.00608e9 −0.0593433
\(280\) 0 0
\(281\) 8.22953e10 0.787402 0.393701 0.919239i \(-0.371195\pi\)
0.393701 + 0.919239i \(0.371195\pi\)
\(282\) 0 0
\(283\) 6.51401e10 + 1.12826e11i 0.603684 + 1.04561i 0.992258 + 0.124193i \(0.0396343\pi\)
−0.388574 + 0.921417i \(0.627032\pi\)
\(284\) 0 0
\(285\) −1.43363e10 + 2.48312e10i −0.128717 + 0.222944i
\(286\) 0 0
\(287\) 6.50794e9 8.41766e10i 0.0566206 0.732357i
\(288\) 0 0
\(289\) −8.88613e10 + 1.53912e11i −0.749329 + 1.29788i
\(290\) 0 0
\(291\) 1.28271e10 + 2.22172e10i 0.104860 + 0.181623i
\(292\) 0 0
\(293\) −2.34116e11 −1.85578 −0.927889 0.372855i \(-0.878379\pi\)
−0.927889 + 0.372855i \(0.878379\pi\)
\(294\) 0 0
\(295\) −2.61138e11 −2.00757
\(296\) 0 0
\(297\) −6.78553e9 1.17529e10i −0.0506034 0.0876477i
\(298\) 0 0
\(299\) 1.11621e11 1.93334e11i 0.807656 1.39890i
\(300\) 0 0
\(301\) −3.14017e9 + 4.06165e10i −0.0220498 + 0.285202i
\(302\) 0 0
\(303\) 1.45224e11 2.51536e11i 0.989801 1.71439i
\(304\) 0 0
\(305\) 1.10541e11 + 1.91462e11i 0.731430 + 1.26687i
\(306\) 0 0
\(307\) −2.41962e11 −1.55462 −0.777311 0.629117i \(-0.783417\pi\)
−0.777311 + 0.629117i \(0.783417\pi\)
\(308\) 0 0
\(309\) 1.19728e11 0.747104
\(310\) 0 0
\(311\) 1.43947e10 + 2.49324e10i 0.0872533 + 0.151127i 0.906349 0.422530i \(-0.138858\pi\)
−0.819096 + 0.573657i \(0.805524\pi\)
\(312\) 0 0
\(313\) 7.28039e10 1.26100e11i 0.428751 0.742619i −0.568012 0.823021i \(-0.692287\pi\)
0.996763 + 0.0804021i \(0.0256204\pi\)
\(314\) 0 0
\(315\) −4.67926e10 + 2.23983e10i −0.267781 + 0.128179i
\(316\) 0 0
\(317\) −8.02286e10 + 1.38960e11i −0.446234 + 0.772900i −0.998137 0.0610084i \(-0.980568\pi\)
0.551903 + 0.833908i \(0.313902\pi\)
\(318\) 0 0
\(319\) 8.10557e9 + 1.40393e10i 0.0438254 + 0.0759077i
\(320\) 0 0
\(321\) 1.78955e11 0.940743
\(322\) 0 0
\(323\) −4.87092e10 −0.249000
\(324\) 0 0
\(325\) −1.38354e11 2.39635e11i −0.687884 1.19145i
\(326\) 0 0
\(327\) −1.49764e11 + 2.59399e11i −0.724341 + 1.25460i
\(328\) 0 0
\(329\) 2.59607e11 + 1.77896e11i 1.22162 + 0.837114i
\(330\) 0 0
\(331\) 4.98105e10 8.62744e10i 0.228084 0.395054i −0.729156 0.684347i \(-0.760087\pi\)
0.957240 + 0.289294i \(0.0934205\pi\)
\(332\) 0 0
\(333\) 2.86434e10 + 4.96119e10i 0.127651 + 0.221099i
\(334\) 0 0
\(335\) −4.85075e11 −2.10430
\(336\) 0 0
\(337\) −1.33308e11 −0.563018 −0.281509 0.959559i \(-0.590835\pi\)
−0.281509 + 0.959559i \(0.590835\pi\)
\(338\) 0 0
\(339\) 4.08529e9 + 7.07593e9i 0.0168006 + 0.0290995i
\(340\) 0 0
\(341\) 4.29753e9 7.44355e9i 0.0172117 0.0298116i
\(342\) 0 0
\(343\) −5.88096e10 + 2.49507e11i −0.229416 + 0.973328i
\(344\) 0 0
\(345\) −3.09934e11 + 5.36821e11i −1.17783 + 2.04006i
\(346\) 0 0
\(347\) 1.30972e11 + 2.26850e11i 0.484949 + 0.839956i 0.999850 0.0172934i \(-0.00550495\pi\)
−0.514902 + 0.857249i \(0.672172\pi\)
\(348\) 0 0
\(349\) 3.19105e11 1.15138 0.575690 0.817668i \(-0.304733\pi\)
0.575690 + 0.817668i \(0.304733\pi\)
\(350\) 0 0
\(351\) 2.79524e11 0.982963
\(352\) 0 0
\(353\) −2.27064e11 3.93286e11i −0.778326 1.34810i −0.932906 0.360121i \(-0.882736\pi\)
0.154579 0.987980i \(-0.450598\pi\)
\(354\) 0 0
\(355\) 1.14553e11 1.98411e11i 0.382805 0.663037i
\(356\) 0 0
\(357\) −4.38186e11 3.00267e11i −1.42775 0.978364i
\(358\) 0 0
\(359\) 2.66513e11 4.61614e11i 0.846824 1.46674i −0.0372037 0.999308i \(-0.511845\pi\)
0.884028 0.467435i \(-0.154822\pi\)
\(360\) 0 0
\(361\) 1.57340e11 + 2.72521e11i 0.487593 + 0.844536i
\(362\) 0 0
\(363\) 3.57398e11 1.08037
\(364\) 0 0
\(365\) −5.65145e11 −1.66664
\(366\) 0 0
\(367\) −4.82670e10 8.36008e10i −0.138884 0.240554i 0.788190 0.615432i \(-0.211018\pi\)
−0.927075 + 0.374877i \(0.877685\pi\)
\(368\) 0 0
\(369\) −2.60170e10 + 4.50628e10i −0.0730532 + 0.126532i
\(370\) 0 0
\(371\) −3.46693e11 + 1.65952e11i −0.950084 + 0.454778i
\(372\) 0 0
\(373\) 3.26360e11 5.65272e11i 0.872985 1.51205i 0.0140911 0.999901i \(-0.495515\pi\)
0.858894 0.512154i \(-0.171152\pi\)
\(374\) 0 0
\(375\) 7.12433e10 + 1.23397e11i 0.186039 + 0.322229i
\(376\) 0 0
\(377\) −3.33902e11 −0.851300
\(378\) 0 0
\(379\) −4.03245e11 −1.00391 −0.501953 0.864895i \(-0.667385\pi\)
−0.501953 + 0.864895i \(0.667385\pi\)
\(380\) 0 0
\(381\) −2.73714e11 4.74086e11i −0.665479 1.15264i
\(382\) 0 0
\(383\) 4.67553e10 8.09826e10i 0.111029 0.192308i −0.805156 0.593063i \(-0.797919\pi\)
0.916185 + 0.400755i \(0.131252\pi\)
\(384\) 0 0
\(385\) 5.72257e9 7.40184e10i 0.0132745 0.171698i
\(386\) 0 0
\(387\) 1.25536e10 2.17435e10i 0.0284491 0.0492753i
\(388\) 0 0
\(389\) −2.59895e11 4.50151e11i −0.575473 0.996748i −0.995990 0.0894636i \(-0.971485\pi\)
0.420517 0.907285i \(-0.361849\pi\)
\(390\) 0 0
\(391\) −1.05304e12 −2.27849
\(392\) 0 0
\(393\) −7.66639e10 −0.162116
\(394\) 0 0
\(395\) 2.91721e11 + 5.05275e11i 0.602949 + 1.04434i
\(396\) 0 0
\(397\) 3.92781e11 6.80316e11i 0.793584 1.37453i −0.130151 0.991494i \(-0.541546\pi\)
0.923735 0.383033i \(-0.125120\pi\)
\(398\) 0 0
\(399\) 6.73093e9 8.70609e10i 0.0132953 0.171967i
\(400\) 0 0
\(401\) 7.78409e10 1.34824e11i 0.150334 0.260387i −0.781016 0.624511i \(-0.785298\pi\)
0.931350 + 0.364124i \(0.118632\pi\)
\(402\) 0 0
\(403\) 8.85166e10 + 1.53315e11i 0.167167 + 0.289543i
\(404\) 0 0
\(405\) −9.36884e11 −1.73037
\(406\) 0 0
\(407\) −8.19810e10 −0.148094
\(408\) 0 0
\(409\) 4.40712e11 + 7.63336e11i 0.778754 + 1.34884i 0.932660 + 0.360756i \(0.117481\pi\)
−0.153906 + 0.988086i \(0.549185\pi\)
\(410\) 0 0
\(411\) 1.59526e11 2.76306e11i 0.275767 0.477642i
\(412\) 0 0
\(413\) 7.17336e11 3.43368e11i 1.21324 0.580744i
\(414\) 0 0
\(415\) −2.66128e11 + 4.60948e11i −0.440428 + 0.762844i
\(416\) 0 0
\(417\) 6.42468e11 + 1.11279e12i 1.04049 + 1.80219i
\(418\) 0 0
\(419\) 8.11137e10 0.128567 0.0642837 0.997932i \(-0.479524\pi\)
0.0642837 + 0.997932i \(0.479524\pi\)
\(420\) 0 0
\(421\) −8.85880e11 −1.37438 −0.687188 0.726480i \(-0.741155\pi\)
−0.687188 + 0.726480i \(0.741155\pi\)
\(422\) 0 0
\(423\) −9.69803e10 1.67975e11i −0.147283 0.255101i
\(424\) 0 0
\(425\) −6.52615e11 + 1.13036e12i −0.970301 + 1.68061i
\(426\) 0 0
\(427\) −5.55402e11 3.80590e11i −0.808504 0.554028i
\(428\) 0 0
\(429\) 4.96612e10 8.60157e10i 0.0707880 0.122608i
\(430\) 0 0
\(431\) 6.64077e11 + 1.15021e12i 0.926980 + 1.60558i 0.788345 + 0.615234i \(0.210938\pi\)
0.138636 + 0.990343i \(0.455728\pi\)
\(432\) 0 0
\(433\) −1.00935e11 −0.137989 −0.0689945 0.997617i \(-0.521979\pi\)
−0.0689945 + 0.997617i \(0.521979\pi\)
\(434\) 0 0
\(435\) 9.27131e11 1.24148
\(436\) 0 0
\(437\) −8.65520e10 1.49912e11i −0.113530 0.196640i
\(438\) 0 0
\(439\) 3.29888e11 5.71382e11i 0.423912 0.734237i −0.572406 0.819970i \(-0.693990\pi\)
0.996318 + 0.0857333i \(0.0273233\pi\)
\(440\) 0 0
\(441\) 9.90861e10 1.23054e11i 0.124750 0.154925i
\(442\) 0 0
\(443\) −3.46961e11 + 6.00954e11i −0.428019 + 0.741351i −0.996697 0.0812091i \(-0.974122\pi\)
0.568678 + 0.822560i \(0.307455\pi\)
\(444\) 0 0
\(445\) 1.21002e12 + 2.09582e12i 1.46276 + 2.53358i
\(446\) 0 0
\(447\) −1.30783e12 −1.54941
\(448\) 0 0
\(449\) 4.51714e11 0.524511 0.262256 0.964998i \(-0.415534\pi\)
0.262256 + 0.964998i \(0.415534\pi\)
\(450\) 0 0
\(451\) −3.72320e10 6.44877e10i −0.0423762 0.0733977i
\(452\) 0 0
\(453\) −7.42401e10 + 1.28588e11i −0.0828317 + 0.143469i
\(454\) 0 0
\(455\) 1.26137e12 + 8.64358e11i 1.37973 + 0.945458i
\(456\) 0 0
\(457\) 4.41262e11 7.64288e11i 0.473231 0.819661i −0.526299 0.850300i \(-0.676421\pi\)
0.999531 + 0.0306386i \(0.00975411\pi\)
\(458\) 0 0
\(459\) −6.59259e11 1.14187e12i −0.693264 1.20077i
\(460\) 0 0
\(461\) −6.35002e11 −0.654819 −0.327409 0.944883i \(-0.606176\pi\)
−0.327409 + 0.944883i \(0.606176\pi\)
\(462\) 0 0
\(463\) 1.39959e12 1.41543 0.707714 0.706499i \(-0.249726\pi\)
0.707714 + 0.706499i \(0.249726\pi\)
\(464\) 0 0
\(465\) −2.45780e11 4.25704e11i −0.243786 0.422250i
\(466\) 0 0
\(467\) 1.29327e11 2.24000e11i 0.125824 0.217933i −0.796231 0.604993i \(-0.793176\pi\)
0.922055 + 0.387060i \(0.126509\pi\)
\(468\) 0 0
\(469\) 1.33248e12 6.37821e11i 1.27170 0.608724i
\(470\) 0 0
\(471\) 6.19479e11 1.07297e12i 0.580006 1.00460i
\(472\) 0 0
\(473\) 1.79650e10 + 3.11163e10i 0.0165026 + 0.0285833i
\(474\) 0 0
\(475\) −2.14561e11 −0.193388
\(476\) 0 0
\(477\) 2.36889e11 0.209514
\(478\) 0 0
\(479\) −9.08428e11 1.57344e12i −0.788462 1.36566i −0.926909 0.375286i \(-0.877544\pi\)
0.138447 0.990370i \(-0.455789\pi\)
\(480\) 0 0
\(481\) 8.44284e11 1.46234e12i 0.719177 1.24565i
\(482\) 0 0
\(483\) 1.45515e11 1.88215e12i 0.121659 1.57360i
\(484\) 0 0
\(485\) −1.74173e11 + 3.01676e11i −0.142936 + 0.247573i
\(486\) 0 0
\(487\) −1.17115e11 2.02850e11i −0.0943481 0.163416i 0.814988 0.579477i \(-0.196743\pi\)
−0.909336 + 0.416062i \(0.863410\pi\)
\(488\) 0 0
\(489\) −7.51822e10 −0.0594601
\(490\) 0 0
\(491\) −5.83805e11 −0.453316 −0.226658 0.973974i \(-0.572780\pi\)
−0.226658 + 0.973974i \(0.572780\pi\)
\(492\) 0 0
\(493\) 7.87509e11 + 1.36400e12i 0.600405 + 1.03993i
\(494\) 0 0
\(495\) −2.28774e10 + 3.96247e10i −0.0171270 + 0.0296649i
\(496\) 0 0
\(497\) −5.37827e10 + 6.95651e11i −0.0395402 + 0.511431i
\(498\) 0 0
\(499\) −5.85659e11 + 1.01439e12i −0.422856 + 0.732408i −0.996218 0.0868946i \(-0.972306\pi\)
0.573362 + 0.819302i \(0.305639\pi\)
\(500\) 0 0
\(501\) −1.29770e12 2.24768e12i −0.920248 1.59392i
\(502\) 0 0
\(503\) 9.45139e11 0.658324 0.329162 0.944273i \(-0.393234\pi\)
0.329162 + 0.944273i \(0.393234\pi\)
\(504\) 0 0
\(505\) 3.94387e12 2.69843
\(506\) 0 0
\(507\) 2.08360e11 + 3.60891e11i 0.140049 + 0.242572i
\(508\) 0 0
\(509\) −4.57200e11 + 7.91894e11i −0.301909 + 0.522922i −0.976568 0.215207i \(-0.930957\pi\)
0.674659 + 0.738129i \(0.264291\pi\)
\(510\) 0 0
\(511\) 1.55243e12 7.43103e11i 1.00720 0.482120i
\(512\) 0 0
\(513\) 1.08373e11 1.87707e11i 0.0690863 0.119661i
\(514\) 0 0
\(515\) 8.12862e11 + 1.40792e12i 0.509195 + 0.881952i
\(516\) 0 0
\(517\) 2.77570e11 0.170870
\(518\) 0 0
\(519\) 4.43611e11 0.268380
\(520\) 0 0
\(521\) 1.35247e12 + 2.34255e12i 0.804190 + 1.39290i 0.916837 + 0.399262i \(0.130734\pi\)
−0.112647 + 0.993635i \(0.535933\pi\)
\(522\) 0 0
\(523\) −2.59251e11 + 4.49036e11i −0.151518 + 0.262436i −0.931786 0.363009i \(-0.881749\pi\)
0.780268 + 0.625445i \(0.215083\pi\)
\(524\) 0 0
\(525\) −1.93018e12 1.32266e12i −1.10887 0.759855i
\(526\) 0 0
\(527\) 4.17533e11 7.23189e11i 0.235800 0.408417i
\(528\) 0 0
\(529\) −9.70576e11 1.68109e12i −0.538864 0.933340i
\(530\) 0 0
\(531\) −4.90143e11 −0.267545
\(532\) 0 0
\(533\) 1.53374e12 0.823150
\(534\) 0 0
\(535\) 1.21497e12 + 2.10439e12i 0.641171 + 1.11054i
\(536\) 0 0
\(537\) 1.61073e12 2.78986e12i 0.835869 1.44777i
\(538\) 0 0
\(539\) 8.16064e10 + 2.10850e11i 0.0416461 + 0.107603i
\(540\) 0 0
\(541\) −1.09240e12 + 1.89208e12i −0.548267 + 0.949626i 0.450126 + 0.892965i \(0.351379\pi\)
−0.998393 + 0.0566615i \(0.981954\pi\)
\(542\) 0 0
\(543\) 1.43111e12 + 2.47875e12i 0.706437 + 1.22358i
\(544\) 0 0
\(545\) −4.06715e12 −1.97472
\(546\) 0 0
\(547\) 2.21998e12 1.06024 0.530122 0.847921i \(-0.322146\pi\)
0.530122 + 0.847921i \(0.322146\pi\)
\(548\) 0 0
\(549\) 2.07479e11 + 3.59365e11i 0.0974763 + 0.168834i
\(550\) 0 0
\(551\) −1.29455e11 + 2.24223e11i −0.0598325 + 0.103633i
\(552\) 0 0
\(553\) −1.46573e12 1.00439e12i −0.666484 0.456708i
\(554\) 0 0
\(555\) −2.34429e12 + 4.06043e12i −1.04880 + 1.81658i
\(556\) 0 0
\(557\) 1.99295e10 + 3.45190e10i 0.00877302 + 0.0151953i 0.870379 0.492383i \(-0.163874\pi\)
−0.861606 + 0.507578i \(0.830541\pi\)
\(558\) 0 0
\(559\) −7.40051e11 −0.320560
\(560\) 0 0
\(561\) −4.68504e11 −0.199701
\(562\) 0 0
\(563\) 5.36588e11 + 9.29397e11i 0.225088 + 0.389864i 0.956346 0.292237i \(-0.0943996\pi\)
−0.731258 + 0.682101i \(0.761066\pi\)
\(564\) 0 0
\(565\) −5.54722e10 + 9.60806e10i −0.0229011 + 0.0396659i
\(566\) 0 0
\(567\) 2.57358e12 1.23190e12i 1.04572 0.500554i
\(568\) 0 0
\(569\) −2.35208e12 + 4.07393e12i −0.940693 + 1.62933i −0.176539 + 0.984294i \(0.556490\pi\)
−0.764154 + 0.645034i \(0.776843\pi\)
\(570\) 0 0
\(571\) −1.25353e12 2.17118e12i −0.493485 0.854740i 0.506487 0.862247i \(-0.330944\pi\)
−0.999972 + 0.00750717i \(0.997610\pi\)
\(572\) 0 0
\(573\) 9.84932e11 0.381690
\(574\) 0 0
\(575\) −4.63856e12 −1.76961
\(576\) 0 0
\(577\) −1.32891e12 2.30173e12i −0.499118 0.864498i 0.500881 0.865516i \(-0.333009\pi\)
−0.999999 + 0.00101805i \(0.999676\pi\)
\(578\) 0 0
\(579\) −8.20953e10 + 1.42193e11i −0.0303574 + 0.0525806i
\(580\) 0 0
\(581\) 1.24948e11 1.61613e12i 0.0454922 0.588417i
\(582\) 0 0
\(583\) −1.69501e11 + 2.93585e11i −0.0607666 + 0.105251i
\(584\) 0 0
\(585\) −4.71206e11 8.16153e11i −0.166345 0.288118i
\(586\) 0 0
\(587\) −5.14876e11 −0.178991 −0.0894955 0.995987i \(-0.528525\pi\)
−0.0894955 + 0.995987i \(0.528525\pi\)
\(588\) 0 0
\(589\) 1.37273e11 0.0469966
\(590\) 0 0
\(591\) −1.53488e12 2.65848e12i −0.517523 0.896376i
\(592\) 0 0
\(593\) 3.19333e11 5.53101e11i 0.106047 0.183678i −0.808119 0.589020i \(-0.799514\pi\)
0.914165 + 0.405341i \(0.132847\pi\)
\(594\) 0 0
\(595\) 5.55985e11 7.19137e12i 0.181860 2.35226i
\(596\) 0 0
\(597\) 1.21455e12 2.10366e12i 0.391318 0.677782i
\(598\) 0 0
\(599\) 2.61951e12 + 4.53713e12i 0.831381 + 1.43999i 0.896943 + 0.442145i \(0.145783\pi\)
−0.0655624 + 0.997848i \(0.520884\pi\)
\(600\) 0 0
\(601\) −5.90374e12 −1.84583 −0.922916 0.385002i \(-0.874201\pi\)
−0.922916 + 0.385002i \(0.874201\pi\)
\(602\) 0 0
\(603\) −9.10462e11 −0.280436
\(604\) 0 0
\(605\) 2.42647e12 + 4.20277e12i 0.736335 + 1.27537i
\(606\) 0 0
\(607\) −1.51269e12 + 2.62006e12i −0.452274 + 0.783361i −0.998527 0.0542592i \(-0.982720\pi\)
0.546253 + 0.837620i \(0.316054\pi\)
\(608\) 0 0
\(609\) −2.54679e12 + 1.21908e12i −0.750266 + 0.359131i
\(610\) 0 0
\(611\) −2.85856e12 + 4.95117e12i −0.829778 + 1.43722i
\(612\) 0 0
\(613\) 2.67847e12 + 4.63925e12i 0.766153 + 1.32702i 0.939635 + 0.342179i \(0.111165\pi\)
−0.173482 + 0.984837i \(0.555502\pi\)
\(614\) 0 0
\(615\) −4.25867e12 −1.20043
\(616\) 0 0
\(617\) 3.53508e12 0.982011 0.491005 0.871157i \(-0.336630\pi\)
0.491005 + 0.871157i \(0.336630\pi\)
\(618\) 0 0
\(619\) −3.56878e11 6.18131e11i −0.0977039 0.169228i 0.813030 0.582222i \(-0.197816\pi\)
−0.910734 + 0.412994i \(0.864483\pi\)
\(620\) 0 0
\(621\) 2.34289e12 4.05800e12i 0.632179 1.09497i
\(622\) 0 0
\(623\) −6.07966e12 4.16609e12i −1.61690 1.10798i
\(624\) 0 0
\(625\) 1.37422e12 2.38023e12i 0.360245 0.623962i
\(626\) 0 0
\(627\) −3.85077e10 6.66973e10i −0.00995048 0.0172347i
\(628\) 0 0
\(629\) −7.96499e12 −2.02888
\(630\) 0 0
\(631\) −6.27699e12 −1.57623 −0.788115 0.615528i \(-0.788943\pi\)
−0.788115 + 0.615528i \(0.788943\pi\)
\(632\) 0 0
\(633\) 6.44111e11 + 1.11563e12i 0.159457 + 0.276188i
\(634\) 0 0
\(635\) 3.71663e12 6.43739e12i 0.907125 1.57119i
\(636\) 0 0
\(637\) −4.60148e12 7.15785e11i −1.10731 0.172248i
\(638\) 0 0
\(639\) 2.15009e11 3.72407e11i 0.0510157 0.0883617i
\(640\) 0 0
\(641\) 8.96947e11 + 1.55356e12i 0.209848 + 0.363468i 0.951667 0.307133i \(-0.0993696\pi\)
−0.741818 + 0.670601i \(0.766036\pi\)
\(642\) 0 0
\(643\) 7.39512e12 1.70607 0.853033 0.521857i \(-0.174761\pi\)
0.853033 + 0.521857i \(0.174761\pi\)
\(644\) 0 0
\(645\) 2.05487e12 0.467483
\(646\) 0 0
\(647\) −1.10642e12 1.91637e12i −0.248227 0.429942i 0.714807 0.699322i \(-0.246515\pi\)
−0.963034 + 0.269380i \(0.913181\pi\)
\(648\) 0 0
\(649\) 3.50713e11 6.07452e11i 0.0775979 0.134404i
\(650\) 0 0
\(651\) 1.23490e12 + 8.46217e11i 0.269475 + 0.184658i
\(652\) 0 0
\(653\) 1.71344e12 2.96777e12i 0.368773 0.638734i −0.620601 0.784127i \(-0.713111\pi\)
0.989374 + 0.145393i \(0.0464445\pi\)
\(654\) 0 0
\(655\) −5.20491e11 9.01517e11i −0.110491 0.191376i
\(656\) 0 0
\(657\) −1.06075e12 −0.222110
\(658\) 0 0
\(659\) 5.15867e12 1.06550 0.532750 0.846273i \(-0.321159\pi\)
0.532750 + 0.846273i \(0.321159\pi\)
\(660\) 0 0
\(661\) 4.22535e12 + 7.31851e12i 0.860906 + 1.49113i 0.871056 + 0.491184i \(0.163436\pi\)
−0.0101497 + 0.999948i \(0.503231\pi\)
\(662\) 0 0
\(663\) 4.82491e12 8.35698e12i 0.969791 1.67973i
\(664\) 0 0
\(665\) 1.06948e12 5.11928e11i 0.212067 0.101511i
\(666\) 0 0
\(667\) −2.79867e12 + 4.84744e12i −0.547501 + 0.948300i
\(668\) 0 0
\(669\) 2.77432e12 + 4.80526e12i 0.535475 + 0.927469i
\(670\) 0 0
\(671\) −5.93831e11 −0.113087
\(672\) 0 0
\(673\) −4.58272e12 −0.861105 −0.430552 0.902566i \(-0.641681\pi\)
−0.430552 + 0.902566i \(0.641681\pi\)
\(674\) 0 0
\(675\) −2.90399e12 5.02986e12i −0.538429 0.932587i
\(676\) 0 0
\(677\) −1.67750e12 + 2.90551e12i −0.306911 + 0.531585i −0.977685 0.210077i \(-0.932629\pi\)
0.670774 + 0.741662i \(0.265962\pi\)
\(678\) 0 0
\(679\) 8.17745e10 1.05771e12i 0.0147640 0.190964i
\(680\) 0 0
\(681\) −4.06962e12 + 7.04879e12i −0.725090 + 1.25589i
\(682\) 0 0
\(683\) 1.05762e12 + 1.83186e12i 0.185968 + 0.322106i 0.943902 0.330225i \(-0.107125\pi\)
−0.757934 + 0.652331i \(0.773791\pi\)
\(684\) 0 0
\(685\) 4.33224e12 0.751805
\(686\) 0 0
\(687\) 3.54889e12 0.607837
\(688\) 0 0
\(689\) −3.49123e12 6.04699e12i −0.590190 1.02224i
\(690\) 0 0
\(691\) 8.50655e11 1.47338e12i 0.141939 0.245846i −0.786288 0.617861i \(-0.788000\pi\)
0.928227 + 0.372015i \(0.121333\pi\)
\(692\) 0 0
\(693\) 1.07410e10 1.38929e11i 0.00176907 0.0228819i
\(694\) 0 0
\(695\) −8.72376e12 + 1.51100e13i −1.41831 + 2.45659i
\(696\) 0 0
\(697\) −3.61733e12 6.26540e12i −0.580551 1.00554i
\(698\) 0 0
\(699\) −2.40462e12 −0.380977
\(700\) 0 0
\(701\) −4.34715e12 −0.679945 −0.339973 0.940435i \(-0.610418\pi\)
−0.339973 + 0.940435i \(0.610418\pi\)
\(702\) 0 0
\(703\) −6.54665e11 1.13391e12i −0.101093 0.175098i
\(704\) 0 0
\(705\) 7.93725e12 1.37477e13i 1.21009 2.09594i
\(706\) 0 0
\(707\) −1.08336e13 + 5.18575e12i −1.63075 + 0.780592i
\(708\) 0 0
\(709\) 1.65655e12 2.86922e12i 0.246204 0.426438i −0.716265 0.697828i \(-0.754150\pi\)
0.962469 + 0.271390i \(0.0874833\pi\)
\(710\) 0 0
\(711\) 5.47545e11 + 9.48375e11i 0.0803538 + 0.139177i
\(712\) 0 0
\(713\) 2.96768e12 0.430045
\(714\) 0 0
\(715\) 1.34865e12 0.192984
\(716\) 0 0
\(717\) 6.42991e12 + 1.11369e13i 0.908591 + 1.57373i
\(718\) 0 0
\(719\) −6.05718e11 + 1.04914e12i −0.0845261 + 0.146403i −0.905189 0.425009i \(-0.860271\pi\)
0.820663 + 0.571412i \(0.193604\pi\)
\(720\) 0 0
\(721\) −4.08415e12 2.79867e12i −0.562851 0.385694i
\(722\) 0 0
\(723\) 2.59381e12 4.49261e12i 0.353033 0.611471i
\(724\) 0 0
\(725\) 3.46893e12 + 6.00836e12i 0.466309 + 0.807671i
\(726\) 0 0
\(727\) 7.42267e11 0.0985497 0.0492749 0.998785i \(-0.484309\pi\)
0.0492749 + 0.998785i \(0.484309\pi\)
\(728\) 0 0
\(729\) 5.56541e12 0.729833
\(730\) 0 0
\(731\) 1.74541e12 + 3.02315e12i 0.226084 + 0.391589i
\(732\) 0 0
\(733\) −9.56322e11 + 1.65640e12i −0.122359 + 0.211932i −0.920698 0.390277i \(-0.872379\pi\)
0.798338 + 0.602209i \(0.205713\pi\)
\(734\) 0 0
\(735\) 1.27767e13 + 1.98749e12i 1.61483 + 0.251196i
\(736\) 0 0
\(737\) 6.51463e11 1.12837e12i 0.0813367 0.140879i
\(738\) 0 0
\(739\) 4.89339e12 + 8.47560e12i 0.603545 + 1.04537i 0.992280 + 0.124021i \(0.0395790\pi\)
−0.388734 + 0.921350i \(0.627088\pi\)
\(740\) 0 0
\(741\) 1.58629e12 0.193286
\(742\) 0 0
\(743\) 5.65599e12 0.680862 0.340431 0.940269i \(-0.389427\pi\)
0.340431 + 0.940269i \(0.389427\pi\)
\(744\) 0 0
\(745\) −8.87920e12 1.53792e13i −1.05602 1.82907i
\(746\) 0 0
\(747\) −4.99509e11 + 8.65176e11i −0.0586950 + 0.101663i
\(748\) 0 0
\(749\) −6.10452e12 4.18312e12i −0.708734 0.485660i
\(750\) 0 0
\(751\) 4.13975e12 7.17027e12i 0.474892 0.822537i −0.524695 0.851291i \(-0.675820\pi\)
0.999587 + 0.0287535i \(0.00915378\pi\)
\(752\) 0 0
\(753\) 3.88053e12 + 6.72128e12i 0.439859 + 0.761858i
\(754\) 0 0
\(755\) −2.01614e12 −0.225819
\(756\) 0 0
\(757\) −9.49224e12 −1.05060 −0.525300 0.850917i \(-0.676047\pi\)
−0.525300 + 0.850917i \(0.676047\pi\)
\(758\) 0 0
\(759\) −8.32492e11 1.44192e12i −0.0910525 0.157708i
\(760\) 0 0
\(761\) −2.82368e11 + 4.89076e11i −0.0305200 + 0.0528623i −0.880882 0.473336i \(-0.843050\pi\)
0.850362 + 0.526198i \(0.176383\pi\)
\(762\) 0 0
\(763\) 1.11723e13 5.34786e12i 1.19339 0.571241i
\(764\) 0 0
\(765\) −2.22268e12 + 3.84980e12i −0.234640 + 0.406408i
\(766\) 0 0
\(767\) 7.22365e12 + 1.25117e13i 0.753663 + 1.30538i
\(768\) 0 0
\(769\) −1.04208e13 −1.07456 −0.537281 0.843403i \(-0.680549\pi\)
−0.537281 + 0.843403i \(0.680549\pi\)
\(770\) 0 0
\(771\) −3.72966e12 −0.380124
\(772\) 0 0
\(773\) 7.94519e12 + 1.37615e13i 0.800380 + 1.38630i 0.919366 + 0.393403i \(0.128702\pi\)
−0.118986 + 0.992896i \(0.537964\pi\)
\(774\) 0 0
\(775\) 1.83921e12 3.18560e12i 0.183136 0.317201i
\(776\) 0 0
\(777\) 1.10065e12 1.42363e13i 0.108331 1.40121i
\(778\) 0 0
\(779\) 5.94637e11 1.02994e12i 0.0578540 0.100206i
\(780\) 0 0
\(781\) 3.07692e11 + 5.32938e11i 0.0295928 + 0.0512562i
\(782\) 0 0
\(783\) −7.00848e12 −0.666340
\(784\) 0 0
\(785\) 1.68232e13 1.58123
\(786\) 0 0
\(787\) 1.14447e12 + 1.98228e12i 0.106345 + 0.184195i 0.914287 0.405067i \(-0.132752\pi\)
−0.807942 + 0.589262i \(0.799419\pi\)
\(788\) 0 0
\(789\) 1.21433e12 2.10327e12i 0.111555 0.193219i
\(790\) 0 0
\(791\) 2.60443e10 3.36869e11i 0.00236548 0.0305962i
\(792\) 0 0
\(793\) 6.11559e12 1.05925e13i 0.549173 0.951195i
\(794\) 0 0
\(795\) 9.69396e12 + 1.67904e13i 0.860695 + 1.49077i
\(796\) 0 0
\(797\) 2.88305e12 0.253099 0.126549 0.991960i \(-0.459610\pi\)
0.126549 + 0.991960i \(0.459610\pi\)
\(798\) 0 0
\(799\) 2.69677e13 2.34090
\(800\) 0 0
\(801\) 2.27115e12 + 3.93375e12i 0.194940 + 0.337645i
\(802\) 0 0
\(803\) 7.58998e11 1.31462e12i 0.0644200 0.111579i
\(804\) 0 0
\(805\) 2.31208e13 1.10673e13i 1.94054 0.928879i
\(806\) 0 0
\(807\) 4.19211e12 7.26095e12i 0.347938 0.602646i
\(808\) 0 0
\(809\) 1.92244e12 + 3.32976e12i 0.157792 + 0.273303i 0.934072 0.357085i \(-0.116229\pi\)
−0.776280 + 0.630388i \(0.782896\pi\)
\(810\) 0 0
\(811\) −1.88231e13 −1.52791 −0.763954 0.645271i \(-0.776745\pi\)
−0.763954 + 0.645271i \(0.776745\pi\)
\(812\) 0 0
\(813\) 2.00728e12 0.161139
\(814\) 0 0
\(815\) −5.10432e11 8.84094e11i −0.0405255 0.0701922i
\(816\) 0 0
\(817\) −2.86921e11 + 4.96962e11i −0.0225301 + 0.0390233i
\(818\) 0 0
\(819\) 2.36754e12 + 1.62235e12i 0.183873 + 0.125999i
\(820\) 0 0
\(821\) −2.06087e12 + 3.56954e12i −0.158310 + 0.274200i −0.934259 0.356595i \(-0.883938\pi\)
0.775950 + 0.630795i \(0.217271\pi\)
\(822\) 0 0
\(823\) −5.96737e12 1.03358e13i −0.453402 0.785316i 0.545192 0.838311i \(-0.316457\pi\)
−0.998595 + 0.0529951i \(0.983123\pi\)
\(824\) 0 0
\(825\) −2.06373e12 −0.155100
\(826\) 0 0
\(827\) −1.91078e13 −1.42048 −0.710241 0.703959i \(-0.751414\pi\)
−0.710241 + 0.703959i \(0.751414\pi\)
\(828\) 0 0
\(829\) 7.02223e11 + 1.21629e12i 0.0516392 + 0.0894417i 0.890690 0.454612i \(-0.150222\pi\)
−0.839050 + 0.544054i \(0.816889\pi\)
\(830\) 0 0
\(831\) 7.04175e11 1.21967e12i 0.0512243 0.0887231i
\(832\) 0 0
\(833\) 7.92859e12 + 2.04854e13i 0.570549 + 1.47415i
\(834\) 0 0
\(835\) 1.76208e13 3.05202e13i 1.25440 2.17269i
\(836\) 0 0
\(837\) 1.85793e12 + 3.21803e12i 0.130847 + 0.226634i
\(838\) 0 0
\(839\) −1.41615e13 −0.986692 −0.493346 0.869833i \(-0.664226\pi\)
−0.493346 + 0.869833i \(0.664226\pi\)
\(840\) 0 0
\(841\) −6.13525e12 −0.422913
\(842\) 0 0
\(843\) 6.32096e12 + 1.09482e13i 0.431081 + 0.746655i
\(844\) 0 0
\(845\) −2.82922e12 + 4.90036e12i −0.190903 + 0.330653i
\(846\) 0 0
\(847\) −1.21916e13 8.35428e12i −0.813925 0.557743i
\(848\) 0 0
\(849\) −1.00066e13 + 1.73320e13i −0.661001 + 1.14489i
\(850\) 0 0
\(851\) −1.41531e13 2.45139e13i −0.925057 1.60224i
\(852\) 0 0
\(853\) −4.16449e12 −0.269334 −0.134667 0.990891i \(-0.542996\pi\)
−0.134667 + 0.990891i \(0.542996\pi\)
\(854\) 0 0
\(855\) −7.30755e11 −0.0467653
\(856\) 0 0
\(857\) −8.79741e12 1.52376e13i −0.557110 0.964943i −0.997736 0.0672523i \(-0.978577\pi\)
0.440626 0.897691i \(-0.354757\pi\)
\(858\) 0 0
\(859\) 4.93082e12 8.54043e12i 0.308994 0.535193i −0.669149 0.743128i \(-0.733341\pi\)
0.978143 + 0.207936i \(0.0666745\pi\)
\(860\) 0 0
\(861\) 1.16984e13 5.59968e12i 0.725457 0.347255i
\(862\) 0 0
\(863\) −3.20684e12 + 5.55441e12i −0.196802 + 0.340871i −0.947490 0.319786i \(-0.896389\pi\)
0.750688 + 0.660657i \(0.229722\pi\)
\(864\) 0 0
\(865\) 3.01179e12 + 5.21658e12i 0.182916 + 0.316820i
\(866\) 0 0
\(867\) −2.73012e13 −1.64095
\(868\) 0 0
\(869\) −1.56714e12 −0.0932221
\(870\) 0 0
\(871\) 1.34182e13 + 2.32411e13i 0.789975 + 1.36828i
\(872\) 0 0
\(873\) −3.26913e11 + 5.66230e11i −0.0190488 + 0.0329935i
\(874\) 0 0
\(875\) 4.54187e11 5.87466e12i 0.0261938 0.338802i
\(876\) 0 0
\(877\) 9.75658e12 1.68989e13i 0.556928 0.964628i −0.440822 0.897594i \(-0.645313\pi\)
0.997751 0.0670339i \(-0.0213536\pi\)
\(878\) 0 0
\(879\) −1.79820e13 3.11458e13i −1.01599 1.75975i
\(880\) 0 0
\(881\) −2.42779e13 −1.35775 −0.678873 0.734255i \(-0.737532\pi\)
−0.678873 + 0.734255i \(0.737532\pi\)
\(882\) 0 0
\(883\) −6.25628e12 −0.346332 −0.173166 0.984893i \(-0.555400\pi\)
−0.173166 + 0.984893i \(0.555400\pi\)
\(884\) 0 0
\(885\) −2.00576e13 3.47408e13i −1.09909 1.90368i
\(886\) 0 0
\(887\) −1.64041e13 + 2.84127e13i −0.889807 + 1.54119i −0.0497050 + 0.998764i \(0.515828\pi\)
−0.840102 + 0.542428i \(0.817505\pi\)
\(888\) 0 0
\(889\) −1.74497e12 + 2.25702e13i −0.0936977 + 1.21193i
\(890\) 0 0
\(891\) 1.25825e12 2.17935e12i 0.0668832 0.115845i
\(892\) 0 0
\(893\) 2.21655e12 + 3.83918e12i 0.116640 + 0.202026i
\(894\) 0 0
\(895\) 4.37426e13 2.27877
\(896\) 0 0
\(897\) 3.42938e13 1.76868
\(898\) 0 0
\(899\) −2.21937e12 3.84406e12i −0.113321 0.196278i
\(900\) 0 0
\(901\) −1.64682e13 + 2.85237e13i −0.832499 + 1.44193i
\(902\) 0 0
\(903\) −5.64464e12 + 2.70193e12i −0.282515 + 0.135232i
\(904\) 0 0
\(905\) −1.94323e13 + 3.36578e13i −0.962956 + 1.66789i
\(906\) 0 0
\(907\) 1.03362e13 + 1.79029e13i 0.507143 + 0.878397i 0.999966 + 0.00826727i \(0.00263158\pi\)
−0.492823 + 0.870129i \(0.664035\pi\)
\(908\) 0 0
\(909\) 7.40243e12 0.359614
\(910\) 0 0
\(911\) 3.01133e12 0.144853 0.0724263 0.997374i \(-0.476926\pi\)
0.0724263 + 0.997374i \(0.476926\pi\)
\(912\) 0 0
\(913\) −7.14829e11 1.23812e12i −0.0340474 0.0589718i
\(914\) 0 0
\(915\) −1.69809e13 + 2.94118e13i −0.800877 + 1.38716i
\(916\) 0 0
\(917\) 2.61516e12 + 1.79204e12i 0.122134 + 0.0836924i
\(918\) 0 0
\(919\) −1.19955e13 + 2.07768e13i −0.554751 + 0.960856i 0.443172 + 0.896436i \(0.353853\pi\)
−0.997923 + 0.0644199i \(0.979480\pi\)
\(920\) 0 0
\(921\) −1.85847e13 3.21897e13i −0.851113 1.47417i
\(922\) 0 0
\(923\) −1.26751e13 −0.574835
\(924\) 0 0
\(925\) −3.50853e13 −1.57575
\(926\) 0 0
\(927\) 1.52570e12 + 2.64259e12i 0.0678594 + 0.117536i
\(928\) 0 0
\(929\) −9.77237e12 + 1.69262e13i −0.430457 + 0.745573i −0.996913 0.0785193i \(-0.974981\pi\)
0.566456 + 0.824092i \(0.308314\pi\)
\(930\) 0 0
\(931\) −2.26468e12 + 2.81249e12i −0.0987946 + 0.122692i
\(932\) 0 0
\(933\) −2.21127e12 + 3.83004e12i −0.0955377 + 0.165476i
\(934\) 0 0
\(935\) −3.18080e12 5.50930e12i −0.136108 0.235746i
\(936\) 0 0
\(937\) −8.02420e12 −0.340074 −0.170037 0.985438i \(-0.554389\pi\)
−0.170037 + 0.985438i \(0.554389\pi\)
\(938\) 0 0
\(939\) 2.23678e13 0.938919
\(940\) 0 0
\(941\) −1.69527e13 2.93629e13i −0.704831 1.22080i −0.966752 0.255714i \(-0.917689\pi\)
0.261921 0.965089i \(-0.415644\pi\)
\(942\) 0 0
\(943\) 1.28554e13 2.22661e13i 0.529397 0.916942i
\(944\) 0 0
\(945\) 2.64758e13 + 1.81426e13i 1.07996 + 0.740041i
\(946\) 0 0
\(947\) −4.11242e12 + 7.12291e12i −0.166158 + 0.287795i −0.937066 0.349152i \(-0.886470\pi\)
0.770908 + 0.636947i \(0.219803\pi\)
\(948\) 0 0
\(949\) 1.56331e13 + 2.70774e13i 0.625673 + 1.08370i
\(950\) 0 0
\(951\) −2.46489e13 −0.977204
\(952\) 0 0
\(953\) −1.97060e13 −0.773891 −0.386946 0.922102i \(-0.626470\pi\)
−0.386946 + 0.922102i \(0.626470\pi\)
\(954\) 0 0
\(955\) 6.68696e12 + 1.15822e13i 0.260144 + 0.450582i
\(956\) 0 0
\(957\) −1.24515e12 + 2.15666e12i −0.0479864 + 0.0831149i
\(958\) 0 0
\(959\) −1.19005e13 + 5.69642e12i −0.454340 + 0.217480i
\(960\) 0 0
\(961\) 1.20431e13 2.08593e13i 0.455495 0.788940i
\(962\) 0 0
\(963\) 2.28044e12 + 3.94983e12i 0.0854476 + 0.148000i
\(964\) 0 0
\(965\) −2.22946e12 −0.0827614
\(966\) 0 0
\(967\) −4.98171e13 −1.83214 −0.916072 0.401014i \(-0.868658\pi\)
−0.916072 + 0.401014i \(0.868658\pi\)
\(968\) 0 0
\(969\) −3.74127e12 6.48008e12i −0.136321 0.236115i
\(970\) 0 0
\(971\) −7.04913e12 + 1.22095e13i −0.254477 + 0.440768i −0.964753 0.263156i \(-0.915237\pi\)
0.710276 + 0.703923i \(0.248570\pi\)
\(972\) 0 0
\(973\) 4.09583e12 5.29773e13i 0.146499 1.89488i
\(974\) 0 0
\(975\) 2.12534e13 3.68120e13i 0.753196 1.30457i
\(976\) 0 0
\(977\) 4.06319e12 + 7.03765e12i 0.142673 + 0.247117i 0.928502 0.371327i \(-0.121097\pi\)
−0.785829 + 0.618443i \(0.787764\pi\)
\(978\) 0 0
\(979\) −6.50032e12 −0.226158
\(980\) 0 0
\(981\) −7.63384e12 −0.263168
\(982\) 0 0
\(983\) 1.95336e13 + 3.38332e13i 0.667254 + 1.15572i 0.978669 + 0.205444i \(0.0658637\pi\)
−0.311415 + 0.950274i \(0.600803\pi\)
\(984\) 0 0
\(985\) 2.08413e13 3.60982e13i 0.705444 1.22186i
\(986\) 0 0
\(987\) −3.72656e12 + 4.82010e13i −0.124992 + 1.61670i
\(988\) 0 0
\(989\) −6.20290e12 + 1.07437e13i −0.206163 + 0.357085i
\(990\) 0 0
\(991\) 3.52693e12 + 6.10882e12i 0.116162 + 0.201199i 0.918244 0.396016i \(-0.129607\pi\)
−0.802081 + 0.597215i \(0.796274\pi\)
\(992\) 0 0
\(993\) 1.53035e13 0.499480
\(994\) 0 0
\(995\) 3.29835e13 1.06682
\(996\) 0 0
\(997\) −8.54033e12 1.47923e13i −0.273745 0.474140i 0.696073 0.717971i \(-0.254929\pi\)
−0.969818 + 0.243831i \(0.921596\pi\)
\(998\) 0 0
\(999\) 1.77212e13 3.06941e13i 0.562923 0.975012i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.i.f.65.7 18
4.3 odd 2 56.10.i.a.9.3 18
7.4 even 3 inner 112.10.i.f.81.7 18
28.11 odd 6 56.10.i.a.25.3 yes 18
28.19 even 6 392.10.a.i.1.3 9
28.23 odd 6 392.10.a.l.1.7 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.10.i.a.9.3 18 4.3 odd 2
56.10.i.a.25.3 yes 18 28.11 odd 6
112.10.i.f.65.7 18 1.1 even 1 trivial
112.10.i.f.81.7 18 7.4 even 3 inner
392.10.a.i.1.3 9 28.19 even 6
392.10.a.l.1.7 9 28.23 odd 6