Properties

Label 112.10.i.d.65.5
Level $112$
Weight $10$
Character 112.65
Analytic conductor $57.684$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(65,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.65"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 7779 x^{10} + 365650 x^{9} + 45150527 x^{8} + 2129694927 x^{7} + 167292926543 x^{6} + \cdots + 68\!\cdots\!56 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{28}\cdot 3^{4}\cdot 7^{7} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 65.5
Root \(34.9935 + 60.6105i\) of defining polynomial
Character \(\chi\) \(=\) 112.65
Dual form 112.10.i.d.81.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(82.4523 + 142.812i) q^{3} +(1030.62 - 1785.08i) q^{5} +(-6318.25 - 658.292i) q^{7} +(-3755.26 + 6504.30i) q^{9} +(19582.0 + 33917.0i) q^{11} -14379.0 q^{13} +339908. q^{15} +(-117601. - 203691. i) q^{17} +(271910. - 470962. i) q^{19} +(-426942. - 956597. i) q^{21} +(-576096. + 997828. i) q^{23} +(-1.14779e6 - 1.98803e6i) q^{25} +2.00730e6 q^{27} -6.02178e6 q^{29} +(-4.27494e6 - 7.40442e6i) q^{31} +(-3.22916e6 + 5.59307e6i) q^{33} +(-7.68681e6 + 1.06002e7i) q^{35} +(2.47645e6 - 4.28933e6i) q^{37} +(-1.18558e6 - 2.05349e6i) q^{39} +1.48341e7 q^{41} -3.80424e7 q^{43} +(7.74048e6 + 1.34069e7i) q^{45} +(2.38065e7 - 4.12341e7i) q^{47} +(3.94869e7 + 8.31850e6i) q^{49} +(1.93930e7 - 3.35896e7i) q^{51} +(-4.94404e7 - 8.56333e7i) q^{53} +8.07263e7 q^{55} +8.96785e7 q^{57} +(2.07780e7 + 3.59886e7i) q^{59} +(1.71098e7 - 2.96350e7i) q^{61} +(2.80084e7 - 3.86237e7i) q^{63} +(-1.48193e7 + 2.56677e7i) q^{65} +(7.66238e7 + 1.32716e8i) q^{67} -1.90002e8 q^{69} -1.59112e8 q^{71} +(-2.03375e8 - 3.52256e8i) q^{73} +(1.89275e8 - 3.27835e8i) q^{75} +(-1.01397e8 - 2.27187e8i) q^{77} +(4.27911e7 - 7.41163e7i) q^{79} +(2.39421e8 + 4.14689e8i) q^{81} -5.27310e8 q^{83} -4.84808e8 q^{85} +(-4.96509e8 - 8.59980e8i) q^{87} +(2.67165e8 - 4.62744e8i) q^{89} +(9.08500e7 + 9.46557e6i) q^{91} +(7.04958e8 - 1.22102e9i) q^{93} +(-5.60472e8 - 9.70765e8i) q^{95} +1.26391e9 q^{97} -2.94142e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 966 q^{5} - 7696 q^{7} - 21620 q^{9} + 47640 q^{11} + 103432 q^{13} + 400280 q^{15} - 402234 q^{17} + 519960 q^{19} - 1025858 q^{21} + 683124 q^{23} - 1134656 q^{25} + 7641648 q^{27} + 4252680 q^{29}+ \cdots - 8151941296 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 82.4523 + 142.812i 0.587702 + 1.01793i 0.994533 + 0.104426i \(0.0333005\pi\)
−0.406831 + 0.913504i \(0.633366\pi\)
\(4\) 0 0
\(5\) 1030.62 1785.08i 0.737451 1.27730i −0.216189 0.976352i \(-0.569363\pi\)
0.953640 0.300951i \(-0.0973039\pi\)
\(6\) 0 0
\(7\) −6318.25 658.292i −0.994616 0.103628i
\(8\) 0 0
\(9\) −3755.26 + 6504.30i −0.190787 + 0.330453i
\(10\) 0 0
\(11\) 19582.0 + 33917.0i 0.403264 + 0.698474i 0.994118 0.108305i \(-0.0345422\pi\)
−0.590854 + 0.806779i \(0.701209\pi\)
\(12\) 0 0
\(13\) −14379.0 −0.139631 −0.0698157 0.997560i \(-0.522241\pi\)
−0.0698157 + 0.997560i \(0.522241\pi\)
\(14\) 0 0
\(15\) 339908. 1.73360
\(16\) 0 0
\(17\) −117601. 203691.i −0.341501 0.591497i 0.643211 0.765689i \(-0.277602\pi\)
−0.984712 + 0.174192i \(0.944269\pi\)
\(18\) 0 0
\(19\) 271910. 470962.i 0.478668 0.829077i −0.521033 0.853537i \(-0.674453\pi\)
0.999701 + 0.0244594i \(0.00778645\pi\)
\(20\) 0 0
\(21\) −426942. 956597.i −0.479052 1.07335i
\(22\) 0 0
\(23\) −576096. + 997828.i −0.429260 + 0.743499i −0.996808 0.0798409i \(-0.974559\pi\)
0.567548 + 0.823340i \(0.307892\pi\)
\(24\) 0 0
\(25\) −1.14779e6 1.98803e6i −0.587667 1.01787i
\(26\) 0 0
\(27\) 2.00730e6 0.726900
\(28\) 0 0
\(29\) −6.02178e6 −1.58101 −0.790504 0.612458i \(-0.790181\pi\)
−0.790504 + 0.612458i \(0.790181\pi\)
\(30\) 0 0
\(31\) −4.27494e6 7.40442e6i −0.831386 1.44000i −0.896939 0.442154i \(-0.854215\pi\)
0.0655534 0.997849i \(-0.479119\pi\)
\(32\) 0 0
\(33\) −3.22916e6 + 5.59307e6i −0.473998 + 0.820989i
\(34\) 0 0
\(35\) −7.68681e6 + 1.06002e7i −0.865845 + 1.19400i
\(36\) 0 0
\(37\) 2.47645e6 4.28933e6i 0.217231 0.376255i −0.736730 0.676188i \(-0.763631\pi\)
0.953960 + 0.299933i \(0.0969642\pi\)
\(38\) 0 0
\(39\) −1.18558e6 2.05349e6i −0.0820617 0.142135i
\(40\) 0 0
\(41\) 1.48341e7 0.819851 0.409925 0.912119i \(-0.365555\pi\)
0.409925 + 0.912119i \(0.365555\pi\)
\(42\) 0 0
\(43\) −3.80424e7 −1.69691 −0.848456 0.529265i \(-0.822468\pi\)
−0.848456 + 0.529265i \(0.822468\pi\)
\(44\) 0 0
\(45\) 7.74048e6 + 1.34069e7i 0.281392 + 0.487385i
\(46\) 0 0
\(47\) 2.38065e7 4.12341e7i 0.711632 1.23258i −0.252612 0.967568i \(-0.581290\pi\)
0.964244 0.265015i \(-0.0853769\pi\)
\(48\) 0 0
\(49\) 3.94869e7 + 8.31850e6i 0.978522 + 0.206140i
\(50\) 0 0
\(51\) 1.93930e7 3.35896e7i 0.401401 0.695248i
\(52\) 0 0
\(53\) −4.94404e7 8.56333e7i −0.860678 1.49074i −0.871275 0.490795i \(-0.836707\pi\)
0.0105971 0.999944i \(-0.496627\pi\)
\(54\) 0 0
\(55\) 8.07263e7 1.18955
\(56\) 0 0
\(57\) 8.96785e7 1.12526
\(58\) 0 0
\(59\) 2.07780e7 + 3.59886e7i 0.223239 + 0.386662i 0.955790 0.294051i \(-0.0950035\pi\)
−0.732550 + 0.680713i \(0.761670\pi\)
\(60\) 0 0
\(61\) 1.71098e7 2.96350e7i 0.158220 0.274044i −0.776007 0.630724i \(-0.782758\pi\)
0.934227 + 0.356680i \(0.116091\pi\)
\(62\) 0 0
\(63\) 2.80084e7 3.86237e7i 0.224004 0.308903i
\(64\) 0 0
\(65\) −1.48193e7 + 2.56677e7i −0.102971 + 0.178352i
\(66\) 0 0
\(67\) 7.66238e7 + 1.32716e8i 0.464544 + 0.804614i 0.999181 0.0404678i \(-0.0128848\pi\)
−0.534637 + 0.845082i \(0.679551\pi\)
\(68\) 0 0
\(69\) −1.90002e8 −1.00911
\(70\) 0 0
\(71\) −1.59112e8 −0.743090 −0.371545 0.928415i \(-0.621172\pi\)
−0.371545 + 0.928415i \(0.621172\pi\)
\(72\) 0 0
\(73\) −2.03375e8 3.52256e8i −0.838194 1.45179i −0.891403 0.453211i \(-0.850279\pi\)
0.0532099 0.998583i \(-0.483055\pi\)
\(74\) 0 0
\(75\) 1.89275e8 3.27835e8i 0.690746 1.19641i
\(76\) 0 0
\(77\) −1.01397e8 2.27187e8i −0.328712 0.736503i
\(78\) 0 0
\(79\) 4.27911e7 7.41163e7i 0.123604 0.214088i −0.797583 0.603210i \(-0.793888\pi\)
0.921186 + 0.389122i \(0.127222\pi\)
\(80\) 0 0
\(81\) 2.39421e8 + 4.14689e8i 0.617988 + 1.07039i
\(82\) 0 0
\(83\) −5.27310e8 −1.21959 −0.609796 0.792558i \(-0.708749\pi\)
−0.609796 + 0.792558i \(0.708749\pi\)
\(84\) 0 0
\(85\) −4.84808e8 −1.00736
\(86\) 0 0
\(87\) −4.96509e8 8.59980e8i −0.929161 1.60935i
\(88\) 0 0
\(89\) 2.67165e8 4.62744e8i 0.451362 0.781782i −0.547109 0.837062i \(-0.684272\pi\)
0.998471 + 0.0552793i \(0.0176049\pi\)
\(90\) 0 0
\(91\) 9.08500e7 + 9.46557e6i 0.138880 + 0.0144697i
\(92\) 0 0
\(93\) 7.04958e8 1.22102e9i 0.977214 1.69258i
\(94\) 0 0
\(95\) −5.60472e8 9.70765e8i −0.705988 1.22281i
\(96\) 0 0
\(97\) 1.26391e9 1.44958 0.724791 0.688969i \(-0.241936\pi\)
0.724791 + 0.688969i \(0.241936\pi\)
\(98\) 0 0
\(99\) −2.94142e8 −0.307750
\(100\) 0 0
\(101\) −4.76474e8 8.25277e8i −0.455610 0.789139i 0.543113 0.839660i \(-0.317245\pi\)
−0.998723 + 0.0505201i \(0.983912\pi\)
\(102\) 0 0
\(103\) 8.03077e8 1.39097e9i 0.703055 1.21773i −0.264333 0.964431i \(-0.585152\pi\)
0.967389 0.253296i \(-0.0815147\pi\)
\(104\) 0 0
\(105\) −2.14762e9 2.23758e8i −1.72427 0.179650i
\(106\) 0 0
\(107\) 1.52449e8 2.64049e8i 0.112434 0.194741i −0.804317 0.594200i \(-0.797469\pi\)
0.916751 + 0.399459i \(0.130802\pi\)
\(108\) 0 0
\(109\) 1.01127e9 + 1.75158e9i 0.686198 + 1.18853i 0.973059 + 0.230558i \(0.0740551\pi\)
−0.286860 + 0.957972i \(0.592612\pi\)
\(110\) 0 0
\(111\) 8.16755e8 0.510668
\(112\) 0 0
\(113\) 1.80211e8 0.103975 0.0519874 0.998648i \(-0.483444\pi\)
0.0519874 + 0.998648i \(0.483444\pi\)
\(114\) 0 0
\(115\) 1.18747e9 + 2.05676e9i 0.633116 + 1.09659i
\(116\) 0 0
\(117\) 5.39968e7 9.35253e7i 0.0266399 0.0461416i
\(118\) 0 0
\(119\) 6.08946e8 + 1.36439e9i 0.278367 + 0.623701i
\(120\) 0 0
\(121\) 4.12065e8 7.13718e8i 0.174756 0.302686i
\(122\) 0 0
\(123\) 1.22311e9 + 2.11849e9i 0.481828 + 0.834550i
\(124\) 0 0
\(125\) −7.05871e8 −0.258601
\(126\) 0 0
\(127\) −3.68048e9 −1.25541 −0.627707 0.778449i \(-0.716007\pi\)
−0.627707 + 0.778449i \(0.716007\pi\)
\(128\) 0 0
\(129\) −3.13668e9 5.43289e9i −0.997279 1.72734i
\(130\) 0 0
\(131\) 8.71850e8 1.51009e9i 0.258655 0.448004i −0.707227 0.706987i \(-0.750054\pi\)
0.965882 + 0.258983i \(0.0833874\pi\)
\(132\) 0 0
\(133\) −2.02803e9 + 2.79666e9i −0.562006 + 0.775010i
\(134\) 0 0
\(135\) 2.06876e9 3.58319e9i 0.536053 0.928471i
\(136\) 0 0
\(137\) 1.42574e9 + 2.46945e9i 0.345777 + 0.598904i 0.985495 0.169706i \(-0.0542819\pi\)
−0.639717 + 0.768610i \(0.720949\pi\)
\(138\) 0 0
\(139\) 9.71824e8 0.220811 0.110406 0.993887i \(-0.464785\pi\)
0.110406 + 0.993887i \(0.464785\pi\)
\(140\) 0 0
\(141\) 7.85161e9 1.67291
\(142\) 0 0
\(143\) −2.81569e8 4.87692e8i −0.0563084 0.0975290i
\(144\) 0 0
\(145\) −6.20616e9 + 1.07494e10i −1.16591 + 2.01942i
\(146\) 0 0
\(147\) 2.06781e9 + 6.32507e9i 0.365243 + 1.11722i
\(148\) 0 0
\(149\) 4.42276e9 7.66044e9i 0.735114 1.27325i −0.219559 0.975599i \(-0.570462\pi\)
0.954673 0.297656i \(-0.0962048\pi\)
\(150\) 0 0
\(151\) 2.42594e9 + 4.20185e9i 0.379738 + 0.657725i 0.991024 0.133684i \(-0.0426808\pi\)
−0.611286 + 0.791410i \(0.709348\pi\)
\(152\) 0 0
\(153\) 1.76649e9 0.260616
\(154\) 0 0
\(155\) −1.76233e10 −2.45242
\(156\) 0 0
\(157\) 2.92788e9 + 5.07124e9i 0.384596 + 0.666140i 0.991713 0.128473i \(-0.0410074\pi\)
−0.607117 + 0.794612i \(0.707674\pi\)
\(158\) 0 0
\(159\) 8.15295e9 1.41213e10i 1.01164 1.75222i
\(160\) 0 0
\(161\) 4.29678e9 5.92529e9i 0.503996 0.695013i
\(162\) 0 0
\(163\) −3.24998e9 + 5.62913e9i −0.360609 + 0.624592i −0.988061 0.154062i \(-0.950764\pi\)
0.627453 + 0.778655i \(0.284098\pi\)
\(164\) 0 0
\(165\) 6.65606e9 + 1.15286e10i 0.699101 + 1.21088i
\(166\) 0 0
\(167\) −1.60674e10 −1.59853 −0.799266 0.600977i \(-0.794778\pi\)
−0.799266 + 0.600977i \(0.794778\pi\)
\(168\) 0 0
\(169\) −1.03977e10 −0.980503
\(170\) 0 0
\(171\) 2.04219e9 + 3.53717e9i 0.182647 + 0.316354i
\(172\) 0 0
\(173\) −2.88515e9 + 4.99722e9i −0.244884 + 0.424152i −0.962099 0.272700i \(-0.912083\pi\)
0.717215 + 0.696852i \(0.245417\pi\)
\(174\) 0 0
\(175\) 5.94331e9 + 1.33164e10i 0.479023 + 1.07329i
\(176\) 0 0
\(177\) −3.42639e9 + 5.93469e9i −0.262396 + 0.454484i
\(178\) 0 0
\(179\) 6.20303e9 + 1.07440e10i 0.451612 + 0.782215i 0.998486 0.0549998i \(-0.0175158\pi\)
−0.546874 + 0.837215i \(0.684182\pi\)
\(180\) 0 0
\(181\) −2.28094e10 −1.57965 −0.789823 0.613335i \(-0.789827\pi\)
−0.789823 + 0.613335i \(0.789827\pi\)
\(182\) 0 0
\(183\) 5.64296e9 0.371944
\(184\) 0 0
\(185\) −5.10455e9 8.84134e9i −0.320394 0.554939i
\(186\) 0 0
\(187\) 4.60573e9 7.97736e9i 0.275430 0.477059i
\(188\) 0 0
\(189\) −1.26826e10 1.32139e9i −0.722987 0.0753272i
\(190\) 0 0
\(191\) −5.95381e9 + 1.03123e10i −0.323701 + 0.560667i −0.981249 0.192746i \(-0.938261\pi\)
0.657547 + 0.753413i \(0.271594\pi\)
\(192\) 0 0
\(193\) 9.90850e9 + 1.71620e10i 0.514044 + 0.890350i 0.999867 + 0.0162931i \(0.00518647\pi\)
−0.485823 + 0.874057i \(0.661480\pi\)
\(194\) 0 0
\(195\) −4.88753e9 −0.242066
\(196\) 0 0
\(197\) 2.29235e10 1.08439 0.542193 0.840254i \(-0.317594\pi\)
0.542193 + 0.840254i \(0.317594\pi\)
\(198\) 0 0
\(199\) 1.37918e10 + 2.38882e10i 0.623424 + 1.07980i 0.988843 + 0.148958i \(0.0475921\pi\)
−0.365420 + 0.930843i \(0.619075\pi\)
\(200\) 0 0
\(201\) −1.26356e10 + 2.18855e10i −0.546027 + 0.945747i
\(202\) 0 0
\(203\) 3.80471e10 + 3.96409e9i 1.57250 + 0.163837i
\(204\) 0 0
\(205\) 1.52883e10 2.64802e10i 0.604600 1.04720i
\(206\) 0 0
\(207\) −4.32678e9 7.49421e9i −0.163794 0.283700i
\(208\) 0 0
\(209\) 2.12982e10 0.772119
\(210\) 0 0
\(211\) 1.00553e9 0.0349241 0.0174620 0.999848i \(-0.494441\pi\)
0.0174620 + 0.999848i \(0.494441\pi\)
\(212\) 0 0
\(213\) −1.31192e10 2.27231e10i −0.436715 0.756413i
\(214\) 0 0
\(215\) −3.92072e10 + 6.79088e10i −1.25139 + 2.16747i
\(216\) 0 0
\(217\) 2.21359e10 + 4.95971e10i 0.677685 + 1.51840i
\(218\) 0 0
\(219\) 3.35374e10 5.80886e10i 0.985216 1.70644i
\(220\) 0 0
\(221\) 1.69099e9 + 2.92888e9i 0.0476843 + 0.0825916i
\(222\) 0 0
\(223\) 6.84669e9 0.185400 0.0926998 0.995694i \(-0.470450\pi\)
0.0926998 + 0.995694i \(0.470450\pi\)
\(224\) 0 0
\(225\) 1.72410e10 0.448477
\(226\) 0 0
\(227\) −1.59007e10 2.75408e10i −0.397465 0.688430i 0.595947 0.803024i \(-0.296777\pi\)
−0.993412 + 0.114594i \(0.963443\pi\)
\(228\) 0 0
\(229\) −4.85226e9 + 8.40436e9i −0.116596 + 0.201951i −0.918417 0.395614i \(-0.870532\pi\)
0.801821 + 0.597565i \(0.203865\pi\)
\(230\) 0 0
\(231\) 2.40845e10 3.32127e10i 0.556524 0.767449i
\(232\) 0 0
\(233\) 7.92657e9 1.37292e10i 0.176191 0.305172i −0.764382 0.644764i \(-0.776956\pi\)
0.940573 + 0.339592i \(0.110289\pi\)
\(234\) 0 0
\(235\) −4.90709e10 8.49932e10i −1.04959 1.81794i
\(236\) 0 0
\(237\) 1.41129e10 0.290568
\(238\) 0 0
\(239\) 2.10542e9 0.0417395 0.0208698 0.999782i \(-0.493356\pi\)
0.0208698 + 0.999782i \(0.493356\pi\)
\(240\) 0 0
\(241\) −1.18980e10 2.06079e10i −0.227194 0.393512i 0.729781 0.683681i \(-0.239622\pi\)
−0.956976 + 0.290169i \(0.906289\pi\)
\(242\) 0 0
\(243\) −1.97268e10 + 3.41678e10i −0.362935 + 0.628622i
\(244\) 0 0
\(245\) 5.55452e10 6.19143e10i 0.984915 1.09785i
\(246\) 0 0
\(247\) −3.90979e9 + 6.77196e9i −0.0668371 + 0.115765i
\(248\) 0 0
\(249\) −4.34779e10 7.53059e10i −0.716756 1.24146i
\(250\) 0 0
\(251\) −9.31587e10 −1.48147 −0.740733 0.671799i \(-0.765522\pi\)
−0.740733 + 0.671799i \(0.765522\pi\)
\(252\) 0 0
\(253\) −4.51245e10 −0.692420
\(254\) 0 0
\(255\) −3.99736e10 6.92362e10i −0.592028 1.02542i
\(256\) 0 0
\(257\) −1.85628e10 + 3.21517e10i −0.265426 + 0.459732i −0.967675 0.252200i \(-0.918846\pi\)
0.702249 + 0.711932i \(0.252179\pi\)
\(258\) 0 0
\(259\) −1.84704e10 + 2.54709e10i −0.255052 + 0.351718i
\(260\) 0 0
\(261\) 2.26133e10 3.91675e10i 0.301636 0.522448i
\(262\) 0 0
\(263\) 2.52620e10 + 4.37551e10i 0.325587 + 0.563934i 0.981631 0.190789i \(-0.0611047\pi\)
−0.656044 + 0.754723i \(0.727771\pi\)
\(264\) 0 0
\(265\) −2.03817e11 −2.53883
\(266\) 0 0
\(267\) 8.81136e10 1.06107
\(268\) 0 0
\(269\) 3.81145e10 + 6.60162e10i 0.443818 + 0.768715i 0.997969 0.0637010i \(-0.0202904\pi\)
−0.554151 + 0.832416i \(0.686957\pi\)
\(270\) 0 0
\(271\) 1.99087e10 3.44828e10i 0.224223 0.388366i −0.731863 0.681452i \(-0.761349\pi\)
0.956086 + 0.293086i \(0.0946822\pi\)
\(272\) 0 0
\(273\) 6.13900e9 + 1.37549e10i 0.0668907 + 0.149874i
\(274\) 0 0
\(275\) 4.49519e10 7.78590e10i 0.473970 0.820941i
\(276\) 0 0
\(277\) −5.36274e10 9.28853e10i −0.547303 0.947956i −0.998458 0.0555105i \(-0.982321\pi\)
0.451156 0.892445i \(-0.351012\pi\)
\(278\) 0 0
\(279\) 6.42141e10 0.634470
\(280\) 0 0
\(281\) −1.52428e11 −1.45844 −0.729218 0.684281i \(-0.760116\pi\)
−0.729218 + 0.684281i \(0.760116\pi\)
\(282\) 0 0
\(283\) −3.68540e10 6.38330e10i −0.341543 0.591571i 0.643176 0.765718i \(-0.277616\pi\)
−0.984720 + 0.174148i \(0.944283\pi\)
\(284\) 0 0
\(285\) 9.24243e10 1.60084e11i 0.829821 1.43729i
\(286\) 0 0
\(287\) −9.37257e10 9.76519e9i −0.815437 0.0849595i
\(288\) 0 0
\(289\) 3.16338e10 5.47914e10i 0.266754 0.462032i
\(290\) 0 0
\(291\) 1.04212e11 + 1.80501e11i 0.851922 + 1.47557i
\(292\) 0 0
\(293\) 9.52294e10 0.754861 0.377430 0.926038i \(-0.376808\pi\)
0.377430 + 0.926038i \(0.376808\pi\)
\(294\) 0 0
\(295\) 8.56570e10 0.658512
\(296\) 0 0
\(297\) 3.93069e10 + 6.80815e10i 0.293133 + 0.507721i
\(298\) 0 0
\(299\) 8.28369e9 1.43478e10i 0.0599381 0.103816i
\(300\) 0 0
\(301\) 2.40361e11 + 2.50430e10i 1.68778 + 0.175848i
\(302\) 0 0
\(303\) 7.85728e10 1.36092e11i 0.535526 0.927557i
\(304\) 0 0
\(305\) −3.52673e10 6.10848e10i −0.233358 0.404188i
\(306\) 0 0
\(307\) 3.29114e10 0.211458 0.105729 0.994395i \(-0.466282\pi\)
0.105729 + 0.994395i \(0.466282\pi\)
\(308\) 0 0
\(309\) 2.64862e11 1.65275
\(310\) 0 0
\(311\) 4.50909e9 + 7.80997e9i 0.0273317 + 0.0473399i 0.879368 0.476143i \(-0.157966\pi\)
−0.852036 + 0.523483i \(0.824632\pi\)
\(312\) 0 0
\(313\) 1.28532e9 2.22623e9i 0.00756939 0.0131106i −0.862216 0.506541i \(-0.830924\pi\)
0.869785 + 0.493430i \(0.164257\pi\)
\(314\) 0 0
\(315\) −4.00806e10 8.98037e10i −0.229370 0.513921i
\(316\) 0 0
\(317\) −1.03394e11 + 1.79084e11i −0.575082 + 0.996071i 0.420951 + 0.907083i \(0.361696\pi\)
−0.996033 + 0.0889876i \(0.971637\pi\)
\(318\) 0 0
\(319\) −1.17918e11 2.04241e11i −0.637564 1.10429i
\(320\) 0 0
\(321\) 5.02790e10 0.264310
\(322\) 0 0
\(323\) −1.27908e11 −0.653862
\(324\) 0 0
\(325\) 1.65040e10 + 2.85858e10i 0.0820568 + 0.142127i
\(326\) 0 0
\(327\) −1.66764e11 + 2.88843e11i −0.806560 + 1.39700i
\(328\) 0 0
\(329\) −1.77560e11 + 2.44856e11i −0.835531 + 1.15220i
\(330\) 0 0
\(331\) −9.32775e10 + 1.61561e11i −0.427121 + 0.739795i −0.996616 0.0821995i \(-0.973806\pi\)
0.569495 + 0.821995i \(0.307139\pi\)
\(332\) 0 0
\(333\) 1.85994e10 + 3.22151e10i 0.0828896 + 0.143569i
\(334\) 0 0
\(335\) 3.15880e11 1.37031
\(336\) 0 0
\(337\) −2.98733e11 −1.26168 −0.630838 0.775914i \(-0.717289\pi\)
−0.630838 + 0.775914i \(0.717289\pi\)
\(338\) 0 0
\(339\) 1.48588e10 + 2.57362e10i 0.0611062 + 0.105839i
\(340\) 0 0
\(341\) 1.67424e11 2.89986e11i 0.670536 1.16140i
\(342\) 0 0
\(343\) −2.44012e11 7.85523e10i −0.951892 0.306433i
\(344\) 0 0
\(345\) −1.95820e11 + 3.39169e11i −0.744166 + 1.28893i
\(346\) 0 0
\(347\) 4.54874e10 + 7.87865e10i 0.168426 + 0.291722i 0.937867 0.346996i \(-0.112798\pi\)
−0.769441 + 0.638718i \(0.779465\pi\)
\(348\) 0 0
\(349\) 4.05187e11 1.46198 0.730989 0.682389i \(-0.239059\pi\)
0.730989 + 0.682389i \(0.239059\pi\)
\(350\) 0 0
\(351\) −2.88629e10 −0.101498
\(352\) 0 0
\(353\) 1.14775e11 + 1.98796e11i 0.393424 + 0.681430i 0.992899 0.118964i \(-0.0379572\pi\)
−0.599475 + 0.800394i \(0.704624\pi\)
\(354\) 0 0
\(355\) −1.63984e11 + 2.84029e11i −0.547992 + 0.949150i
\(356\) 0 0
\(357\) −1.44642e11 + 1.99461e11i −0.471288 + 0.649908i
\(358\) 0 0
\(359\) −1.31163e11 + 2.27182e11i −0.416762 + 0.721853i −0.995612 0.0935815i \(-0.970168\pi\)
0.578850 + 0.815434i \(0.303502\pi\)
\(360\) 0 0
\(361\) 1.34735e10 + 2.33368e10i 0.0417540 + 0.0723200i
\(362\) 0 0
\(363\) 1.35903e11 0.410818
\(364\) 0 0
\(365\) −8.38408e11 −2.47251
\(366\) 0 0
\(367\) 2.14762e10 + 3.71978e10i 0.0617959 + 0.107034i 0.895268 0.445528i \(-0.146984\pi\)
−0.833472 + 0.552561i \(0.813651\pi\)
\(368\) 0 0
\(369\) −5.57060e10 + 9.64857e10i −0.156417 + 0.270922i
\(370\) 0 0
\(371\) 2.56005e11 + 5.73599e11i 0.701562 + 1.57190i
\(372\) 0 0
\(373\) 3.10665e11 5.38087e11i 0.831003 1.43934i −0.0662412 0.997804i \(-0.521101\pi\)
0.897244 0.441535i \(-0.145566\pi\)
\(374\) 0 0
\(375\) −5.82007e10 1.00807e11i −0.151980 0.263238i
\(376\) 0 0
\(377\) 8.65871e10 0.220758
\(378\) 0 0
\(379\) 2.63758e11 0.656644 0.328322 0.944566i \(-0.393517\pi\)
0.328322 + 0.944566i \(0.393517\pi\)
\(380\) 0 0
\(381\) −3.03464e11 5.25615e11i −0.737810 1.27792i
\(382\) 0 0
\(383\) 3.01108e11 5.21534e11i 0.715035 1.23848i −0.247911 0.968783i \(-0.579744\pi\)
0.962946 0.269694i \(-0.0869227\pi\)
\(384\) 0 0
\(385\) −5.10049e11 5.31414e10i −1.18315 0.123271i
\(386\) 0 0
\(387\) 1.42859e11 2.47439e11i 0.323749 0.560750i
\(388\) 0 0
\(389\) 1.88469e11 + 3.26438e11i 0.417317 + 0.722815i 0.995669 0.0929731i \(-0.0296371\pi\)
−0.578351 + 0.815788i \(0.696304\pi\)
\(390\) 0 0
\(391\) 2.70999e11 0.586370
\(392\) 0 0
\(393\) 2.87544e11 0.608048
\(394\) 0 0
\(395\) −8.82026e10 1.52771e11i −0.182303 0.315758i
\(396\) 0 0
\(397\) −1.46890e11 + 2.54422e11i −0.296781 + 0.514040i −0.975398 0.220453i \(-0.929246\pi\)
0.678617 + 0.734493i \(0.262580\pi\)
\(398\) 0 0
\(399\) −5.66611e11 5.90346e10i −1.11920 0.116608i
\(400\) 0 0
\(401\) −2.33172e11 + 4.03866e11i −0.450326 + 0.779987i −0.998406 0.0564386i \(-0.982025\pi\)
0.548080 + 0.836426i \(0.315359\pi\)
\(402\) 0 0
\(403\) 6.14694e10 + 1.06468e11i 0.116088 + 0.201070i
\(404\) 0 0
\(405\) 9.87007e11 1.82294
\(406\) 0 0
\(407\) 1.93975e11 0.350406
\(408\) 0 0
\(409\) 2.42851e11 + 4.20630e11i 0.429126 + 0.743268i 0.996796 0.0799885i \(-0.0254884\pi\)
−0.567670 + 0.823256i \(0.692155\pi\)
\(410\) 0 0
\(411\) −2.35110e11 + 4.07223e11i −0.406428 + 0.703954i
\(412\) 0 0
\(413\) −1.07590e11 2.41063e11i −0.181968 0.407714i
\(414\) 0 0
\(415\) −5.43455e11 + 9.41292e11i −0.899389 + 1.55779i
\(416\) 0 0
\(417\) 8.01291e10 + 1.38788e11i 0.129771 + 0.224770i
\(418\) 0 0
\(419\) 3.95518e11 0.626908 0.313454 0.949603i \(-0.398514\pi\)
0.313454 + 0.949603i \(0.398514\pi\)
\(420\) 0 0
\(421\) 9.26613e11 1.43757 0.718785 0.695233i \(-0.244699\pi\)
0.718785 + 0.695233i \(0.244699\pi\)
\(422\) 0 0
\(423\) 1.78799e11 + 3.09689e11i 0.271540 + 0.470321i
\(424\) 0 0
\(425\) −2.69963e11 + 4.67589e11i −0.401378 + 0.695207i
\(426\) 0 0
\(427\) −1.27612e11 + 1.75978e11i −0.185766 + 0.256173i
\(428\) 0 0
\(429\) 4.64321e10 8.04227e10i 0.0661851 0.114636i
\(430\) 0 0
\(431\) −1.80836e11 3.13217e11i −0.252428 0.437218i 0.711766 0.702417i \(-0.247896\pi\)
−0.964194 + 0.265199i \(0.914562\pi\)
\(432\) 0 0
\(433\) 1.76404e11 0.241165 0.120582 0.992703i \(-0.461524\pi\)
0.120582 + 0.992703i \(0.461524\pi\)
\(434\) 0 0
\(435\) −2.04685e12 −2.74084
\(436\) 0 0
\(437\) 3.13293e11 + 5.42639e11i 0.410946 + 0.711779i
\(438\) 0 0
\(439\) 5.83361e11 1.01041e12i 0.749630 1.29840i −0.198371 0.980127i \(-0.563565\pi\)
0.948000 0.318270i \(-0.103102\pi\)
\(440\) 0 0
\(441\) −2.02390e11 + 2.25597e11i −0.254809 + 0.284027i
\(442\) 0 0
\(443\) 3.94986e11 6.84136e11i 0.487265 0.843968i −0.512628 0.858611i \(-0.671328\pi\)
0.999893 + 0.0146433i \(0.00466127\pi\)
\(444\) 0 0
\(445\) −5.50691e11 9.53825e11i −0.665715 1.15305i
\(446\) 0 0
\(447\) 1.45867e12 1.72811
\(448\) 0 0
\(449\) 8.89802e11 1.03320 0.516600 0.856227i \(-0.327197\pi\)
0.516600 + 0.856227i \(0.327197\pi\)
\(450\) 0 0
\(451\) 2.90482e11 + 5.03129e11i 0.330617 + 0.572645i
\(452\) 0 0
\(453\) −4.00049e11 + 6.92905e11i −0.446345 + 0.773093i
\(454\) 0 0
\(455\) 1.10529e11 1.52420e11i 0.120899 0.166721i
\(456\) 0 0
\(457\) −6.13078e11 + 1.06188e12i −0.657496 + 1.13882i 0.323766 + 0.946137i \(0.395051\pi\)
−0.981262 + 0.192679i \(0.938282\pi\)
\(458\) 0 0
\(459\) −2.36061e11 4.08869e11i −0.248237 0.429959i
\(460\) 0 0
\(461\) 4.74151e11 0.488948 0.244474 0.969656i \(-0.421385\pi\)
0.244474 + 0.969656i \(0.421385\pi\)
\(462\) 0 0
\(463\) −7.13144e11 −0.721212 −0.360606 0.932718i \(-0.617430\pi\)
−0.360606 + 0.932718i \(0.617430\pi\)
\(464\) 0 0
\(465\) −1.45309e12 2.51682e12i −1.44129 2.49640i
\(466\) 0 0
\(467\) 7.35581e11 1.27406e12i 0.715657 1.23955i −0.247049 0.969003i \(-0.579461\pi\)
0.962706 0.270551i \(-0.0872058\pi\)
\(468\) 0 0
\(469\) −3.96762e11 8.88976e11i −0.378663 0.848422i
\(470\) 0 0
\(471\) −4.82821e11 + 8.36270e11i −0.452056 + 0.782983i
\(472\) 0 0
\(473\) −7.44945e11 1.29028e12i −0.684304 1.18525i
\(474\) 0 0
\(475\) −1.24838e12 −1.12519
\(476\) 0 0
\(477\) 7.42647e11 0.656825
\(478\) 0 0
\(479\) 6.00766e11 + 1.04056e12i 0.521429 + 0.903142i 0.999689 + 0.0249235i \(0.00793421\pi\)
−0.478260 + 0.878218i \(0.658732\pi\)
\(480\) 0 0
\(481\) −3.56088e10 + 6.16763e10i −0.0303323 + 0.0525370i
\(482\) 0 0
\(483\) 1.20048e12 + 1.25077e11i 1.00367 + 0.104572i
\(484\) 0 0
\(485\) 1.30261e12 2.25618e12i 1.06899 1.85155i
\(486\) 0 0
\(487\) −1.21602e12 2.10621e12i −0.979627 1.69676i −0.663733 0.747970i \(-0.731029\pi\)
−0.315895 0.948794i \(-0.602305\pi\)
\(488\) 0 0
\(489\) −1.07187e12 −0.847721
\(490\) 0 0
\(491\) 1.50023e12 1.16490 0.582452 0.812865i \(-0.302094\pi\)
0.582452 + 0.812865i \(0.302094\pi\)
\(492\) 0 0
\(493\) 7.08169e11 + 1.22658e12i 0.539915 + 0.935161i
\(494\) 0 0
\(495\) −3.03148e11 + 5.25068e11i −0.226951 + 0.393090i
\(496\) 0 0
\(497\) 1.00531e12 + 1.04742e11i 0.739089 + 0.0770049i
\(498\) 0 0
\(499\) 1.29362e12 2.24061e12i 0.934016 1.61776i 0.157636 0.987497i \(-0.449613\pi\)
0.776380 0.630265i \(-0.217054\pi\)
\(500\) 0 0
\(501\) −1.32479e12 2.29461e12i −0.939461 1.62719i
\(502\) 0 0
\(503\) 1.09942e12 0.765787 0.382893 0.923793i \(-0.374928\pi\)
0.382893 + 0.923793i \(0.374928\pi\)
\(504\) 0 0
\(505\) −1.96425e12 −1.34396
\(506\) 0 0
\(507\) −8.57318e11 1.48492e12i −0.576243 0.998083i
\(508\) 0 0
\(509\) −9.57644e11 + 1.65869e12i −0.632374 + 1.09530i 0.354691 + 0.934984i \(0.384586\pi\)
−0.987065 + 0.160320i \(0.948747\pi\)
\(510\) 0 0
\(511\) 1.05309e12 + 2.35952e12i 0.683234 + 1.53084i
\(512\) 0 0
\(513\) 5.45805e11 9.45362e11i 0.347944 0.602656i
\(514\) 0 0
\(515\) −1.65533e12 2.86712e12i −1.03694 1.79603i
\(516\) 0 0
\(517\) 1.86472e12 1.14790
\(518\) 0 0
\(519\) −9.51549e11 −0.575676
\(520\) 0 0
\(521\) −6.37094e11 1.10348e12i −0.378821 0.656137i 0.612070 0.790804i \(-0.290337\pi\)
−0.990891 + 0.134667i \(0.957004\pi\)
\(522\) 0 0
\(523\) −8.00035e11 + 1.38570e12i −0.467575 + 0.809864i −0.999314 0.0370446i \(-0.988206\pi\)
0.531738 + 0.846909i \(0.321539\pi\)
\(524\) 0 0
\(525\) −1.41170e12 + 1.94674e12i −0.811009 + 1.11839i
\(526\) 0 0
\(527\) −1.00548e12 + 1.74154e12i −0.567838 + 0.983525i
\(528\) 0 0
\(529\) 2.36802e11 + 4.10153e11i 0.131473 + 0.227717i
\(530\) 0 0
\(531\) −3.12108e11 −0.170365
\(532\) 0 0
\(533\) −2.13300e11 −0.114477
\(534\) 0 0
\(535\) −3.14233e11 5.44268e11i −0.165829 0.287224i
\(536\) 0 0
\(537\) −1.02291e12 + 1.77173e12i −0.530826 + 0.919418i
\(538\) 0 0
\(539\) 4.91094e11 + 1.50217e12i 0.250619 + 0.766602i
\(540\) 0 0
\(541\) 7.53297e11 1.30475e12i 0.378075 0.654846i −0.612707 0.790310i \(-0.709919\pi\)
0.990782 + 0.135465i \(0.0432527\pi\)
\(542\) 0 0
\(543\) −1.88068e12 3.25744e12i −0.928360 1.60797i
\(544\) 0 0
\(545\) 4.16895e12 2.02415
\(546\) 0 0
\(547\) −2.78838e11 −0.133171 −0.0665853 0.997781i \(-0.521210\pi\)
−0.0665853 + 0.997781i \(0.521210\pi\)
\(548\) 0 0
\(549\) 1.28503e11 + 2.22574e11i 0.0603725 + 0.104568i
\(550\) 0 0
\(551\) −1.63738e12 + 2.83603e12i −0.756777 + 1.31078i
\(552\) 0 0
\(553\) −3.19155e11 + 4.40116e11i −0.145124 + 0.200126i
\(554\) 0 0
\(555\) 8.41763e11 1.45798e12i 0.376592 0.652277i
\(556\) 0 0
\(557\) 1.39313e12 + 2.41298e12i 0.613260 + 1.06220i 0.990687 + 0.136158i \(0.0434754\pi\)
−0.377427 + 0.926039i \(0.623191\pi\)
\(558\) 0 0
\(559\) 5.47011e11 0.236942
\(560\) 0 0
\(561\) 1.51901e12 0.647483
\(562\) 0 0
\(563\) −3.34082e11 5.78647e11i −0.140141 0.242732i 0.787409 0.616432i \(-0.211422\pi\)
−0.927550 + 0.373700i \(0.878089\pi\)
\(564\) 0 0
\(565\) 1.85729e11 3.21692e11i 0.0766763 0.132807i
\(566\) 0 0
\(567\) −1.23974e12 2.77772e12i −0.503738 1.12866i
\(568\) 0 0
\(569\) 5.40880e11 9.36831e11i 0.216319 0.374676i −0.737360 0.675499i \(-0.763928\pi\)
0.953680 + 0.300823i \(0.0972614\pi\)
\(570\) 0 0
\(571\) 2.45658e12 + 4.25491e12i 0.967092 + 1.67505i 0.703887 + 0.710312i \(0.251446\pi\)
0.263204 + 0.964740i \(0.415221\pi\)
\(572\) 0 0
\(573\) −1.96362e12 −0.760960
\(574\) 0 0
\(575\) 2.64495e12 1.00905
\(576\) 0 0
\(577\) 2.71516e11 + 4.70280e11i 0.101978 + 0.176630i 0.912499 0.409078i \(-0.134150\pi\)
−0.810522 + 0.585709i \(0.800816\pi\)
\(578\) 0 0
\(579\) −1.63396e12 + 2.83010e12i −0.604209 + 1.04652i
\(580\) 0 0
\(581\) 3.33167e12 + 3.47124e11i 1.21303 + 0.126384i
\(582\) 0 0
\(583\) 1.93628e12 3.35374e12i 0.694161 1.20232i
\(584\) 0 0
\(585\) −1.11300e11 1.92778e11i −0.0392912 0.0680543i
\(586\) 0 0
\(587\) 3.39997e11 0.118196 0.0590982 0.998252i \(-0.481178\pi\)
0.0590982 + 0.998252i \(0.481178\pi\)
\(588\) 0 0
\(589\) −4.64960e12 −1.59183
\(590\) 0 0
\(591\) 1.89010e12 + 3.27375e12i 0.637295 + 1.10383i
\(592\) 0 0
\(593\) 7.79908e11 1.35084e12i 0.258999 0.448599i −0.706975 0.707238i \(-0.749941\pi\)
0.965974 + 0.258639i \(0.0832741\pi\)
\(594\) 0 0
\(595\) 3.06314e12 + 3.19145e11i 1.00194 + 0.104391i
\(596\) 0 0
\(597\) −2.27434e12 + 3.93927e12i −0.732774 + 1.26920i
\(598\) 0 0
\(599\) 1.93115e12 + 3.34484e12i 0.612906 + 1.06159i 0.990748 + 0.135715i \(0.0433331\pi\)
−0.377841 + 0.925870i \(0.623334\pi\)
\(600\) 0 0
\(601\) −2.20866e12 −0.690547 −0.345274 0.938502i \(-0.612214\pi\)
−0.345274 + 0.938502i \(0.612214\pi\)
\(602\) 0 0
\(603\) −1.15097e12 −0.354516
\(604\) 0 0
\(605\) −8.49365e11 1.47114e12i −0.257748 0.446432i
\(606\) 0 0
\(607\) 1.57656e11 2.73069e11i 0.0471370 0.0816437i −0.841494 0.540266i \(-0.818324\pi\)
0.888631 + 0.458622i \(0.151657\pi\)
\(608\) 0 0
\(609\) 2.57095e12 + 5.76041e12i 0.757384 + 1.69698i
\(610\) 0 0
\(611\) −3.42314e11 + 5.92905e11i −0.0993662 + 0.172107i
\(612\) 0 0
\(613\) −1.74242e12 3.01796e12i −0.498402 0.863258i 0.501596 0.865102i \(-0.332746\pi\)
−0.999998 + 0.00184393i \(0.999413\pi\)
\(614\) 0 0
\(615\) 5.04223e12 1.42130
\(616\) 0 0
\(617\) 6.18646e12 1.71854 0.859269 0.511524i \(-0.170919\pi\)
0.859269 + 0.511524i \(0.170919\pi\)
\(618\) 0 0
\(619\) −1.97843e12 3.42674e12i −0.541643 0.938153i −0.998810 0.0487722i \(-0.984469\pi\)
0.457167 0.889381i \(-0.348864\pi\)
\(620\) 0 0
\(621\) −1.15640e12 + 2.00294e12i −0.312029 + 0.540450i
\(622\) 0 0
\(623\) −1.99264e12 + 2.74786e12i −0.529947 + 0.730799i
\(624\) 0 0
\(625\) 1.51429e12 2.62282e12i 0.396962 0.687558i
\(626\) 0 0
\(627\) 1.75608e12 + 3.04162e12i 0.453776 + 0.785962i
\(628\) 0 0
\(629\) −1.16493e12 −0.296738
\(630\) 0 0
\(631\) −2.94437e12 −0.739368 −0.369684 0.929158i \(-0.620534\pi\)
−0.369684 + 0.929158i \(0.620534\pi\)
\(632\) 0 0
\(633\) 8.29085e10 + 1.43602e11i 0.0205250 + 0.0355503i
\(634\) 0 0
\(635\) −3.79317e12 + 6.56996e12i −0.925807 + 1.60354i
\(636\) 0 0
\(637\) −5.67782e11 1.19612e11i −0.136633 0.0287837i
\(638\) 0 0
\(639\) 5.97508e11 1.03491e12i 0.141772 0.245556i
\(640\) 0 0
\(641\) −1.84567e12 3.19679e12i −0.431810 0.747917i 0.565219 0.824941i \(-0.308792\pi\)
−0.997029 + 0.0770236i \(0.975458\pi\)
\(642\) 0 0
\(643\) 3.35353e11 0.0773664 0.0386832 0.999252i \(-0.487684\pi\)
0.0386832 + 0.999252i \(0.487684\pi\)
\(644\) 0 0
\(645\) −1.29309e13 −2.94178
\(646\) 0 0
\(647\) −3.45282e12 5.98046e12i −0.774649 1.34173i −0.934992 0.354670i \(-0.884593\pi\)
0.160343 0.987061i \(-0.448740\pi\)
\(648\) 0 0
\(649\) −8.13751e11 + 1.40946e12i −0.180049 + 0.311854i
\(650\) 0 0
\(651\) −5.25789e12 + 7.25065e12i −1.14735 + 1.58221i
\(652\) 0 0
\(653\) −2.56965e11 + 4.45076e11i −0.0553050 + 0.0957911i −0.892352 0.451339i \(-0.850946\pi\)
0.837047 + 0.547130i \(0.184280\pi\)
\(654\) 0 0
\(655\) −1.79709e12 3.11265e12i −0.381491 0.660761i
\(656\) 0 0
\(657\) 3.05490e12 0.639666
\(658\) 0 0
\(659\) 1.01010e12 0.208631 0.104316 0.994544i \(-0.466735\pi\)
0.104316 + 0.994544i \(0.466735\pi\)
\(660\) 0 0
\(661\) 3.27523e12 + 5.67287e12i 0.667322 + 1.15584i 0.978650 + 0.205534i \(0.0658930\pi\)
−0.311328 + 0.950303i \(0.600774\pi\)
\(662\) 0 0
\(663\) −2.78852e11 + 4.82985e11i −0.0560483 + 0.0970785i
\(664\) 0 0
\(665\) 2.90215e12 + 6.50249e12i 0.575470 + 1.28938i
\(666\) 0 0
\(667\) 3.46913e12 6.00870e12i 0.678662 1.17548i
\(668\) 0 0
\(669\) 5.64525e11 + 9.77786e11i 0.108960 + 0.188724i
\(670\) 0 0
\(671\) 1.34017e12 0.255217
\(672\) 0 0
\(673\) −1.72770e12 −0.324639 −0.162319 0.986738i \(-0.551897\pi\)
−0.162319 + 0.986738i \(0.551897\pi\)
\(674\) 0 0
\(675\) −2.30395e12 3.99056e12i −0.427175 0.739890i
\(676\) 0 0
\(677\) −2.64558e12 + 4.58228e12i −0.484029 + 0.838364i −0.999832 0.0183440i \(-0.994161\pi\)
0.515802 + 0.856708i \(0.327494\pi\)
\(678\) 0 0
\(679\) −7.98568e12 8.32020e11i −1.44178 0.150217i
\(680\) 0 0
\(681\) 2.62209e12 4.54160e12i 0.467182 0.809183i
\(682\) 0 0
\(683\) 1.43432e12 + 2.48431e12i 0.252204 + 0.436830i 0.964132 0.265422i \(-0.0855113\pi\)
−0.711928 + 0.702252i \(0.752178\pi\)
\(684\) 0 0
\(685\) 5.87756e12 1.01997
\(686\) 0 0
\(687\) −1.60032e12 −0.274095
\(688\) 0 0
\(689\) 7.10903e11 + 1.23132e12i 0.120178 + 0.208154i
\(690\) 0 0
\(691\) −1.13357e12 + 1.96340e12i −0.189146 + 0.327610i −0.944966 0.327169i \(-0.893905\pi\)
0.755820 + 0.654780i \(0.227239\pi\)
\(692\) 0 0
\(693\) 1.85846e12 + 1.93631e11i 0.306093 + 0.0318916i
\(694\) 0 0
\(695\) 1.00158e12 1.73479e12i 0.162837 0.282043i
\(696\) 0 0
\(697\) −1.74451e12 3.02159e12i −0.279980 0.484939i
\(698\) 0 0
\(699\) 2.61425e12 0.414191
\(700\) 0 0
\(701\) −8.37724e12 −1.31030 −0.655149 0.755500i \(-0.727394\pi\)
−0.655149 + 0.755500i \(0.727394\pi\)
\(702\) 0 0
\(703\) −1.34674e12 2.33263e12i −0.207963 0.360202i
\(704\) 0 0
\(705\) 8.09201e12 1.40158e13i 1.23369 2.13681i
\(706\) 0 0
\(707\) 2.46721e12 + 5.52797e12i 0.371380 + 0.832105i
\(708\) 0 0
\(709\) 4.96129e12 8.59321e12i 0.737372 1.27717i −0.216302 0.976326i \(-0.569400\pi\)
0.953675 0.300840i \(-0.0972670\pi\)
\(710\) 0 0
\(711\) 3.21383e11 + 5.56652e11i 0.0471639 + 0.0816903i
\(712\) 0 0
\(713\) 9.85112e12 1.42752
\(714\) 0 0
\(715\) −1.16076e12 −0.166099
\(716\) 0 0
\(717\) 1.73597e11 + 3.00678e11i 0.0245304 + 0.0424879i
\(718\) 0 0
\(719\) 1.93655e12 3.35420e12i 0.270239 0.468068i −0.698684 0.715430i \(-0.746231\pi\)
0.968923 + 0.247363i \(0.0795639\pi\)
\(720\) 0 0
\(721\) −5.98970e12 + 8.25983e12i −0.825461 + 1.13832i
\(722\) 0 0
\(723\) 1.96204e12 3.39835e12i 0.267045 0.462536i
\(724\) 0 0
\(725\) 6.91172e12 + 1.19715e13i 0.929106 + 1.60926i
\(726\) 0 0
\(727\) 8.04443e12 1.06805 0.534023 0.845470i \(-0.320679\pi\)
0.534023 + 0.845470i \(0.320679\pi\)
\(728\) 0 0
\(729\) 2.91897e12 0.382785
\(730\) 0 0
\(731\) 4.47383e12 + 7.74890e12i 0.579497 + 1.00372i
\(732\) 0 0
\(733\) −1.30235e12 + 2.25573e12i −0.166632 + 0.288615i −0.937234 0.348702i \(-0.886623\pi\)
0.770602 + 0.637317i \(0.219956\pi\)
\(734\) 0 0
\(735\) 1.34219e13 + 2.82752e12i 1.69637 + 0.357366i
\(736\) 0 0
\(737\) −3.00089e12 + 5.19770e12i −0.374668 + 0.648944i
\(738\) 0 0
\(739\) −3.37471e12 5.84516e12i −0.416233 0.720936i 0.579324 0.815097i \(-0.303316\pi\)
−0.995557 + 0.0941611i \(0.969983\pi\)
\(740\) 0 0
\(741\) −1.28949e12 −0.157121
\(742\) 0 0
\(743\) 4.97147e12 0.598459 0.299230 0.954181i \(-0.403270\pi\)
0.299230 + 0.954181i \(0.403270\pi\)
\(744\) 0 0
\(745\) −9.11635e12 1.57900e13i −1.08422 1.87793i
\(746\) 0 0
\(747\) 1.98019e12 3.42978e12i 0.232682 0.403017i
\(748\) 0 0
\(749\) −1.13703e12 + 1.56797e12i −0.132009 + 0.182041i
\(750\) 0 0
\(751\) 1.16982e11 2.02618e11i 0.0134196 0.0232434i −0.859238 0.511577i \(-0.829062\pi\)
0.872657 + 0.488333i \(0.162395\pi\)
\(752\) 0 0
\(753\) −7.68115e12 1.33041e13i −0.870661 1.50803i
\(754\) 0 0
\(755\) 1.00009e13 1.12015
\(756\) 0 0
\(757\) −6.59200e12 −0.729602 −0.364801 0.931086i \(-0.618863\pi\)
−0.364801 + 0.931086i \(0.618863\pi\)
\(758\) 0 0
\(759\) −3.72061e12 6.44429e12i −0.406937 0.704835i
\(760\) 0 0
\(761\) 5.48492e12 9.50015e12i 0.592842 1.02683i −0.401006 0.916076i \(-0.631339\pi\)
0.993848 0.110757i \(-0.0353275\pi\)
\(762\) 0 0
\(763\) −5.23643e12 1.17326e13i −0.559339 1.25324i
\(764\) 0 0
\(765\) 1.82058e12 3.15334e12i 0.192191 0.332885i
\(766\) 0 0
\(767\) −2.98767e11 5.17480e11i −0.0311712 0.0539901i
\(768\) 0 0
\(769\) −6.05536e12 −0.624412 −0.312206 0.950014i \(-0.601068\pi\)
−0.312206 + 0.950014i \(0.601068\pi\)
\(770\) 0 0
\(771\) −6.12218e12 −0.623966
\(772\) 0 0
\(773\) −3.18511e12 5.51677e12i −0.320861 0.555747i 0.659805 0.751437i \(-0.270639\pi\)
−0.980666 + 0.195689i \(0.937306\pi\)
\(774\) 0 0
\(775\) −9.81345e12 + 1.69974e13i −0.977157 + 1.69248i
\(776\) 0 0
\(777\) −5.16046e12 5.37663e11i −0.507919 0.0529195i
\(778\) 0 0
\(779\) 4.03355e12 6.98632e12i 0.392436 0.679720i
\(780\) 0 0
\(781\) −3.11574e12 5.39661e12i −0.299661 0.519029i
\(782\) 0 0
\(783\) −1.20875e13 −1.14923
\(784\) 0 0
\(785\) 1.20701e13 1.13448
\(786\) 0 0
\(787\) 5.09973e12 + 8.83298e12i 0.473871 + 0.820769i 0.999553 0.0299123i \(-0.00952280\pi\)
−0.525681 + 0.850682i \(0.676189\pi\)
\(788\) 0 0
\(789\) −4.16582e12 + 7.21542e12i −0.382696 + 0.662850i
\(790\) 0 0
\(791\) −1.13862e12 1.18631e11i −0.103415 0.0107747i
\(792\) 0 0
\(793\) −2.46021e11 + 4.26122e11i −0.0220924 + 0.0382652i
\(794\) 0 0
\(795\) −1.68052e13 2.91074e13i −1.49208 2.58435i
\(796\) 0 0
\(797\) 8.51564e12 0.747575 0.373788 0.927514i \(-0.378059\pi\)
0.373788 + 0.927514i \(0.378059\pi\)
\(798\) 0 0
\(799\) −1.11987e13 −0.972092
\(800\) 0 0
\(801\) 2.00655e12 + 3.47545e12i 0.172228 + 0.298308i
\(802\) 0 0
\(803\) 7.96497e12 1.37957e13i 0.676027 1.17091i
\(804\) 0 0
\(805\) −6.14879e12 1.37768e13i −0.516070 1.15629i
\(806\) 0 0
\(807\) −6.28525e12 + 1.08864e13i −0.521665 + 0.903551i
\(808\) 0 0
\(809\) 9.25476e10 + 1.60297e11i 0.00759621 + 0.0131570i 0.869799 0.493407i \(-0.164249\pi\)
−0.862202 + 0.506564i \(0.830915\pi\)
\(810\) 0 0
\(811\) −2.36011e12 −0.191575 −0.0957874 0.995402i \(-0.530537\pi\)
−0.0957874 + 0.995402i \(0.530537\pi\)
\(812\) 0 0
\(813\) 6.56606e12 0.527106
\(814\) 0 0
\(815\) 6.69898e12 + 1.16030e13i 0.531862 + 0.921212i
\(816\) 0 0
\(817\) −1.03441e13 + 1.79165e13i −0.812258 + 1.40687i
\(818\) 0 0
\(819\) −4.02732e11 + 5.55370e11i −0.0312780 + 0.0431325i
\(820\) 0 0
\(821\) −7.18240e12 + 1.24403e13i −0.551728 + 0.955621i 0.446422 + 0.894823i \(0.352698\pi\)
−0.998150 + 0.0607986i \(0.980635\pi\)
\(822\) 0 0
\(823\) −4.79729e12 8.30914e12i −0.364499 0.631331i 0.624197 0.781267i \(-0.285426\pi\)
−0.988696 + 0.149936i \(0.952093\pi\)
\(824\) 0 0
\(825\) 1.48256e13 1.11421
\(826\) 0 0
\(827\) 6.35481e12 0.472419 0.236210 0.971702i \(-0.424095\pi\)
0.236210 + 0.971702i \(0.424095\pi\)
\(828\) 0 0
\(829\) 4.91698e12 + 8.51646e12i 0.361579 + 0.626273i 0.988221 0.153034i \(-0.0489045\pi\)
−0.626642 + 0.779307i \(0.715571\pi\)
\(830\) 0 0
\(831\) 8.84340e12 1.53172e13i 0.643301 1.11423i
\(832\) 0 0
\(833\) −2.94930e12 9.02141e12i −0.212235 0.649190i
\(834\) 0 0
\(835\) −1.65594e13 + 2.86817e13i −1.17884 + 2.04181i
\(836\) 0 0
\(837\) −8.58108e12 1.48629e13i −0.604335 1.04674i
\(838\) 0 0
\(839\) 2.48146e12 0.172893 0.0864467 0.996256i \(-0.472449\pi\)
0.0864467 + 0.996256i \(0.472449\pi\)
\(840\) 0 0
\(841\) 2.17547e13 1.49958
\(842\) 0 0
\(843\) −1.25681e13 2.17685e13i −0.857126 1.48459i
\(844\) 0 0
\(845\) −1.07161e13 + 1.85608e13i −0.723073 + 1.25240i
\(846\) 0 0
\(847\) −3.07337e12 + 4.23819e12i −0.205182 + 0.282947i
\(848\) 0 0
\(849\) 6.07740e12 1.05264e13i 0.401451 0.695334i
\(850\) 0 0
\(851\) 2.85335e12 + 4.94214e12i 0.186497 + 0.323022i
\(852\) 0 0
\(853\) 2.28133e11 0.0147542 0.00737712 0.999973i \(-0.497652\pi\)
0.00737712 + 0.999973i \(0.497652\pi\)
\(854\) 0 0
\(855\) 8.41887e12 0.538773
\(856\) 0 0
\(857\) −2.67503e12 4.63328e12i −0.169400 0.293410i 0.768809 0.639479i \(-0.220850\pi\)
−0.938209 + 0.346069i \(0.887516\pi\)
\(858\) 0 0
\(859\) 1.81361e12 3.14127e12i 0.113651 0.196850i −0.803588 0.595185i \(-0.797079\pi\)
0.917240 + 0.398335i \(0.130412\pi\)
\(860\) 0 0
\(861\) −6.33332e12 1.41903e13i −0.392751 0.879988i
\(862\) 0 0
\(863\) 1.23004e13 2.13049e13i 0.754865 1.30746i −0.190576 0.981672i \(-0.561036\pi\)
0.945441 0.325792i \(-0.105631\pi\)
\(864\) 0 0
\(865\) 5.94698e12 + 1.03005e13i 0.361180 + 0.625582i
\(866\) 0 0
\(867\) 1.04331e13 0.627088
\(868\) 0 0
\(869\) 3.35174e12 0.199380
\(870\) 0 0
\(871\) −1.10177e12 1.90833e12i −0.0648650 0.112349i
\(872\) 0 0
\(873\) −4.74630e12 + 8.22084e12i −0.276561 + 0.479018i
\(874\) 0 0
\(875\) 4.45987e12 + 4.64669e11i 0.257209 + 0.0267983i
\(876\) 0 0
\(877\) 9.50281e12 1.64593e13i 0.542443 0.939538i −0.456321 0.889815i \(-0.650833\pi\)
0.998763 0.0497226i \(-0.0158337\pi\)
\(878\) 0 0
\(879\) 7.85188e12 + 1.35999e13i 0.443633 + 0.768395i
\(880\) 0 0
\(881\) 2.07924e12 0.116282 0.0581412 0.998308i \(-0.481483\pi\)
0.0581412 + 0.998308i \(0.481483\pi\)
\(882\) 0 0
\(883\) −1.86533e13 −1.03260 −0.516301 0.856407i \(-0.672691\pi\)
−0.516301 + 0.856407i \(0.672691\pi\)
\(884\) 0 0
\(885\) 7.06261e12 + 1.22328e13i 0.387009 + 0.670319i
\(886\) 0 0
\(887\) −4.02512e12 + 6.97171e12i −0.218335 + 0.378167i −0.954299 0.298854i \(-0.903396\pi\)
0.735964 + 0.677020i \(0.236729\pi\)
\(888\) 0 0
\(889\) 2.32542e13 + 2.42283e12i 1.24866 + 0.130096i
\(890\) 0 0
\(891\) −9.37668e12 + 1.62409e13i −0.498425 + 0.863297i
\(892\) 0 0
\(893\) −1.29465e13 2.24239e13i −0.681271 1.18000i
\(894\) 0 0
\(895\) 2.55718e13 1.33217
\(896\) 0 0
\(897\) 2.73204e12 0.140903
\(898\) 0 0
\(899\) 2.57428e13 + 4.45878e13i 1.31443 + 2.27665i
\(900\) 0 0
\(901\) −1.16285e13 + 2.01412e13i −0.587845 + 1.01818i
\(902\) 0 0
\(903\) 1.62419e13 + 3.63912e13i 0.812909 + 1.82138i
\(904\) 0 0
\(905\) −2.35078e13 + 4.07166e13i −1.16491 + 2.01768i
\(906\) 0 0
\(907\) −5.01433e12 8.68508e12i −0.246026 0.426129i 0.716394 0.697696i \(-0.245791\pi\)
−0.962419 + 0.271567i \(0.912458\pi\)
\(908\) 0 0
\(909\) 7.15714e12 0.347698
\(910\) 0 0
\(911\) 3.43460e12 0.165213 0.0826064 0.996582i \(-0.473676\pi\)
0.0826064 + 0.996582i \(0.473676\pi\)
\(912\) 0 0
\(913\) −1.03258e13 1.78848e13i −0.491818 0.851853i
\(914\) 0 0
\(915\) 5.81574e12 1.00732e13i 0.274290 0.475085i
\(916\) 0 0
\(917\) −6.50264e12 + 8.96718e12i −0.303688 + 0.418788i
\(918\) 0 0
\(919\) −6.84732e12 + 1.18599e13i −0.316666 + 0.548481i −0.979790 0.200028i \(-0.935897\pi\)
0.663125 + 0.748509i \(0.269230\pi\)
\(920\) 0 0
\(921\) 2.71362e12 + 4.70012e12i 0.124274 + 0.215249i
\(922\) 0 0
\(923\) 2.28787e12 0.103759
\(924\) 0 0
\(925\) −1.13697e13 −0.510638
\(926\) 0 0
\(927\) 6.03152e12 + 1.04469e13i 0.268268 + 0.464653i
\(928\) 0 0
\(929\) −9.37653e12 + 1.62406e13i −0.413020 + 0.715372i −0.995218 0.0976747i \(-0.968860\pi\)
0.582198 + 0.813047i \(0.302193\pi\)
\(930\) 0 0
\(931\) 1.46546e13 1.63350e13i 0.639293 0.712598i
\(932\) 0 0
\(933\) −7.43569e11 + 1.28790e12i −0.0321258 + 0.0556435i
\(934\) 0 0
\(935\) −9.49351e12 1.64432e13i −0.406232 0.703615i
\(936\) 0 0
\(937\) −2.39729e13 −1.01600 −0.507998 0.861358i \(-0.669614\pi\)
−0.507998 + 0.861358i \(0.669614\pi\)
\(938\) 0 0
\(939\) 4.23909e11 0.0177942
\(940\) 0 0
\(941\) 1.29891e13 + 2.24979e13i 0.540042 + 0.935380i 0.998901 + 0.0468708i \(0.0149249\pi\)
−0.458859 + 0.888509i \(0.651742\pi\)
\(942\) 0 0
\(943\) −8.54589e12 + 1.48019e13i −0.351929 + 0.609559i
\(944\) 0 0
\(945\) −1.54297e13 + 2.12777e13i −0.629383 + 0.867922i
\(946\) 0 0
\(947\) −7.86515e12 + 1.36228e13i −0.317784 + 0.550418i −0.980025 0.198873i \(-0.936272\pi\)
0.662241 + 0.749291i \(0.269605\pi\)
\(948\) 0 0
\(949\) 2.92432e12 + 5.06508e12i 0.117038 + 0.202716i
\(950\) 0 0
\(951\) −3.41004e13 −1.35191
\(952\) 0 0
\(953\) 4.40371e13 1.72942 0.864710 0.502272i \(-0.167502\pi\)
0.864710 + 0.502272i \(0.167502\pi\)
\(954\) 0 0
\(955\) 1.22722e13 + 2.12561e13i 0.477428 + 0.826929i
\(956\) 0 0
\(957\) 1.94453e13 3.36802e13i 0.749395 1.29799i
\(958\) 0 0
\(959\) −7.38253e12 1.65411e13i −0.281852 0.631512i
\(960\) 0 0
\(961\) −2.33305e13 + 4.04095e13i −0.882405 + 1.52837i
\(962\) 0 0
\(963\) 1.14497e12 + 1.98315e12i 0.0429018 + 0.0743081i
\(964\) 0 0
\(965\) 4.08476e13 1.51633
\(966\) 0 0
\(967\) −4.82779e13 −1.77553 −0.887767 0.460293i \(-0.847744\pi\)
−0.887767 + 0.460293i \(0.847744\pi\)
\(968\) 0 0
\(969\) −1.05463e13 1.82667e13i −0.384276 0.665586i
\(970\) 0 0
\(971\) −5.53815e12 + 9.59235e12i −0.199930 + 0.346289i −0.948506 0.316761i \(-0.897405\pi\)
0.748576 + 0.663050i \(0.230738\pi\)
\(972\) 0 0
\(973\) −6.14023e12 6.39744e11i −0.219622 0.0228822i
\(974\) 0 0
\(975\) −2.72159e12 + 4.71393e12i −0.0964499 + 0.167056i
\(976\) 0 0
\(977\) 5.17338e12 + 8.96055e12i 0.181656 + 0.314637i 0.942444 0.334363i \(-0.108521\pi\)
−0.760789 + 0.648999i \(0.775188\pi\)
\(978\) 0 0
\(979\) 2.09265e13 0.728073
\(980\) 0 0
\(981\) −1.51904e13 −0.523671
\(982\) 0 0
\(983\) −7.99880e12 1.38543e13i −0.273234 0.473254i 0.696454 0.717601i \(-0.254760\pi\)
−0.969688 + 0.244347i \(0.921427\pi\)
\(984\) 0 0
\(985\) 2.36254e13 4.09204e13i 0.799681 1.38509i
\(986\) 0 0
\(987\) −4.96084e13 5.16865e12i −1.66390 0.173360i
\(988\) 0 0
\(989\) 2.19161e13 3.79598e13i 0.728416 1.26165i
\(990\) 0 0
\(991\) 6.80092e12 + 1.17795e13i 0.223994 + 0.387969i 0.956017 0.293311i \(-0.0947571\pi\)
−0.732023 + 0.681280i \(0.761424\pi\)
\(992\) 0 0
\(993\) −3.07638e13 −1.00408
\(994\) 0 0
\(995\) 5.68565e13 1.83898
\(996\) 0 0
\(997\) 2.86340e13 + 4.95956e13i 0.917812 + 1.58970i 0.802731 + 0.596342i \(0.203380\pi\)
0.115082 + 0.993356i \(0.463287\pi\)
\(998\) 0 0
\(999\) 4.97097e12 8.60997e12i 0.157905 0.273500i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.i.d.65.5 12
4.3 odd 2 28.10.e.a.9.2 12
7.4 even 3 inner 112.10.i.d.81.5 12
12.11 even 2 252.10.k.e.37.1 12
28.3 even 6 196.10.e.h.165.5 12
28.11 odd 6 28.10.e.a.25.2 yes 12
28.19 even 6 196.10.a.e.1.2 6
28.23 odd 6 196.10.a.f.1.5 6
28.27 even 2 196.10.e.h.177.5 12
84.11 even 6 252.10.k.e.109.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.10.e.a.9.2 12 4.3 odd 2
28.10.e.a.25.2 yes 12 28.11 odd 6
112.10.i.d.65.5 12 1.1 even 1 trivial
112.10.i.d.81.5 12 7.4 even 3 inner
196.10.a.e.1.2 6 28.19 even 6
196.10.a.f.1.5 6 28.23 odd 6
196.10.e.h.165.5 12 28.3 even 6
196.10.e.h.177.5 12 28.27 even 2
252.10.k.e.37.1 12 12.11 even 2
252.10.k.e.109.1 12 84.11 even 6