Properties

Label 112.10.a.j.1.2
Level $112$
Weight $10$
Character 112.1
Self dual yes
Analytic conductor $57.684$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(1,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-84,0,1540] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 63x^{2} - 176x + 28 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{13}\cdot 3^{3}\cdot 17 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.74786\) of defining polynomial
Character \(\chi\) \(=\) 112.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-96.1756 q^{3} -594.465 q^{5} +2401.00 q^{7} -10433.3 q^{9} -69095.5 q^{11} +46210.6 q^{13} +57173.0 q^{15} +243586. q^{17} -147349. q^{19} -230918. q^{21} -2.45805e6 q^{23} -1.59974e6 q^{25} +2.89645e6 q^{27} -611750. q^{29} -5.64287e6 q^{31} +6.64530e6 q^{33} -1.42731e6 q^{35} +5.68230e6 q^{37} -4.44434e6 q^{39} +2.54760e7 q^{41} -1.31131e7 q^{43} +6.20220e6 q^{45} -2.83428e7 q^{47} +5.76480e6 q^{49} -2.34270e7 q^{51} +8.12628e7 q^{53} +4.10748e7 q^{55} +1.41713e7 q^{57} +1.20116e8 q^{59} +3.80693e7 q^{61} -2.50503e7 q^{63} -2.74706e7 q^{65} -2.37967e6 q^{67} +2.36404e8 q^{69} +3.07615e8 q^{71} +2.88540e7 q^{73} +1.53856e8 q^{75} -1.65898e8 q^{77} +3.73894e7 q^{79} -7.32098e7 q^{81} +5.42856e8 q^{83} -1.44803e8 q^{85} +5.88354e7 q^{87} +5.78562e8 q^{89} +1.10952e8 q^{91} +5.42707e8 q^{93} +8.75935e7 q^{95} -1.52799e9 q^{97} +7.20891e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 84 q^{3} + 1540 q^{5} + 9604 q^{7} + 48060 q^{9} + 53016 q^{11} + 172732 q^{13} - 228096 q^{15} - 128352 q^{17} - 85148 q^{19} - 201684 q^{21} + 342368 q^{23} + 4030196 q^{25} - 11284056 q^{27} + 6392064 q^{29}+ \cdots + 3054793464 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −96.1756 −0.685518 −0.342759 0.939423i \(-0.611362\pi\)
−0.342759 + 0.939423i \(0.611362\pi\)
\(4\) 0 0
\(5\) −594.465 −0.425364 −0.212682 0.977121i \(-0.568220\pi\)
−0.212682 + 0.977121i \(0.568220\pi\)
\(6\) 0 0
\(7\) 2401.00 0.377964
\(8\) 0 0
\(9\) −10433.3 −0.530064
\(10\) 0 0
\(11\) −69095.5 −1.42293 −0.711463 0.702723i \(-0.751967\pi\)
−0.711463 + 0.702723i \(0.751967\pi\)
\(12\) 0 0
\(13\) 46210.6 0.448742 0.224371 0.974504i \(-0.427967\pi\)
0.224371 + 0.974504i \(0.427967\pi\)
\(14\) 0 0
\(15\) 57173.0 0.291595
\(16\) 0 0
\(17\) 243586. 0.707347 0.353674 0.935369i \(-0.384932\pi\)
0.353674 + 0.935369i \(0.384932\pi\)
\(18\) 0 0
\(19\) −147349. −0.259391 −0.129695 0.991554i \(-0.541400\pi\)
−0.129695 + 0.991554i \(0.541400\pi\)
\(20\) 0 0
\(21\) −230918. −0.259102
\(22\) 0 0
\(23\) −2.45805e6 −1.83153 −0.915767 0.401711i \(-0.868416\pi\)
−0.915767 + 0.401711i \(0.868416\pi\)
\(24\) 0 0
\(25\) −1.59974e6 −0.819065
\(26\) 0 0
\(27\) 2.89645e6 1.04889
\(28\) 0 0
\(29\) −611750. −0.160614 −0.0803069 0.996770i \(-0.525590\pi\)
−0.0803069 + 0.996770i \(0.525590\pi\)
\(30\) 0 0
\(31\) −5.64287e6 −1.09742 −0.548710 0.836013i \(-0.684881\pi\)
−0.548710 + 0.836013i \(0.684881\pi\)
\(32\) 0 0
\(33\) 6.64530e6 0.975442
\(34\) 0 0
\(35\) −1.42731e6 −0.160773
\(36\) 0 0
\(37\) 5.68230e6 0.498444 0.249222 0.968446i \(-0.419825\pi\)
0.249222 + 0.968446i \(0.419825\pi\)
\(38\) 0 0
\(39\) −4.44434e6 −0.307621
\(40\) 0 0
\(41\) 2.54760e7 1.40801 0.704003 0.710197i \(-0.251394\pi\)
0.704003 + 0.710197i \(0.251394\pi\)
\(42\) 0 0
\(43\) −1.31131e7 −0.584923 −0.292461 0.956277i \(-0.594474\pi\)
−0.292461 + 0.956277i \(0.594474\pi\)
\(44\) 0 0
\(45\) 6.20220e6 0.225470
\(46\) 0 0
\(47\) −2.83428e7 −0.847232 −0.423616 0.905842i \(-0.639239\pi\)
−0.423616 + 0.905842i \(0.639239\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) 0 0
\(51\) −2.34270e7 −0.484900
\(52\) 0 0
\(53\) 8.12628e7 1.41465 0.707327 0.706886i \(-0.249901\pi\)
0.707327 + 0.706886i \(0.249901\pi\)
\(54\) 0 0
\(55\) 4.10748e7 0.605262
\(56\) 0 0
\(57\) 1.41713e7 0.177817
\(58\) 0 0
\(59\) 1.20116e8 1.29053 0.645265 0.763958i \(-0.276747\pi\)
0.645265 + 0.763958i \(0.276747\pi\)
\(60\) 0 0
\(61\) 3.80693e7 0.352039 0.176019 0.984387i \(-0.443678\pi\)
0.176019 + 0.984387i \(0.443678\pi\)
\(62\) 0 0
\(63\) −2.50503e7 −0.200346
\(64\) 0 0
\(65\) −2.74706e7 −0.190879
\(66\) 0 0
\(67\) −2.37967e6 −0.0144271 −0.00721357 0.999974i \(-0.502296\pi\)
−0.00721357 + 0.999974i \(0.502296\pi\)
\(68\) 0 0
\(69\) 2.36404e8 1.25555
\(70\) 0 0
\(71\) 3.07615e8 1.43663 0.718315 0.695718i \(-0.244914\pi\)
0.718315 + 0.695718i \(0.244914\pi\)
\(72\) 0 0
\(73\) 2.88540e7 0.118919 0.0594597 0.998231i \(-0.481062\pi\)
0.0594597 + 0.998231i \(0.481062\pi\)
\(74\) 0 0
\(75\) 1.53856e8 0.561484
\(76\) 0 0
\(77\) −1.65898e8 −0.537816
\(78\) 0 0
\(79\) 3.73894e7 0.108001 0.0540004 0.998541i \(-0.482803\pi\)
0.0540004 + 0.998541i \(0.482803\pi\)
\(80\) 0 0
\(81\) −7.32098e7 −0.188967
\(82\) 0 0
\(83\) 5.42856e8 1.25555 0.627774 0.778395i \(-0.283966\pi\)
0.627774 + 0.778395i \(0.283966\pi\)
\(84\) 0 0
\(85\) −1.44803e8 −0.300880
\(86\) 0 0
\(87\) 5.88354e7 0.110104
\(88\) 0 0
\(89\) 5.78562e8 0.977451 0.488726 0.872438i \(-0.337462\pi\)
0.488726 + 0.872438i \(0.337462\pi\)
\(90\) 0 0
\(91\) 1.10952e8 0.169609
\(92\) 0 0
\(93\) 5.42707e8 0.752302
\(94\) 0 0
\(95\) 8.75935e7 0.110336
\(96\) 0 0
\(97\) −1.52799e9 −1.75246 −0.876229 0.481895i \(-0.839949\pi\)
−0.876229 + 0.481895i \(0.839949\pi\)
\(98\) 0 0
\(99\) 7.20891e8 0.754243
\(100\) 0 0
\(101\) −8.18511e8 −0.782670 −0.391335 0.920248i \(-0.627987\pi\)
−0.391335 + 0.920248i \(0.627987\pi\)
\(102\) 0 0
\(103\) −2.24948e7 −0.0196931 −0.00984654 0.999952i \(-0.503134\pi\)
−0.00984654 + 0.999952i \(0.503134\pi\)
\(104\) 0 0
\(105\) 1.37272e8 0.110213
\(106\) 0 0
\(107\) 1.93505e9 1.42714 0.713569 0.700585i \(-0.247077\pi\)
0.713569 + 0.700585i \(0.247077\pi\)
\(108\) 0 0
\(109\) 1.89146e9 1.28345 0.641723 0.766936i \(-0.278220\pi\)
0.641723 + 0.766936i \(0.278220\pi\)
\(110\) 0 0
\(111\) −5.46498e8 −0.341693
\(112\) 0 0
\(113\) 2.10443e9 1.21418 0.607088 0.794634i \(-0.292337\pi\)
0.607088 + 0.794634i \(0.292337\pi\)
\(114\) 0 0
\(115\) 1.46122e9 0.779069
\(116\) 0 0
\(117\) −4.82128e8 −0.237862
\(118\) 0 0
\(119\) 5.84851e8 0.267352
\(120\) 0 0
\(121\) 2.41623e9 1.02472
\(122\) 0 0
\(123\) −2.45017e9 −0.965214
\(124\) 0 0
\(125\) 2.11205e9 0.773765
\(126\) 0 0
\(127\) −1.05219e9 −0.358902 −0.179451 0.983767i \(-0.557432\pi\)
−0.179451 + 0.983767i \(0.557432\pi\)
\(128\) 0 0
\(129\) 1.26116e9 0.400975
\(130\) 0 0
\(131\) −3.74529e9 −1.11113 −0.555565 0.831473i \(-0.687498\pi\)
−0.555565 + 0.831473i \(0.687498\pi\)
\(132\) 0 0
\(133\) −3.53784e8 −0.0980405
\(134\) 0 0
\(135\) −1.72184e9 −0.446159
\(136\) 0 0
\(137\) −7.39345e8 −0.179310 −0.0896550 0.995973i \(-0.528576\pi\)
−0.0896550 + 0.995973i \(0.528576\pi\)
\(138\) 0 0
\(139\) 6.76179e8 0.153637 0.0768184 0.997045i \(-0.475524\pi\)
0.0768184 + 0.997045i \(0.475524\pi\)
\(140\) 0 0
\(141\) 2.72589e9 0.580793
\(142\) 0 0
\(143\) −3.19295e9 −0.638527
\(144\) 0 0
\(145\) 3.63664e8 0.0683194
\(146\) 0 0
\(147\) −5.54433e8 −0.0979312
\(148\) 0 0
\(149\) −5.98176e9 −0.994240 −0.497120 0.867682i \(-0.665609\pi\)
−0.497120 + 0.867682i \(0.665609\pi\)
\(150\) 0 0
\(151\) 1.85428e9 0.290254 0.145127 0.989413i \(-0.453641\pi\)
0.145127 + 0.989413i \(0.453641\pi\)
\(152\) 0 0
\(153\) −2.54140e9 −0.374940
\(154\) 0 0
\(155\) 3.35449e9 0.466803
\(156\) 0 0
\(157\) −9.51640e8 −0.125004 −0.0625020 0.998045i \(-0.519908\pi\)
−0.0625020 + 0.998045i \(0.519908\pi\)
\(158\) 0 0
\(159\) −7.81550e9 −0.969772
\(160\) 0 0
\(161\) −5.90177e9 −0.692254
\(162\) 0 0
\(163\) −4.68783e9 −0.520149 −0.260075 0.965589i \(-0.583747\pi\)
−0.260075 + 0.965589i \(0.583747\pi\)
\(164\) 0 0
\(165\) −3.95039e9 −0.414918
\(166\) 0 0
\(167\) −8.14061e9 −0.809903 −0.404952 0.914338i \(-0.632712\pi\)
−0.404952 + 0.914338i \(0.632712\pi\)
\(168\) 0 0
\(169\) −8.46908e9 −0.798630
\(170\) 0 0
\(171\) 1.53733e9 0.137494
\(172\) 0 0
\(173\) −8.53803e9 −0.724687 −0.362343 0.932045i \(-0.618023\pi\)
−0.362343 + 0.932045i \(0.618023\pi\)
\(174\) 0 0
\(175\) −3.84097e9 −0.309578
\(176\) 0 0
\(177\) −1.15523e10 −0.884683
\(178\) 0 0
\(179\) 1.36010e10 0.990223 0.495111 0.868829i \(-0.335127\pi\)
0.495111 + 0.868829i \(0.335127\pi\)
\(180\) 0 0
\(181\) −8.22877e8 −0.0569878 −0.0284939 0.999594i \(-0.509071\pi\)
−0.0284939 + 0.999594i \(0.509071\pi\)
\(182\) 0 0
\(183\) −3.66134e9 −0.241329
\(184\) 0 0
\(185\) −3.37793e9 −0.212020
\(186\) 0 0
\(187\) −1.68307e10 −1.00650
\(188\) 0 0
\(189\) 6.95437e9 0.396442
\(190\) 0 0
\(191\) 1.09353e10 0.594538 0.297269 0.954794i \(-0.403924\pi\)
0.297269 + 0.954794i \(0.403924\pi\)
\(192\) 0 0
\(193\) −2.85178e10 −1.47948 −0.739740 0.672893i \(-0.765051\pi\)
−0.739740 + 0.672893i \(0.765051\pi\)
\(194\) 0 0
\(195\) 2.64200e9 0.130851
\(196\) 0 0
\(197\) 2.78862e10 1.31914 0.659570 0.751643i \(-0.270738\pi\)
0.659570 + 0.751643i \(0.270738\pi\)
\(198\) 0 0
\(199\) 2.39154e10 1.08103 0.540516 0.841334i \(-0.318229\pi\)
0.540516 + 0.841334i \(0.318229\pi\)
\(200\) 0 0
\(201\) 2.28866e8 0.00989007
\(202\) 0 0
\(203\) −1.46881e9 −0.0607063
\(204\) 0 0
\(205\) −1.51446e10 −0.598915
\(206\) 0 0
\(207\) 2.56454e10 0.970831
\(208\) 0 0
\(209\) 1.01811e10 0.369094
\(210\) 0 0
\(211\) −1.11219e10 −0.386286 −0.193143 0.981171i \(-0.561868\pi\)
−0.193143 + 0.981171i \(0.561868\pi\)
\(212\) 0 0
\(213\) −2.95850e10 −0.984836
\(214\) 0 0
\(215\) 7.79530e9 0.248805
\(216\) 0 0
\(217\) −1.35485e10 −0.414786
\(218\) 0 0
\(219\) −2.77505e9 −0.0815215
\(220\) 0 0
\(221\) 1.12563e10 0.317417
\(222\) 0 0
\(223\) −5.43946e10 −1.47294 −0.736469 0.676472i \(-0.763508\pi\)
−0.736469 + 0.676472i \(0.763508\pi\)
\(224\) 0 0
\(225\) 1.66905e10 0.434157
\(226\) 0 0
\(227\) −3.41199e10 −0.852888 −0.426444 0.904514i \(-0.640234\pi\)
−0.426444 + 0.904514i \(0.640234\pi\)
\(228\) 0 0
\(229\) 8.30367e10 1.99531 0.997655 0.0684494i \(-0.0218052\pi\)
0.997655 + 0.0684494i \(0.0218052\pi\)
\(230\) 0 0
\(231\) 1.59554e10 0.368683
\(232\) 0 0
\(233\) −3.62840e10 −0.806517 −0.403258 0.915086i \(-0.632122\pi\)
−0.403258 + 0.915086i \(0.632122\pi\)
\(234\) 0 0
\(235\) 1.68488e10 0.360382
\(236\) 0 0
\(237\) −3.59595e9 −0.0740365
\(238\) 0 0
\(239\) 6.35940e10 1.26074 0.630370 0.776295i \(-0.282903\pi\)
0.630370 + 0.776295i \(0.282903\pi\)
\(240\) 0 0
\(241\) 8.74376e10 1.66963 0.834817 0.550527i \(-0.185573\pi\)
0.834817 + 0.550527i \(0.185573\pi\)
\(242\) 0 0
\(243\) −4.99698e10 −0.919347
\(244\) 0 0
\(245\) −3.42697e9 −0.0607663
\(246\) 0 0
\(247\) −6.80907e9 −0.116400
\(248\) 0 0
\(249\) −5.22095e10 −0.860702
\(250\) 0 0
\(251\) −3.84566e10 −0.611560 −0.305780 0.952102i \(-0.598917\pi\)
−0.305780 + 0.952102i \(0.598917\pi\)
\(252\) 0 0
\(253\) 1.69840e11 2.60614
\(254\) 0 0
\(255\) 1.39265e10 0.206259
\(256\) 0 0
\(257\) 3.95178e10 0.565059 0.282530 0.959259i \(-0.408826\pi\)
0.282530 + 0.959259i \(0.408826\pi\)
\(258\) 0 0
\(259\) 1.36432e10 0.188394
\(260\) 0 0
\(261\) 6.38254e9 0.0851357
\(262\) 0 0
\(263\) 3.33651e10 0.430023 0.215012 0.976612i \(-0.431021\pi\)
0.215012 + 0.976612i \(0.431021\pi\)
\(264\) 0 0
\(265\) −4.83079e10 −0.601743
\(266\) 0 0
\(267\) −5.56436e10 −0.670061
\(268\) 0 0
\(269\) −2.93430e10 −0.341679 −0.170840 0.985299i \(-0.554648\pi\)
−0.170840 + 0.985299i \(0.554648\pi\)
\(270\) 0 0
\(271\) −1.32333e11 −1.49042 −0.745209 0.666831i \(-0.767650\pi\)
−0.745209 + 0.666831i \(0.767650\pi\)
\(272\) 0 0
\(273\) −1.06709e10 −0.116270
\(274\) 0 0
\(275\) 1.10535e11 1.16547
\(276\) 0 0
\(277\) 8.13179e10 0.829903 0.414951 0.909844i \(-0.363799\pi\)
0.414951 + 0.909844i \(0.363799\pi\)
\(278\) 0 0
\(279\) 5.88736e10 0.581703
\(280\) 0 0
\(281\) −4.82697e10 −0.461845 −0.230922 0.972972i \(-0.574174\pi\)
−0.230922 + 0.972972i \(0.574174\pi\)
\(282\) 0 0
\(283\) 1.80311e11 1.67103 0.835514 0.549469i \(-0.185170\pi\)
0.835514 + 0.549469i \(0.185170\pi\)
\(284\) 0 0
\(285\) −8.42435e9 −0.0756371
\(286\) 0 0
\(287\) 6.11680e10 0.532176
\(288\) 0 0
\(289\) −5.92536e10 −0.499660
\(290\) 0 0
\(291\) 1.46955e11 1.20134
\(292\) 0 0
\(293\) 2.18759e11 1.73405 0.867026 0.498262i \(-0.166028\pi\)
0.867026 + 0.498262i \(0.166028\pi\)
\(294\) 0 0
\(295\) −7.14050e10 −0.548946
\(296\) 0 0
\(297\) −2.00131e11 −1.49249
\(298\) 0 0
\(299\) −1.13588e11 −0.821886
\(300\) 0 0
\(301\) −3.14846e10 −0.221080
\(302\) 0 0
\(303\) 7.87208e10 0.536534
\(304\) 0 0
\(305\) −2.26309e10 −0.149745
\(306\) 0 0
\(307\) 1.73635e11 1.11561 0.557807 0.829971i \(-0.311643\pi\)
0.557807 + 0.829971i \(0.311643\pi\)
\(308\) 0 0
\(309\) 2.16345e9 0.0135000
\(310\) 0 0
\(311\) 1.11473e11 0.675688 0.337844 0.941202i \(-0.390302\pi\)
0.337844 + 0.941202i \(0.390302\pi\)
\(312\) 0 0
\(313\) 2.38241e11 1.40303 0.701514 0.712656i \(-0.252508\pi\)
0.701514 + 0.712656i \(0.252508\pi\)
\(314\) 0 0
\(315\) 1.48915e10 0.0852198
\(316\) 0 0
\(317\) −1.80726e11 −1.00520 −0.502602 0.864518i \(-0.667624\pi\)
−0.502602 + 0.864518i \(0.667624\pi\)
\(318\) 0 0
\(319\) 4.22691e10 0.228542
\(320\) 0 0
\(321\) −1.86105e11 −0.978330
\(322\) 0 0
\(323\) −3.58921e10 −0.183479
\(324\) 0 0
\(325\) −7.39249e10 −0.367549
\(326\) 0 0
\(327\) −1.81912e11 −0.879826
\(328\) 0 0
\(329\) −6.80511e10 −0.320224
\(330\) 0 0
\(331\) −1.72924e11 −0.791826 −0.395913 0.918288i \(-0.629572\pi\)
−0.395913 + 0.918288i \(0.629572\pi\)
\(332\) 0 0
\(333\) −5.92849e10 −0.264207
\(334\) 0 0
\(335\) 1.41463e9 0.00613679
\(336\) 0 0
\(337\) −1.92313e10 −0.0812220 −0.0406110 0.999175i \(-0.512930\pi\)
−0.0406110 + 0.999175i \(0.512930\pi\)
\(338\) 0 0
\(339\) −2.02395e11 −0.832340
\(340\) 0 0
\(341\) 3.89897e11 1.56155
\(342\) 0 0
\(343\) 1.38413e10 0.0539949
\(344\) 0 0
\(345\) −1.40534e11 −0.534066
\(346\) 0 0
\(347\) 1.90347e11 0.704797 0.352399 0.935850i \(-0.385366\pi\)
0.352399 + 0.935850i \(0.385366\pi\)
\(348\) 0 0
\(349\) 3.18032e11 1.14751 0.573755 0.819027i \(-0.305486\pi\)
0.573755 + 0.819027i \(0.305486\pi\)
\(350\) 0 0
\(351\) 1.33847e11 0.470680
\(352\) 0 0
\(353\) −4.99824e11 −1.71329 −0.856645 0.515907i \(-0.827455\pi\)
−0.856645 + 0.515907i \(0.827455\pi\)
\(354\) 0 0
\(355\) −1.82866e11 −0.611091
\(356\) 0 0
\(357\) −5.62483e10 −0.183275
\(358\) 0 0
\(359\) 2.40479e11 0.764104 0.382052 0.924141i \(-0.375218\pi\)
0.382052 + 0.924141i \(0.375218\pi\)
\(360\) 0 0
\(361\) −3.00976e11 −0.932716
\(362\) 0 0
\(363\) −2.32383e11 −0.702464
\(364\) 0 0
\(365\) −1.71527e10 −0.0505841
\(366\) 0 0
\(367\) −6.37649e11 −1.83478 −0.917390 0.397989i \(-0.869708\pi\)
−0.917390 + 0.397989i \(0.869708\pi\)
\(368\) 0 0
\(369\) −2.65798e11 −0.746334
\(370\) 0 0
\(371\) 1.95112e11 0.534689
\(372\) 0 0
\(373\) 1.15352e11 0.308557 0.154278 0.988027i \(-0.450695\pi\)
0.154278 + 0.988027i \(0.450695\pi\)
\(374\) 0 0
\(375\) −2.03128e11 −0.530430
\(376\) 0 0
\(377\) −2.82694e10 −0.0720742
\(378\) 0 0
\(379\) −3.66454e11 −0.912310 −0.456155 0.889900i \(-0.650774\pi\)
−0.456155 + 0.889900i \(0.650774\pi\)
\(380\) 0 0
\(381\) 1.01195e11 0.246034
\(382\) 0 0
\(383\) −6.31066e11 −1.49858 −0.749290 0.662242i \(-0.769605\pi\)
−0.749290 + 0.662242i \(0.769605\pi\)
\(384\) 0 0
\(385\) 9.86206e10 0.228767
\(386\) 0 0
\(387\) 1.36813e11 0.310047
\(388\) 0 0
\(389\) −2.05717e11 −0.455508 −0.227754 0.973719i \(-0.573138\pi\)
−0.227754 + 0.973719i \(0.573138\pi\)
\(390\) 0 0
\(391\) −5.98746e11 −1.29553
\(392\) 0 0
\(393\) 3.60205e11 0.761700
\(394\) 0 0
\(395\) −2.22267e10 −0.0459396
\(396\) 0 0
\(397\) 6.71192e11 1.35609 0.678047 0.735019i \(-0.262827\pi\)
0.678047 + 0.735019i \(0.262827\pi\)
\(398\) 0 0
\(399\) 3.40254e10 0.0672086
\(400\) 0 0
\(401\) −3.16015e11 −0.610320 −0.305160 0.952301i \(-0.598710\pi\)
−0.305160 + 0.952301i \(0.598710\pi\)
\(402\) 0 0
\(403\) −2.60761e11 −0.492459
\(404\) 0 0
\(405\) 4.35206e10 0.0803799
\(406\) 0 0
\(407\) −3.92621e11 −0.709249
\(408\) 0 0
\(409\) −1.07807e12 −1.90498 −0.952492 0.304562i \(-0.901490\pi\)
−0.952492 + 0.304562i \(0.901490\pi\)
\(410\) 0 0
\(411\) 7.11069e10 0.122920
\(412\) 0 0
\(413\) 2.88400e11 0.487775
\(414\) 0 0
\(415\) −3.22709e11 −0.534065
\(416\) 0 0
\(417\) −6.50319e10 −0.105321
\(418\) 0 0
\(419\) 7.79914e11 1.23619 0.618093 0.786105i \(-0.287906\pi\)
0.618093 + 0.786105i \(0.287906\pi\)
\(420\) 0 0
\(421\) 8.76084e11 1.35918 0.679589 0.733593i \(-0.262158\pi\)
0.679589 + 0.733593i \(0.262158\pi\)
\(422\) 0 0
\(423\) 2.95708e11 0.449088
\(424\) 0 0
\(425\) −3.89674e11 −0.579363
\(426\) 0 0
\(427\) 9.14044e10 0.133058
\(428\) 0 0
\(429\) 3.07083e11 0.437722
\(430\) 0 0
\(431\) 1.23778e12 1.72780 0.863902 0.503660i \(-0.168013\pi\)
0.863902 + 0.503660i \(0.168013\pi\)
\(432\) 0 0
\(433\) 1.00463e12 1.37344 0.686722 0.726921i \(-0.259049\pi\)
0.686722 + 0.726921i \(0.259049\pi\)
\(434\) 0 0
\(435\) −3.49756e10 −0.0468342
\(436\) 0 0
\(437\) 3.62190e11 0.475083
\(438\) 0 0
\(439\) 9.38698e11 1.20625 0.603123 0.797648i \(-0.293923\pi\)
0.603123 + 0.797648i \(0.293923\pi\)
\(440\) 0 0
\(441\) −6.01457e10 −0.0757235
\(442\) 0 0
\(443\) 7.88802e11 0.973086 0.486543 0.873657i \(-0.338258\pi\)
0.486543 + 0.873657i \(0.338258\pi\)
\(444\) 0 0
\(445\) −3.43935e11 −0.415773
\(446\) 0 0
\(447\) 5.75300e11 0.681570
\(448\) 0 0
\(449\) −4.43110e11 −0.514521 −0.257260 0.966342i \(-0.582820\pi\)
−0.257260 + 0.966342i \(0.582820\pi\)
\(450\) 0 0
\(451\) −1.76028e12 −2.00349
\(452\) 0 0
\(453\) −1.78336e11 −0.198974
\(454\) 0 0
\(455\) −6.59569e10 −0.0721454
\(456\) 0 0
\(457\) −1.36081e12 −1.45940 −0.729698 0.683770i \(-0.760339\pi\)
−0.729698 + 0.683770i \(0.760339\pi\)
\(458\) 0 0
\(459\) 7.05535e11 0.741927
\(460\) 0 0
\(461\) −4.56477e11 −0.470722 −0.235361 0.971908i \(-0.575627\pi\)
−0.235361 + 0.971908i \(0.575627\pi\)
\(462\) 0 0
\(463\) 9.47962e11 0.958686 0.479343 0.877628i \(-0.340875\pi\)
0.479343 + 0.877628i \(0.340875\pi\)
\(464\) 0 0
\(465\) −3.22620e11 −0.320002
\(466\) 0 0
\(467\) 5.14404e11 0.500470 0.250235 0.968185i \(-0.419492\pi\)
0.250235 + 0.968185i \(0.419492\pi\)
\(468\) 0 0
\(469\) −5.71359e9 −0.00545295
\(470\) 0 0
\(471\) 9.15245e10 0.0856926
\(472\) 0 0
\(473\) 9.06058e11 0.832302
\(474\) 0 0
\(475\) 2.35719e11 0.212458
\(476\) 0 0
\(477\) −8.47836e11 −0.749858
\(478\) 0 0
\(479\) −4.30057e11 −0.373264 −0.186632 0.982430i \(-0.559757\pi\)
−0.186632 + 0.982430i \(0.559757\pi\)
\(480\) 0 0
\(481\) 2.62583e11 0.223673
\(482\) 0 0
\(483\) 5.67606e11 0.474553
\(484\) 0 0
\(485\) 9.08336e11 0.745433
\(486\) 0 0
\(487\) 6.65219e11 0.535901 0.267950 0.963433i \(-0.413654\pi\)
0.267950 + 0.963433i \(0.413654\pi\)
\(488\) 0 0
\(489\) 4.50855e11 0.356572
\(490\) 0 0
\(491\) 2.50114e11 0.194210 0.0971049 0.995274i \(-0.469042\pi\)
0.0971049 + 0.995274i \(0.469042\pi\)
\(492\) 0 0
\(493\) −1.49014e11 −0.113610
\(494\) 0 0
\(495\) −4.28544e11 −0.320828
\(496\) 0 0
\(497\) 7.38583e11 0.542995
\(498\) 0 0
\(499\) −2.29287e12 −1.65549 −0.827746 0.561103i \(-0.810377\pi\)
−0.827746 + 0.561103i \(0.810377\pi\)
\(500\) 0 0
\(501\) 7.82928e11 0.555204
\(502\) 0 0
\(503\) 1.83989e12 1.28155 0.640775 0.767729i \(-0.278613\pi\)
0.640775 + 0.767729i \(0.278613\pi\)
\(504\) 0 0
\(505\) 4.86576e11 0.332920
\(506\) 0 0
\(507\) 8.14518e11 0.547476
\(508\) 0 0
\(509\) −1.84905e12 −1.22101 −0.610504 0.792013i \(-0.709033\pi\)
−0.610504 + 0.792013i \(0.709033\pi\)
\(510\) 0 0
\(511\) 6.92784e10 0.0449473
\(512\) 0 0
\(513\) −4.26787e11 −0.272072
\(514\) 0 0
\(515\) 1.33723e10 0.00837673
\(516\) 0 0
\(517\) 1.95836e12 1.20555
\(518\) 0 0
\(519\) 8.21150e11 0.496786
\(520\) 0 0
\(521\) −8.17742e11 −0.486235 −0.243118 0.969997i \(-0.578170\pi\)
−0.243118 + 0.969997i \(0.578170\pi\)
\(522\) 0 0
\(523\) −3.66718e11 −0.214326 −0.107163 0.994241i \(-0.534177\pi\)
−0.107163 + 0.994241i \(0.534177\pi\)
\(524\) 0 0
\(525\) 3.69407e11 0.212221
\(526\) 0 0
\(527\) −1.37453e12 −0.776257
\(528\) 0 0
\(529\) 4.24084e12 2.35451
\(530\) 0 0
\(531\) −1.25321e12 −0.684064
\(532\) 0 0
\(533\) 1.17726e12 0.631832
\(534\) 0 0
\(535\) −1.15032e12 −0.607054
\(536\) 0 0
\(537\) −1.30809e12 −0.678816
\(538\) 0 0
\(539\) −3.98322e11 −0.203275
\(540\) 0 0
\(541\) −1.02025e12 −0.512056 −0.256028 0.966669i \(-0.582414\pi\)
−0.256028 + 0.966669i \(0.582414\pi\)
\(542\) 0 0
\(543\) 7.91407e10 0.0390662
\(544\) 0 0
\(545\) −1.12441e12 −0.545932
\(546\) 0 0
\(547\) 2.66643e12 1.27347 0.636733 0.771085i \(-0.280285\pi\)
0.636733 + 0.771085i \(0.280285\pi\)
\(548\) 0 0
\(549\) −3.97187e11 −0.186603
\(550\) 0 0
\(551\) 9.01405e10 0.0416618
\(552\) 0 0
\(553\) 8.97720e10 0.0408204
\(554\) 0 0
\(555\) 3.24874e11 0.145344
\(556\) 0 0
\(557\) 2.46250e12 1.08400 0.541998 0.840380i \(-0.317668\pi\)
0.541998 + 0.840380i \(0.317668\pi\)
\(558\) 0 0
\(559\) −6.05967e11 −0.262480
\(560\) 0 0
\(561\) 1.61870e12 0.689976
\(562\) 0 0
\(563\) −2.45114e12 −1.02821 −0.514104 0.857728i \(-0.671875\pi\)
−0.514104 + 0.857728i \(0.671875\pi\)
\(564\) 0 0
\(565\) −1.25101e12 −0.516467
\(566\) 0 0
\(567\) −1.75777e11 −0.0714229
\(568\) 0 0
\(569\) 3.12385e12 1.24935 0.624677 0.780883i \(-0.285231\pi\)
0.624677 + 0.780883i \(0.285231\pi\)
\(570\) 0 0
\(571\) −2.63520e12 −1.03741 −0.518707 0.854952i \(-0.673586\pi\)
−0.518707 + 0.854952i \(0.673586\pi\)
\(572\) 0 0
\(573\) −1.05171e12 −0.407567
\(574\) 0 0
\(575\) 3.93223e12 1.50015
\(576\) 0 0
\(577\) −2.96498e12 −1.11360 −0.556802 0.830645i \(-0.687972\pi\)
−0.556802 + 0.830645i \(0.687972\pi\)
\(578\) 0 0
\(579\) 2.74272e12 1.01421
\(580\) 0 0
\(581\) 1.30340e12 0.474553
\(582\) 0 0
\(583\) −5.61489e12 −2.01295
\(584\) 0 0
\(585\) 2.86608e11 0.101178
\(586\) 0 0
\(587\) 2.08868e12 0.726106 0.363053 0.931768i \(-0.381734\pi\)
0.363053 + 0.931768i \(0.381734\pi\)
\(588\) 0 0
\(589\) 8.31469e11 0.284661
\(590\) 0 0
\(591\) −2.68197e12 −0.904295
\(592\) 0 0
\(593\) 2.53298e12 0.841174 0.420587 0.907252i \(-0.361824\pi\)
0.420587 + 0.907252i \(0.361824\pi\)
\(594\) 0 0
\(595\) −3.47673e11 −0.113722
\(596\) 0 0
\(597\) −2.30007e12 −0.741067
\(598\) 0 0
\(599\) −3.17127e12 −1.00650 −0.503249 0.864142i \(-0.667862\pi\)
−0.503249 + 0.864142i \(0.667862\pi\)
\(600\) 0 0
\(601\) −5.12857e12 −1.60347 −0.801735 0.597680i \(-0.796089\pi\)
−0.801735 + 0.597680i \(0.796089\pi\)
\(602\) 0 0
\(603\) 2.48277e10 0.00764731
\(604\) 0 0
\(605\) −1.43637e12 −0.435879
\(606\) 0 0
\(607\) 8.33405e11 0.249177 0.124588 0.992209i \(-0.460239\pi\)
0.124588 + 0.992209i \(0.460239\pi\)
\(608\) 0 0
\(609\) 1.41264e11 0.0416153
\(610\) 0 0
\(611\) −1.30974e12 −0.380189
\(612\) 0 0
\(613\) −3.03610e12 −0.868448 −0.434224 0.900805i \(-0.642977\pi\)
−0.434224 + 0.900805i \(0.642977\pi\)
\(614\) 0 0
\(615\) 1.45654e12 0.410567
\(616\) 0 0
\(617\) −4.94154e11 −0.137271 −0.0686355 0.997642i \(-0.521865\pi\)
−0.0686355 + 0.997642i \(0.521865\pi\)
\(618\) 0 0
\(619\) −5.49105e12 −1.50331 −0.751653 0.659559i \(-0.770743\pi\)
−0.751653 + 0.659559i \(0.770743\pi\)
\(620\) 0 0
\(621\) −7.11960e12 −1.92107
\(622\) 0 0
\(623\) 1.38913e12 0.369442
\(624\) 0 0
\(625\) 1.86895e12 0.489933
\(626\) 0 0
\(627\) −9.79175e11 −0.253021
\(628\) 0 0
\(629\) 1.38413e12 0.352573
\(630\) 0 0
\(631\) 5.75017e12 1.44394 0.721969 0.691925i \(-0.243237\pi\)
0.721969 + 0.691925i \(0.243237\pi\)
\(632\) 0 0
\(633\) 1.06966e12 0.264806
\(634\) 0 0
\(635\) 6.25487e11 0.152664
\(636\) 0 0
\(637\) 2.66395e11 0.0641060
\(638\) 0 0
\(639\) −3.20942e12 −0.761506
\(640\) 0 0
\(641\) 3.91727e12 0.916478 0.458239 0.888829i \(-0.348480\pi\)
0.458239 + 0.888829i \(0.348480\pi\)
\(642\) 0 0
\(643\) 1.43518e12 0.331099 0.165549 0.986202i \(-0.447060\pi\)
0.165549 + 0.986202i \(0.447060\pi\)
\(644\) 0 0
\(645\) −7.49717e11 −0.170561
\(646\) 0 0
\(647\) −1.01796e12 −0.228382 −0.114191 0.993459i \(-0.536428\pi\)
−0.114191 + 0.993459i \(0.536428\pi\)
\(648\) 0 0
\(649\) −8.29950e12 −1.83633
\(650\) 0 0
\(651\) 1.30304e12 0.284343
\(652\) 0 0
\(653\) −8.70065e12 −1.87259 −0.936295 0.351215i \(-0.885769\pi\)
−0.936295 + 0.351215i \(0.885769\pi\)
\(654\) 0 0
\(655\) 2.22644e12 0.472635
\(656\) 0 0
\(657\) −3.01041e11 −0.0630350
\(658\) 0 0
\(659\) 5.63435e12 1.16375 0.581875 0.813278i \(-0.302319\pi\)
0.581875 + 0.813278i \(0.302319\pi\)
\(660\) 0 0
\(661\) −8.28154e12 −1.68735 −0.843673 0.536857i \(-0.819611\pi\)
−0.843673 + 0.536857i \(0.819611\pi\)
\(662\) 0 0
\(663\) −1.08258e12 −0.217595
\(664\) 0 0
\(665\) 2.10312e11 0.0417029
\(666\) 0 0
\(667\) 1.50371e12 0.294170
\(668\) 0 0
\(669\) 5.23144e12 1.00973
\(670\) 0 0
\(671\) −2.63042e12 −0.500925
\(672\) 0 0
\(673\) −4.53783e11 −0.0852669 −0.0426335 0.999091i \(-0.513575\pi\)
−0.0426335 + 0.999091i \(0.513575\pi\)
\(674\) 0 0
\(675\) −4.63356e12 −0.859107
\(676\) 0 0
\(677\) −9.30547e12 −1.70251 −0.851254 0.524753i \(-0.824158\pi\)
−0.851254 + 0.524753i \(0.824158\pi\)
\(678\) 0 0
\(679\) −3.66870e12 −0.662367
\(680\) 0 0
\(681\) 3.28151e12 0.584670
\(682\) 0 0
\(683\) 9.97313e12 1.75363 0.876816 0.480827i \(-0.159663\pi\)
0.876816 + 0.480827i \(0.159663\pi\)
\(684\) 0 0
\(685\) 4.39514e11 0.0762721
\(686\) 0 0
\(687\) −7.98610e12 −1.36782
\(688\) 0 0
\(689\) 3.75521e12 0.634815
\(690\) 0 0
\(691\) 2.37926e12 0.396999 0.198500 0.980101i \(-0.436393\pi\)
0.198500 + 0.980101i \(0.436393\pi\)
\(692\) 0 0
\(693\) 1.73086e12 0.285077
\(694\) 0 0
\(695\) −4.01964e11 −0.0653516
\(696\) 0 0
\(697\) 6.20561e12 0.995949
\(698\) 0 0
\(699\) 3.48963e12 0.552882
\(700\) 0 0
\(701\) 9.19884e12 1.43880 0.719402 0.694594i \(-0.244416\pi\)
0.719402 + 0.694594i \(0.244416\pi\)
\(702\) 0 0
\(703\) −8.37279e11 −0.129292
\(704\) 0 0
\(705\) −1.62044e12 −0.247049
\(706\) 0 0
\(707\) −1.96525e12 −0.295821
\(708\) 0 0
\(709\) 1.30512e12 0.193973 0.0969867 0.995286i \(-0.469080\pi\)
0.0969867 + 0.995286i \(0.469080\pi\)
\(710\) 0 0
\(711\) −3.90093e11 −0.0572473
\(712\) 0 0
\(713\) 1.38704e13 2.00996
\(714\) 0 0
\(715\) 1.89809e12 0.271607
\(716\) 0 0
\(717\) −6.11619e12 −0.864261
\(718\) 0 0
\(719\) −1.15600e12 −0.161316 −0.0806579 0.996742i \(-0.525702\pi\)
−0.0806579 + 0.996742i \(0.525702\pi\)
\(720\) 0 0
\(721\) −5.40099e10 −0.00744329
\(722\) 0 0
\(723\) −8.40936e12 −1.14457
\(724\) 0 0
\(725\) 9.78639e11 0.131553
\(726\) 0 0
\(727\) 6.57013e12 0.872306 0.436153 0.899872i \(-0.356341\pi\)
0.436153 + 0.899872i \(0.356341\pi\)
\(728\) 0 0
\(729\) 6.24686e12 0.819197
\(730\) 0 0
\(731\) −3.19418e12 −0.413743
\(732\) 0 0
\(733\) 3.86571e12 0.494609 0.247304 0.968938i \(-0.420455\pi\)
0.247304 + 0.968938i \(0.420455\pi\)
\(734\) 0 0
\(735\) 3.29591e11 0.0416564
\(736\) 0 0
\(737\) 1.64424e11 0.0205288
\(738\) 0 0
\(739\) −4.25576e11 −0.0524901 −0.0262451 0.999656i \(-0.508355\pi\)
−0.0262451 + 0.999656i \(0.508355\pi\)
\(740\) 0 0
\(741\) 6.54866e11 0.0797941
\(742\) 0 0
\(743\) 1.50308e13 1.80940 0.904698 0.426054i \(-0.140097\pi\)
0.904698 + 0.426054i \(0.140097\pi\)
\(744\) 0 0
\(745\) 3.55595e12 0.422914
\(746\) 0 0
\(747\) −5.66376e12 −0.665522
\(748\) 0 0
\(749\) 4.64607e12 0.539408
\(750\) 0 0
\(751\) 6.71667e12 0.770503 0.385252 0.922812i \(-0.374115\pi\)
0.385252 + 0.922812i \(0.374115\pi\)
\(752\) 0 0
\(753\) 3.69859e12 0.419236
\(754\) 0 0
\(755\) −1.10230e12 −0.123464
\(756\) 0 0
\(757\) −5.38917e12 −0.596472 −0.298236 0.954492i \(-0.596398\pi\)
−0.298236 + 0.954492i \(0.596398\pi\)
\(758\) 0 0
\(759\) −1.63344e13 −1.78655
\(760\) 0 0
\(761\) 1.62051e13 1.75154 0.875769 0.482730i \(-0.160355\pi\)
0.875769 + 0.482730i \(0.160355\pi\)
\(762\) 0 0
\(763\) 4.54139e12 0.485097
\(764\) 0 0
\(765\) 1.51077e12 0.159486
\(766\) 0 0
\(767\) 5.55066e12 0.579116
\(768\) 0 0
\(769\) 3.79853e11 0.0391694 0.0195847 0.999808i \(-0.493766\pi\)
0.0195847 + 0.999808i \(0.493766\pi\)
\(770\) 0 0
\(771\) −3.80065e12 −0.387359
\(772\) 0 0
\(773\) 3.14551e12 0.316872 0.158436 0.987369i \(-0.449355\pi\)
0.158436 + 0.987369i \(0.449355\pi\)
\(774\) 0 0
\(775\) 9.02711e12 0.898858
\(776\) 0 0
\(777\) −1.31214e12 −0.129148
\(778\) 0 0
\(779\) −3.75386e12 −0.365224
\(780\) 0 0
\(781\) −2.12548e13 −2.04422
\(782\) 0 0
\(783\) −1.77190e12 −0.168466
\(784\) 0 0
\(785\) 5.65716e11 0.0531723
\(786\) 0 0
\(787\) 7.69122e12 0.714675 0.357338 0.933975i \(-0.383685\pi\)
0.357338 + 0.933975i \(0.383685\pi\)
\(788\) 0 0
\(789\) −3.20891e12 −0.294789
\(790\) 0 0
\(791\) 5.05274e12 0.458916
\(792\) 0 0
\(793\) 1.75921e12 0.157975
\(794\) 0 0
\(795\) 4.64604e12 0.412506
\(796\) 0 0
\(797\) 8.17419e12 0.717599 0.358800 0.933415i \(-0.383186\pi\)
0.358800 + 0.933415i \(0.383186\pi\)
\(798\) 0 0
\(799\) −6.90392e12 −0.599287
\(800\) 0 0
\(801\) −6.03629e12 −0.518112
\(802\) 0 0
\(803\) −1.99368e12 −0.169214
\(804\) 0 0
\(805\) 3.50839e12 0.294460
\(806\) 0 0
\(807\) 2.82208e12 0.234227
\(808\) 0 0
\(809\) 1.85735e13 1.52450 0.762248 0.647285i \(-0.224096\pi\)
0.762248 + 0.647285i \(0.224096\pi\)
\(810\) 0 0
\(811\) −1.77241e12 −0.143870 −0.0719349 0.997409i \(-0.522917\pi\)
−0.0719349 + 0.997409i \(0.522917\pi\)
\(812\) 0 0
\(813\) 1.27272e13 1.02171
\(814\) 0 0
\(815\) 2.78675e12 0.221253
\(816\) 0 0
\(817\) 1.93220e12 0.151724
\(818\) 0 0
\(819\) −1.15759e12 −0.0899035
\(820\) 0 0
\(821\) 4.47706e12 0.343913 0.171957 0.985105i \(-0.444991\pi\)
0.171957 + 0.985105i \(0.444991\pi\)
\(822\) 0 0
\(823\) 1.32576e13 1.00731 0.503656 0.863904i \(-0.331988\pi\)
0.503656 + 0.863904i \(0.331988\pi\)
\(824\) 0 0
\(825\) −1.06307e13 −0.798951
\(826\) 0 0
\(827\) 3.03450e12 0.225586 0.112793 0.993618i \(-0.464020\pi\)
0.112793 + 0.993618i \(0.464020\pi\)
\(828\) 0 0
\(829\) −1.04519e13 −0.768598 −0.384299 0.923209i \(-0.625557\pi\)
−0.384299 + 0.923209i \(0.625557\pi\)
\(830\) 0 0
\(831\) −7.82080e12 −0.568914
\(832\) 0 0
\(833\) 1.40423e12 0.101050
\(834\) 0 0
\(835\) 4.83931e12 0.344504
\(836\) 0 0
\(837\) −1.63443e13 −1.15107
\(838\) 0 0
\(839\) −3.74536e11 −0.0260954 −0.0130477 0.999915i \(-0.504153\pi\)
−0.0130477 + 0.999915i \(0.504153\pi\)
\(840\) 0 0
\(841\) −1.41329e13 −0.974203
\(842\) 0 0
\(843\) 4.64237e12 0.316603
\(844\) 0 0
\(845\) 5.03457e12 0.339709
\(846\) 0 0
\(847\) 5.80138e12 0.387307
\(848\) 0 0
\(849\) −1.73415e13 −1.14552
\(850\) 0 0
\(851\) −1.39674e13 −0.912917
\(852\) 0 0
\(853\) 8.62211e10 0.00557626 0.00278813 0.999996i \(-0.499113\pi\)
0.00278813 + 0.999996i \(0.499113\pi\)
\(854\) 0 0
\(855\) −9.13885e11 −0.0584850
\(856\) 0 0
\(857\) −2.62843e13 −1.66450 −0.832248 0.554404i \(-0.812946\pi\)
−0.832248 + 0.554404i \(0.812946\pi\)
\(858\) 0 0
\(859\) −1.64181e13 −1.02885 −0.514426 0.857535i \(-0.671995\pi\)
−0.514426 + 0.857535i \(0.671995\pi\)
\(860\) 0 0
\(861\) −5.88286e12 −0.364817
\(862\) 0 0
\(863\) 1.74094e13 1.06840 0.534202 0.845357i \(-0.320612\pi\)
0.534202 + 0.845357i \(0.320612\pi\)
\(864\) 0 0
\(865\) 5.07556e12 0.308256
\(866\) 0 0
\(867\) 5.69875e12 0.342526
\(868\) 0 0
\(869\) −2.58344e12 −0.153677
\(870\) 0 0
\(871\) −1.09966e11 −0.00647407
\(872\) 0 0
\(873\) 1.59419e13 0.928916
\(874\) 0 0
\(875\) 5.07103e12 0.292456
\(876\) 0 0
\(877\) −2.60150e13 −1.48500 −0.742500 0.669846i \(-0.766360\pi\)
−0.742500 + 0.669846i \(0.766360\pi\)
\(878\) 0 0
\(879\) −2.10393e13 −1.18873
\(880\) 0 0
\(881\) 8.13378e11 0.0454884 0.0227442 0.999741i \(-0.492760\pi\)
0.0227442 + 0.999741i \(0.492760\pi\)
\(882\) 0 0
\(883\) −9.12098e12 −0.504915 −0.252458 0.967608i \(-0.581239\pi\)
−0.252458 + 0.967608i \(0.581239\pi\)
\(884\) 0 0
\(885\) 6.86741e12 0.376312
\(886\) 0 0
\(887\) 2.26227e13 1.22712 0.613560 0.789648i \(-0.289737\pi\)
0.613560 + 0.789648i \(0.289737\pi\)
\(888\) 0 0
\(889\) −2.52630e12 −0.135652
\(890\) 0 0
\(891\) 5.05847e12 0.268887
\(892\) 0 0
\(893\) 4.17627e12 0.219764
\(894\) 0 0
\(895\) −8.08533e12 −0.421205
\(896\) 0 0
\(897\) 1.09244e13 0.563418
\(898\) 0 0
\(899\) 3.45203e12 0.176261
\(900\) 0 0
\(901\) 1.97945e13 1.00065
\(902\) 0 0
\(903\) 3.02805e12 0.151554
\(904\) 0 0
\(905\) 4.89171e11 0.0242406
\(906\) 0 0
\(907\) 2.93607e13 1.44057 0.720284 0.693679i \(-0.244011\pi\)
0.720284 + 0.693679i \(0.244011\pi\)
\(908\) 0 0
\(909\) 8.53974e12 0.414865
\(910\) 0 0
\(911\) −1.66340e13 −0.800136 −0.400068 0.916485i \(-0.631014\pi\)
−0.400068 + 0.916485i \(0.631014\pi\)
\(912\) 0 0
\(913\) −3.75089e13 −1.78655
\(914\) 0 0
\(915\) 2.17654e12 0.102653
\(916\) 0 0
\(917\) −8.99244e12 −0.419967
\(918\) 0 0
\(919\) −2.48587e13 −1.14963 −0.574816 0.818282i \(-0.694926\pi\)
−0.574816 + 0.818282i \(0.694926\pi\)
\(920\) 0 0
\(921\) −1.66994e13 −0.764774
\(922\) 0 0
\(923\) 1.42151e13 0.644676
\(924\) 0 0
\(925\) −9.09018e12 −0.408258
\(926\) 0 0
\(927\) 2.34694e11 0.0104386
\(928\) 0 0
\(929\) 2.97476e13 1.31033 0.655165 0.755486i \(-0.272599\pi\)
0.655165 + 0.755486i \(0.272599\pi\)
\(930\) 0 0
\(931\) −8.49435e11 −0.0370558
\(932\) 0 0
\(933\) −1.07209e13 −0.463197
\(934\) 0 0
\(935\) 1.00053e13 0.428130
\(936\) 0 0
\(937\) −2.22444e13 −0.942740 −0.471370 0.881935i \(-0.656240\pi\)
−0.471370 + 0.881935i \(0.656240\pi\)
\(938\) 0 0
\(939\) −2.29129e13 −0.961801
\(940\) 0 0
\(941\) 4.00117e13 1.66354 0.831770 0.555121i \(-0.187328\pi\)
0.831770 + 0.555121i \(0.187328\pi\)
\(942\) 0 0
\(943\) −6.26213e13 −2.57881
\(944\) 0 0
\(945\) −4.13413e12 −0.168632
\(946\) 0 0
\(947\) −1.18567e13 −0.479058 −0.239529 0.970889i \(-0.576993\pi\)
−0.239529 + 0.970889i \(0.576993\pi\)
\(948\) 0 0
\(949\) 1.33336e12 0.0533642
\(950\) 0 0
\(951\) 1.73814e13 0.689086
\(952\) 0 0
\(953\) 1.97468e13 0.775493 0.387747 0.921766i \(-0.373254\pi\)
0.387747 + 0.921766i \(0.373254\pi\)
\(954\) 0 0
\(955\) −6.50064e12 −0.252895
\(956\) 0 0
\(957\) −4.06526e12 −0.156670
\(958\) 0 0
\(959\) −1.77517e12 −0.0677728
\(960\) 0 0
\(961\) 5.40241e12 0.204330
\(962\) 0 0
\(963\) −2.01889e13 −0.756475
\(964\) 0 0
\(965\) 1.69529e13 0.629318
\(966\) 0 0
\(967\) −1.24596e13 −0.458232 −0.229116 0.973399i \(-0.573583\pi\)
−0.229116 + 0.973399i \(0.573583\pi\)
\(968\) 0 0
\(969\) 3.45194e12 0.125778
\(970\) 0 0
\(971\) −4.93595e13 −1.78190 −0.890952 0.454098i \(-0.849962\pi\)
−0.890952 + 0.454098i \(0.849962\pi\)
\(972\) 0 0
\(973\) 1.62351e12 0.0580692
\(974\) 0 0
\(975\) 7.10977e12 0.251962
\(976\) 0 0
\(977\) −3.23161e13 −1.13473 −0.567366 0.823466i \(-0.692037\pi\)
−0.567366 + 0.823466i \(0.692037\pi\)
\(978\) 0 0
\(979\) −3.99760e13 −1.39084
\(980\) 0 0
\(981\) −1.97341e13 −0.680309
\(982\) 0 0
\(983\) 1.45695e13 0.497685 0.248843 0.968544i \(-0.419950\pi\)
0.248843 + 0.968544i \(0.419950\pi\)
\(984\) 0 0
\(985\) −1.65773e13 −0.561115
\(986\) 0 0
\(987\) 6.54485e12 0.219519
\(988\) 0 0
\(989\) 3.22327e13 1.07131
\(990\) 0 0
\(991\) 2.10443e12 0.0693113 0.0346556 0.999399i \(-0.488967\pi\)
0.0346556 + 0.999399i \(0.488967\pi\)
\(992\) 0 0
\(993\) 1.66311e13 0.542811
\(994\) 0 0
\(995\) −1.42168e13 −0.459832
\(996\) 0 0
\(997\) 2.98914e13 0.958115 0.479057 0.877784i \(-0.340979\pi\)
0.479057 + 0.877784i \(0.340979\pi\)
\(998\) 0 0
\(999\) 1.64585e13 0.522812
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.a.j.1.2 4
4.3 odd 2 56.10.a.d.1.3 4
28.27 even 2 392.10.a.e.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.10.a.d.1.3 4 4.3 odd 2
112.10.a.j.1.2 4 1.1 even 1 trivial
392.10.a.e.1.2 4 28.27 even 2