Defining parameters
Level: | \( N \) | \(=\) | \( 112 = 2^{4} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 112.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 11 \) | ||
Sturm bound: | \(160\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(112))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 150 | 27 | 123 |
Cusp forms | 138 | 27 | 111 |
Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(36\) | \(7\) | \(29\) | \(33\) | \(7\) | \(26\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(39\) | \(7\) | \(32\) | \(36\) | \(7\) | \(29\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(37\) | \(7\) | \(30\) | \(34\) | \(7\) | \(27\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(38\) | \(6\) | \(32\) | \(35\) | \(6\) | \(29\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(74\) | \(13\) | \(61\) | \(68\) | \(13\) | \(55\) | \(6\) | \(0\) | \(6\) | ||||
Minus space | \(-\) | \(76\) | \(14\) | \(62\) | \(70\) | \(14\) | \(56\) | \(6\) | \(0\) | \(6\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(112))\) into newform subspaces
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(112))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(112)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 2}\)