Properties

Label 1100.3.f.c.901.5
Level $1100$
Weight $3$
Character 1100.901
Analytic conductor $29.973$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1100,3,Mod(901,1100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1100.901"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1100.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.9728290796\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 83x^{6} + 1611x^{4} + 7105x^{2} + 400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 901.5
Root \(2.49129i\) of defining polynomial
Character \(\chi\) \(=\) 1100.901
Dual form 1100.3.f.c.901.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.638826 q^{3} -9.06537i q^{7} -8.59190 q^{9} +(10.0956 - 4.36788i) q^{11} +10.4302i q^{13} +3.39108i q^{17} -28.0187i q^{19} -5.79120i q^{21} -18.8226 q^{23} -11.2382 q^{27} +22.2253i q^{29} +0.00744511 q^{31} +(6.44935 - 2.79032i) q^{33} -8.96796 q^{37} +6.66311i q^{39} +16.5975i q^{41} -81.5368i q^{43} -59.1685 q^{47} -33.1809 q^{49} +2.16631i q^{51} -60.1508 q^{53} -17.8991i q^{57} -81.5361 q^{59} +114.695i q^{61} +77.8888i q^{63} -99.1084 q^{67} -12.0244 q^{69} +70.3598 q^{71} -16.4827i q^{73} +(-39.5965 - 91.5206i) q^{77} -118.929i q^{79} +70.1479 q^{81} -30.6387i q^{83} +14.1981i q^{87} -4.02316 q^{89} +94.5539 q^{91} +0.00475614 q^{93} -101.970 q^{97} +(-86.7406 + 37.5284i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 16 q^{9} + 3 q^{11} + 28 q^{23} - 10 q^{27} + 14 q^{31} - 31 q^{33} - 24 q^{37} - 32 q^{47} + 14 q^{49} + 98 q^{53} + 128 q^{59} - 42 q^{67} - 176 q^{69} - 34 q^{71} - 136 q^{77} - 128 q^{81}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.638826 0.212942 0.106471 0.994316i \(-0.466045\pi\)
0.106471 + 0.994316i \(0.466045\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 9.06537i 1.29505i −0.762043 0.647526i \(-0.775804\pi\)
0.762043 0.647526i \(-0.224196\pi\)
\(8\) 0 0
\(9\) −8.59190 −0.954656
\(10\) 0 0
\(11\) 10.0956 4.36788i 0.917784 0.397080i
\(12\) 0 0
\(13\) 10.4302i 0.802326i 0.916007 + 0.401163i \(0.131394\pi\)
−0.916007 + 0.401163i \(0.868606\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.39108i 0.199475i 0.995014 + 0.0997376i \(0.0318003\pi\)
−0.995014 + 0.0997376i \(0.968200\pi\)
\(18\) 0 0
\(19\) 28.0187i 1.47467i −0.675529 0.737333i \(-0.736085\pi\)
0.675529 0.737333i \(-0.263915\pi\)
\(20\) 0 0
\(21\) 5.79120i 0.275771i
\(22\) 0 0
\(23\) −18.8226 −0.818375 −0.409188 0.912450i \(-0.634188\pi\)
−0.409188 + 0.912450i \(0.634188\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −11.2382 −0.416229
\(28\) 0 0
\(29\) 22.2253i 0.766391i 0.923667 + 0.383195i \(0.125176\pi\)
−0.923667 + 0.383195i \(0.874824\pi\)
\(30\) 0 0
\(31\) 0.00744511 0.000240165 0.000120082 1.00000i \(-0.499962\pi\)
0.000120082 1.00000i \(0.499962\pi\)
\(32\) 0 0
\(33\) 6.44935 2.79032i 0.195435 0.0845551i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.96796 −0.242377 −0.121189 0.992629i \(-0.538671\pi\)
−0.121189 + 0.992629i \(0.538671\pi\)
\(38\) 0 0
\(39\) 6.66311i 0.170849i
\(40\) 0 0
\(41\) 16.5975i 0.404817i 0.979301 + 0.202408i \(0.0648768\pi\)
−0.979301 + 0.202408i \(0.935123\pi\)
\(42\) 0 0
\(43\) 81.5368i 1.89621i −0.317964 0.948103i \(-0.602999\pi\)
0.317964 0.948103i \(-0.397001\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −59.1685 −1.25890 −0.629452 0.777039i \(-0.716721\pi\)
−0.629452 + 0.777039i \(0.716721\pi\)
\(48\) 0 0
\(49\) −33.1809 −0.677162
\(50\) 0 0
\(51\) 2.16631i 0.0424767i
\(52\) 0 0
\(53\) −60.1508 −1.13492 −0.567460 0.823401i \(-0.692074\pi\)
−0.567460 + 0.823401i \(0.692074\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 17.8991i 0.314019i
\(58\) 0 0
\(59\) −81.5361 −1.38197 −0.690984 0.722870i \(-0.742823\pi\)
−0.690984 + 0.722870i \(0.742823\pi\)
\(60\) 0 0
\(61\) 114.695i 1.88024i 0.340843 + 0.940120i \(0.389288\pi\)
−0.340843 + 0.940120i \(0.610712\pi\)
\(62\) 0 0
\(63\) 77.8888i 1.23633i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −99.1084 −1.47923 −0.739615 0.673030i \(-0.764992\pi\)
−0.739615 + 0.673030i \(0.764992\pi\)
\(68\) 0 0
\(69\) −12.0244 −0.174267
\(70\) 0 0
\(71\) 70.3598 0.990983 0.495491 0.868613i \(-0.334988\pi\)
0.495491 + 0.868613i \(0.334988\pi\)
\(72\) 0 0
\(73\) 16.4827i 0.225791i −0.993607 0.112895i \(-0.963988\pi\)
0.993607 0.112895i \(-0.0360125\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −39.5965 91.5206i −0.514240 1.18858i
\(78\) 0 0
\(79\) 118.929i 1.50543i −0.658344 0.752717i \(-0.728743\pi\)
0.658344 0.752717i \(-0.271257\pi\)
\(80\) 0 0
\(81\) 70.1479 0.866023
\(82\) 0 0
\(83\) 30.6387i 0.369141i −0.982819 0.184570i \(-0.940911\pi\)
0.982819 0.184570i \(-0.0590894\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 14.1981i 0.163197i
\(88\) 0 0
\(89\) −4.02316 −0.0452041 −0.0226020 0.999745i \(-0.507195\pi\)
−0.0226020 + 0.999745i \(0.507195\pi\)
\(90\) 0 0
\(91\) 94.5539 1.03905
\(92\) 0 0
\(93\) 0.00475614 5.11412e−5
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −101.970 −1.05124 −0.525619 0.850720i \(-0.676166\pi\)
−0.525619 + 0.850720i \(0.676166\pi\)
\(98\) 0 0
\(99\) −86.7406 + 37.5284i −0.876168 + 0.379075i
\(100\) 0 0
\(101\) 149.468i 1.47988i −0.672672 0.739940i \(-0.734854\pi\)
0.672672 0.739940i \(-0.265146\pi\)
\(102\) 0 0
\(103\) 74.9240 0.727417 0.363709 0.931513i \(-0.381510\pi\)
0.363709 + 0.931513i \(0.381510\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 94.4230i 0.882458i −0.897395 0.441229i \(-0.854543\pi\)
0.897395 0.441229i \(-0.145457\pi\)
\(108\) 0 0
\(109\) 30.1807i 0.276887i −0.990370 0.138444i \(-0.955790\pi\)
0.990370 0.138444i \(-0.0442100\pi\)
\(110\) 0 0
\(111\) −5.72897 −0.0516124
\(112\) 0 0
\(113\) −74.7503 −0.661507 −0.330753 0.943717i \(-0.607303\pi\)
−0.330753 + 0.943717i \(0.607303\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 89.6155i 0.765945i
\(118\) 0 0
\(119\) 30.7414 0.258331
\(120\) 0 0
\(121\) 82.8432 88.1930i 0.684655 0.728868i
\(122\) 0 0
\(123\) 10.6029i 0.0862025i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 107.488i 0.846361i 0.906045 + 0.423181i \(0.139086\pi\)
−0.906045 + 0.423181i \(0.860914\pi\)
\(128\) 0 0
\(129\) 52.0879i 0.403782i
\(130\) 0 0
\(131\) 201.887i 1.54112i 0.637367 + 0.770560i \(0.280024\pi\)
−0.637367 + 0.770560i \(0.719976\pi\)
\(132\) 0 0
\(133\) −254.000 −1.90977
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −136.064 −0.993166 −0.496583 0.867989i \(-0.665412\pi\)
−0.496583 + 0.867989i \(0.665412\pi\)
\(138\) 0 0
\(139\) 6.92439i 0.0498157i −0.999690 0.0249079i \(-0.992071\pi\)
0.999690 0.0249079i \(-0.00792924\pi\)
\(140\) 0 0
\(141\) −37.7984 −0.268074
\(142\) 0 0
\(143\) 45.5580 + 105.300i 0.318588 + 0.736362i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −21.1968 −0.144196
\(148\) 0 0
\(149\) 94.2807i 0.632756i 0.948633 + 0.316378i \(0.102467\pi\)
−0.948633 + 0.316378i \(0.897533\pi\)
\(150\) 0 0
\(151\) 152.478i 1.00979i −0.863181 0.504894i \(-0.831532\pi\)
0.863181 0.504894i \(-0.168468\pi\)
\(152\) 0 0
\(153\) 29.1358i 0.190430i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −168.579 −1.07375 −0.536876 0.843661i \(-0.680396\pi\)
−0.536876 + 0.843661i \(0.680396\pi\)
\(158\) 0 0
\(159\) −38.4259 −0.241672
\(160\) 0 0
\(161\) 170.634i 1.05984i
\(162\) 0 0
\(163\) 21.6126 0.132592 0.0662962 0.997800i \(-0.478882\pi\)
0.0662962 + 0.997800i \(0.478882\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 247.745i 1.48350i −0.670676 0.741750i \(-0.733996\pi\)
0.670676 0.741750i \(-0.266004\pi\)
\(168\) 0 0
\(169\) 60.2103 0.356274
\(170\) 0 0
\(171\) 240.734i 1.40780i
\(172\) 0 0
\(173\) 208.255i 1.20379i −0.798576 0.601894i \(-0.794413\pi\)
0.798576 0.601894i \(-0.205587\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −52.0874 −0.294279
\(178\) 0 0
\(179\) −147.992 −0.826770 −0.413385 0.910556i \(-0.635654\pi\)
−0.413385 + 0.910556i \(0.635654\pi\)
\(180\) 0 0
\(181\) −11.0571 −0.0610887 −0.0305444 0.999533i \(-0.509724\pi\)
−0.0305444 + 0.999533i \(0.509724\pi\)
\(182\) 0 0
\(183\) 73.2700i 0.400382i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 14.8118 + 34.2350i 0.0792076 + 0.183075i
\(188\) 0 0
\(189\) 101.878i 0.539038i
\(190\) 0 0
\(191\) 104.092 0.544985 0.272492 0.962158i \(-0.412152\pi\)
0.272492 + 0.962158i \(0.412152\pi\)
\(192\) 0 0
\(193\) 267.361i 1.38529i −0.721280 0.692644i \(-0.756446\pi\)
0.721280 0.692644i \(-0.243554\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 264.837i 1.34435i 0.740392 + 0.672175i \(0.234640\pi\)
−0.740392 + 0.672175i \(0.765360\pi\)
\(198\) 0 0
\(199\) −108.882 −0.547145 −0.273572 0.961851i \(-0.588205\pi\)
−0.273572 + 0.961851i \(0.588205\pi\)
\(200\) 0 0
\(201\) −63.3131 −0.314990
\(202\) 0 0
\(203\) 201.481 0.992516
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 161.722 0.781266
\(208\) 0 0
\(209\) −122.382 282.866i −0.585561 1.35343i
\(210\) 0 0
\(211\) 91.2096i 0.432273i −0.976363 0.216136i \(-0.930654\pi\)
0.976363 0.216136i \(-0.0693456\pi\)
\(212\) 0 0
\(213\) 44.9477 0.211022
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0.0674927i 0.000311026i
\(218\) 0 0
\(219\) 10.5296i 0.0480803i
\(220\) 0 0
\(221\) −35.3697 −0.160044
\(222\) 0 0
\(223\) 2.12864 0.00954548 0.00477274 0.999989i \(-0.498481\pi\)
0.00477274 + 0.999989i \(0.498481\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 247.145i 1.08875i 0.838843 + 0.544373i \(0.183232\pi\)
−0.838843 + 0.544373i \(0.816768\pi\)
\(228\) 0 0
\(229\) 307.707 1.34370 0.671849 0.740688i \(-0.265500\pi\)
0.671849 + 0.740688i \(0.265500\pi\)
\(230\) 0 0
\(231\) −25.2953 58.4658i −0.109503 0.253098i
\(232\) 0 0
\(233\) 274.895i 1.17981i 0.807474 + 0.589903i \(0.200834\pi\)
−0.807474 + 0.589903i \(0.799166\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 75.9752i 0.320571i
\(238\) 0 0
\(239\) 191.500i 0.801253i 0.916241 + 0.400627i \(0.131208\pi\)
−0.916241 + 0.400627i \(0.868792\pi\)
\(240\) 0 0
\(241\) 111.228i 0.461525i 0.973010 + 0.230763i \(0.0741221\pi\)
−0.973010 + 0.230763i \(0.925878\pi\)
\(242\) 0 0
\(243\) 145.956 0.600641
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 292.241 1.18316
\(248\) 0 0
\(249\) 19.5728i 0.0786056i
\(250\) 0 0
\(251\) −144.363 −0.575152 −0.287576 0.957758i \(-0.592849\pi\)
−0.287576 + 0.957758i \(0.592849\pi\)
\(252\) 0 0
\(253\) −190.026 + 82.2150i −0.751092 + 0.324961i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 406.571 1.58199 0.790994 0.611823i \(-0.209564\pi\)
0.790994 + 0.611823i \(0.209564\pi\)
\(258\) 0 0
\(259\) 81.2979i 0.313892i
\(260\) 0 0
\(261\) 190.958i 0.731639i
\(262\) 0 0
\(263\) 249.632i 0.949171i 0.880209 + 0.474585i \(0.157402\pi\)
−0.880209 + 0.474585i \(0.842598\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −2.57010 −0.00962585
\(268\) 0 0
\(269\) 183.714 0.682952 0.341476 0.939890i \(-0.389073\pi\)
0.341476 + 0.939890i \(0.389073\pi\)
\(270\) 0 0
\(271\) 236.527i 0.872792i −0.899755 0.436396i \(-0.856255\pi\)
0.899755 0.436396i \(-0.143745\pi\)
\(272\) 0 0
\(273\) 60.4035 0.221258
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 22.7429i 0.0821043i 0.999157 + 0.0410522i \(0.0130710\pi\)
−0.999157 + 0.0410522i \(0.986929\pi\)
\(278\) 0 0
\(279\) −0.0639677 −0.000229275
\(280\) 0 0
\(281\) 316.963i 1.12798i −0.825781 0.563991i \(-0.809265\pi\)
0.825781 0.563991i \(-0.190735\pi\)
\(282\) 0 0
\(283\) 218.829i 0.773246i 0.922238 + 0.386623i \(0.126358\pi\)
−0.922238 + 0.386623i \(0.873642\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 150.462 0.524259
\(288\) 0 0
\(289\) 277.501 0.960210
\(290\) 0 0
\(291\) −65.1412 −0.223853
\(292\) 0 0
\(293\) 205.688i 0.702005i −0.936374 0.351003i \(-0.885841\pi\)
0.936374 0.351003i \(-0.114159\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −113.456 + 49.0870i −0.382008 + 0.165276i
\(298\) 0 0
\(299\) 196.324i 0.656603i
\(300\) 0 0
\(301\) −739.161 −2.45569
\(302\) 0 0
\(303\) 95.4841i 0.315129i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 351.513i 1.14499i −0.819907 0.572497i \(-0.805975\pi\)
0.819907 0.572497i \(-0.194025\pi\)
\(308\) 0 0
\(309\) 47.8634 0.154898
\(310\) 0 0
\(311\) 395.742 1.27248 0.636241 0.771490i \(-0.280488\pi\)
0.636241 + 0.771490i \(0.280488\pi\)
\(312\) 0 0
\(313\) −340.880 −1.08907 −0.544537 0.838736i \(-0.683295\pi\)
−0.544537 + 0.838736i \(0.683295\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 613.787 1.93624 0.968118 0.250493i \(-0.0805928\pi\)
0.968118 + 0.250493i \(0.0805928\pi\)
\(318\) 0 0
\(319\) 97.0776 + 224.379i 0.304319 + 0.703381i
\(320\) 0 0
\(321\) 60.3199i 0.187912i
\(322\) 0 0
\(323\) 95.0134 0.294159
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 19.2802i 0.0589609i
\(328\) 0 0
\(329\) 536.385i 1.63035i
\(330\) 0 0
\(331\) −2.96493 −0.00895750 −0.00447875 0.999990i \(-0.501426\pi\)
−0.00447875 + 0.999990i \(0.501426\pi\)
\(332\) 0 0
\(333\) 77.0519 0.231387
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 44.4138i 0.131792i 0.997827 + 0.0658958i \(0.0209905\pi\)
−0.997827 + 0.0658958i \(0.979009\pi\)
\(338\) 0 0
\(339\) −47.7525 −0.140863
\(340\) 0 0
\(341\) 0.0751631 0.0325194i 0.000220420 9.53647e-5i
\(342\) 0 0
\(343\) 143.406i 0.418093i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 481.360i 1.38720i 0.720358 + 0.693602i \(0.243977\pi\)
−0.720358 + 0.693602i \(0.756023\pi\)
\(348\) 0 0
\(349\) 75.1868i 0.215435i −0.994182 0.107717i \(-0.965646\pi\)
0.994182 0.107717i \(-0.0343542\pi\)
\(350\) 0 0
\(351\) 117.217i 0.333951i
\(352\) 0 0
\(353\) 187.670 0.531643 0.265822 0.964022i \(-0.414357\pi\)
0.265822 + 0.964022i \(0.414357\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 19.6384 0.0550095
\(358\) 0 0
\(359\) 402.781i 1.12195i −0.827832 0.560976i \(-0.810426\pi\)
0.827832 0.560976i \(-0.189574\pi\)
\(360\) 0 0
\(361\) −424.046 −1.17464
\(362\) 0 0
\(363\) 52.9224 56.3400i 0.145792 0.155207i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 292.427 0.796805 0.398402 0.917211i \(-0.369565\pi\)
0.398402 + 0.917211i \(0.369565\pi\)
\(368\) 0 0
\(369\) 142.604i 0.386460i
\(370\) 0 0
\(371\) 545.289i 1.46978i
\(372\) 0 0
\(373\) 232.155i 0.622398i −0.950345 0.311199i \(-0.899269\pi\)
0.950345 0.311199i \(-0.100731\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −231.815 −0.614895
\(378\) 0 0
\(379\) 467.391 1.23322 0.616611 0.787268i \(-0.288505\pi\)
0.616611 + 0.787268i \(0.288505\pi\)
\(380\) 0 0
\(381\) 68.6661i 0.180226i
\(382\) 0 0
\(383\) 721.494 1.88380 0.941898 0.335899i \(-0.109040\pi\)
0.941898 + 0.335899i \(0.109040\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 700.556i 1.81022i
\(388\) 0 0
\(389\) 643.293 1.65371 0.826854 0.562416i \(-0.190128\pi\)
0.826854 + 0.562416i \(0.190128\pi\)
\(390\) 0 0
\(391\) 63.8290i 0.163245i
\(392\) 0 0
\(393\) 128.971i 0.328170i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 151.518 0.381658 0.190829 0.981623i \(-0.438882\pi\)
0.190829 + 0.981623i \(0.438882\pi\)
\(398\) 0 0
\(399\) −162.262 −0.406671
\(400\) 0 0
\(401\) −314.057 −0.783184 −0.391592 0.920139i \(-0.628076\pi\)
−0.391592 + 0.920139i \(0.628076\pi\)
\(402\) 0 0
\(403\) 0.0776543i 0.000192690i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −90.5372 + 39.1710i −0.222450 + 0.0962433i
\(408\) 0 0
\(409\) 691.237i 1.69007i 0.534713 + 0.845034i \(0.320420\pi\)
−0.534713 + 0.845034i \(0.679580\pi\)
\(410\) 0 0
\(411\) −86.9211 −0.211487
\(412\) 0 0
\(413\) 739.155i 1.78972i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4.42348i 0.0106079i
\(418\) 0 0
\(419\) −439.877 −1.04983 −0.524913 0.851156i \(-0.675902\pi\)
−0.524913 + 0.851156i \(0.675902\pi\)
\(420\) 0 0
\(421\) −274.014 −0.650864 −0.325432 0.945565i \(-0.605510\pi\)
−0.325432 + 0.945565i \(0.605510\pi\)
\(422\) 0 0
\(423\) 508.370 1.20182
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1039.75 2.43501
\(428\) 0 0
\(429\) 29.1037 + 67.2682i 0.0678407 + 0.156802i
\(430\) 0 0
\(431\) 419.940i 0.974340i 0.873307 + 0.487170i \(0.161971\pi\)
−0.873307 + 0.487170i \(0.838029\pi\)
\(432\) 0 0
\(433\) −396.492 −0.915686 −0.457843 0.889033i \(-0.651378\pi\)
−0.457843 + 0.889033i \(0.651378\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 527.385i 1.20683i
\(438\) 0 0
\(439\) 120.848i 0.275279i −0.990482 0.137640i \(-0.956048\pi\)
0.990482 0.137640i \(-0.0439516\pi\)
\(440\) 0 0
\(441\) 285.087 0.646456
\(442\) 0 0
\(443\) 374.096 0.844461 0.422231 0.906488i \(-0.361247\pi\)
0.422231 + 0.906488i \(0.361247\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 60.2290i 0.134741i
\(448\) 0 0
\(449\) 282.403 0.628959 0.314480 0.949264i \(-0.398170\pi\)
0.314480 + 0.949264i \(0.398170\pi\)
\(450\) 0 0
\(451\) 72.4958 + 167.562i 0.160745 + 0.371534i
\(452\) 0 0
\(453\) 97.4069i 0.215026i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 513.069i 1.12269i −0.827582 0.561345i \(-0.810284\pi\)
0.827582 0.561345i \(-0.189716\pi\)
\(458\) 0 0
\(459\) 38.1095i 0.0830272i
\(460\) 0 0
\(461\) 712.598i 1.54577i −0.634549 0.772883i \(-0.718814\pi\)
0.634549 0.772883i \(-0.281186\pi\)
\(462\) 0 0
\(463\) 129.526 0.279754 0.139877 0.990169i \(-0.455329\pi\)
0.139877 + 0.990169i \(0.455329\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 397.672 0.851547 0.425773 0.904830i \(-0.360002\pi\)
0.425773 + 0.904830i \(0.360002\pi\)
\(468\) 0 0
\(469\) 898.454i 1.91568i
\(470\) 0 0
\(471\) −107.693 −0.228647
\(472\) 0 0
\(473\) −356.143 823.165i −0.752946 1.74031i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 516.809 1.08346
\(478\) 0 0
\(479\) 409.935i 0.855815i −0.903823 0.427907i \(-0.859251\pi\)
0.903823 0.427907i \(-0.140749\pi\)
\(480\) 0 0
\(481\) 93.5380i 0.194466i
\(482\) 0 0
\(483\) 109.006i 0.225684i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −847.021 −1.73926 −0.869631 0.493702i \(-0.835643\pi\)
−0.869631 + 0.493702i \(0.835643\pi\)
\(488\) 0 0
\(489\) 13.8067 0.0282345
\(490\) 0 0
\(491\) 634.763i 1.29280i −0.763000 0.646398i \(-0.776275\pi\)
0.763000 0.646398i \(-0.223725\pi\)
\(492\) 0 0
\(493\) −75.3678 −0.152876
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 637.837i 1.28337i
\(498\) 0 0
\(499\) 360.573 0.722591 0.361296 0.932451i \(-0.382335\pi\)
0.361296 + 0.932451i \(0.382335\pi\)
\(500\) 0 0
\(501\) 158.266i 0.315900i
\(502\) 0 0
\(503\) 239.586i 0.476314i 0.971227 + 0.238157i \(0.0765433\pi\)
−0.971227 + 0.238157i \(0.923457\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 38.4639 0.0758657
\(508\) 0 0
\(509\) −92.3407 −0.181416 −0.0907080 0.995878i \(-0.528913\pi\)
−0.0907080 + 0.995878i \(0.528913\pi\)
\(510\) 0 0
\(511\) −149.422 −0.292411
\(512\) 0 0
\(513\) 314.879i 0.613798i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −597.343 + 258.441i −1.15540 + 0.499886i
\(518\) 0 0
\(519\) 133.039i 0.256337i
\(520\) 0 0
\(521\) −439.053 −0.842712 −0.421356 0.906895i \(-0.638446\pi\)
−0.421356 + 0.906895i \(0.638446\pi\)
\(522\) 0 0
\(523\) 495.619i 0.947647i 0.880620 + 0.473823i \(0.157126\pi\)
−0.880620 + 0.473823i \(0.842874\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.0252470i 4.79069e-5i
\(528\) 0 0
\(529\) −174.709 −0.330262
\(530\) 0 0
\(531\) 700.550 1.31930
\(532\) 0 0
\(533\) −173.116 −0.324795
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −94.5410 −0.176054
\(538\) 0 0
\(539\) −334.982 + 144.930i −0.621488 + 0.268887i
\(540\) 0 0
\(541\) 572.642i 1.05849i 0.848470 + 0.529244i \(0.177524\pi\)
−0.848470 + 0.529244i \(0.822476\pi\)
\(542\) 0 0
\(543\) −7.06354 −0.0130084
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 131.117i 0.239702i −0.992792 0.119851i \(-0.961758\pi\)
0.992792 0.119851i \(-0.0382417\pi\)
\(548\) 0 0
\(549\) 985.445i 1.79498i
\(550\) 0 0
\(551\) 622.724 1.13017
\(552\) 0 0
\(553\) −1078.14 −1.94962
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 433.908i 0.779008i −0.921025 0.389504i \(-0.872646\pi\)
0.921025 0.389504i \(-0.127354\pi\)
\(558\) 0 0
\(559\) 850.448 1.52137
\(560\) 0 0
\(561\) 9.46218 + 21.8702i 0.0168666 + 0.0389844i
\(562\) 0 0
\(563\) 405.058i 0.719464i −0.933056 0.359732i \(-0.882868\pi\)
0.933056 0.359732i \(-0.117132\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 635.916i 1.12155i
\(568\) 0 0
\(569\) 422.003i 0.741657i −0.928701 0.370829i \(-0.879074\pi\)
0.928701 0.370829i \(-0.120926\pi\)
\(570\) 0 0
\(571\) 395.151i 0.692034i −0.938228 0.346017i \(-0.887534\pi\)
0.938228 0.346017i \(-0.112466\pi\)
\(572\) 0 0
\(573\) 66.4968 0.116050
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −728.545 −1.26264 −0.631322 0.775521i \(-0.717487\pi\)
−0.631322 + 0.775521i \(0.717487\pi\)
\(578\) 0 0
\(579\) 170.797i 0.294986i
\(580\) 0 0
\(581\) −277.751 −0.478057
\(582\) 0 0
\(583\) −607.259 + 262.731i −1.04161 + 0.450654i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 292.478 0.498259 0.249129 0.968470i \(-0.419856\pi\)
0.249129 + 0.968470i \(0.419856\pi\)
\(588\) 0 0
\(589\) 0.208602i 0.000354163i
\(590\) 0 0
\(591\) 169.185i 0.286269i
\(592\) 0 0
\(593\) 189.061i 0.318821i 0.987212 + 0.159410i \(0.0509593\pi\)
−0.987212 + 0.159410i \(0.949041\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −69.5566 −0.116510
\(598\) 0 0
\(599\) −333.334 −0.556485 −0.278242 0.960511i \(-0.589752\pi\)
−0.278242 + 0.960511i \(0.589752\pi\)
\(600\) 0 0
\(601\) 473.020i 0.787055i 0.919313 + 0.393527i \(0.128745\pi\)
−0.919313 + 0.393527i \(0.871255\pi\)
\(602\) 0 0
\(603\) 851.529 1.41215
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1062.30i 1.75008i 0.484052 + 0.875039i \(0.339164\pi\)
−0.484052 + 0.875039i \(0.660836\pi\)
\(608\) 0 0
\(609\) 128.711 0.211349
\(610\) 0 0
\(611\) 617.141i 1.01005i
\(612\) 0 0
\(613\) 1093.66i 1.78411i −0.451923 0.892057i \(-0.649262\pi\)
0.451923 0.892057i \(-0.350738\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −793.012 −1.28527 −0.642636 0.766172i \(-0.722159\pi\)
−0.642636 + 0.766172i \(0.722159\pi\)
\(618\) 0 0
\(619\) −1156.20 −1.86786 −0.933928 0.357462i \(-0.883642\pi\)
−0.933928 + 0.357462i \(0.883642\pi\)
\(620\) 0 0
\(621\) 211.532 0.340631
\(622\) 0 0
\(623\) 36.4715i 0.0585417i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −78.1810 180.702i −0.124691 0.288201i
\(628\) 0 0
\(629\) 30.4111i 0.0483483i
\(630\) 0 0
\(631\) −184.009 −0.291614 −0.145807 0.989313i \(-0.546578\pi\)
−0.145807 + 0.989313i \(0.546578\pi\)
\(632\) 0 0
\(633\) 58.2671i 0.0920491i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 346.085i 0.543304i
\(638\) 0 0
\(639\) −604.524 −0.946047
\(640\) 0 0
\(641\) 1060.80 1.65492 0.827458 0.561528i \(-0.189786\pi\)
0.827458 + 0.561528i \(0.189786\pi\)
\(642\) 0 0
\(643\) −345.954 −0.538031 −0.269015 0.963136i \(-0.586698\pi\)
−0.269015 + 0.963136i \(0.586698\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 582.248 0.899919 0.449959 0.893049i \(-0.351438\pi\)
0.449959 + 0.893049i \(0.351438\pi\)
\(648\) 0 0
\(649\) −823.158 + 356.140i −1.26835 + 0.548752i
\(650\) 0 0
\(651\) 0.0431161i 6.62306e-5i
\(652\) 0 0
\(653\) 860.284 1.31743 0.658717 0.752391i \(-0.271100\pi\)
0.658717 + 0.752391i \(0.271100\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 141.618i 0.215552i
\(658\) 0 0
\(659\) 494.828i 0.750876i 0.926847 + 0.375438i \(0.122508\pi\)
−0.926847 + 0.375438i \(0.877492\pi\)
\(660\) 0 0
\(661\) −321.241 −0.485993 −0.242996 0.970027i \(-0.578130\pi\)
−0.242996 + 0.970027i \(0.578130\pi\)
\(662\) 0 0
\(663\) −22.5951 −0.0340801
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 418.339i 0.627195i
\(668\) 0 0
\(669\) 1.35983 0.00203264
\(670\) 0 0
\(671\) 500.973 + 1157.91i 0.746606 + 1.72565i
\(672\) 0 0
\(673\) 775.168i 1.15181i −0.817517 0.575905i \(-0.804650\pi\)
0.817517 0.575905i \(-0.195350\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 273.752i 0.404360i 0.979348 + 0.202180i \(0.0648026\pi\)
−0.979348 + 0.202180i \(0.935197\pi\)
\(678\) 0 0
\(679\) 924.397i 1.36141i
\(680\) 0 0
\(681\) 157.883i 0.231840i
\(682\) 0 0
\(683\) −645.794 −0.945526 −0.472763 0.881190i \(-0.656743\pi\)
−0.472763 + 0.881190i \(0.656743\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 196.571 0.286130
\(688\) 0 0
\(689\) 627.386i 0.910575i
\(690\) 0 0
\(691\) −519.100 −0.751231 −0.375615 0.926776i \(-0.622569\pi\)
−0.375615 + 0.926776i \(0.622569\pi\)
\(692\) 0 0
\(693\) 340.209 + 786.335i 0.490922 + 1.13468i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −56.2833 −0.0807508
\(698\) 0 0
\(699\) 175.610i 0.251231i
\(700\) 0 0
\(701\) 450.375i 0.642475i 0.946999 + 0.321237i \(0.104099\pi\)
−0.946999 + 0.321237i \(0.895901\pi\)
\(702\) 0 0
\(703\) 251.270i 0.357426i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1354.98 −1.91652
\(708\) 0 0
\(709\) 527.930 0.744612 0.372306 0.928110i \(-0.378567\pi\)
0.372306 + 0.928110i \(0.378567\pi\)
\(710\) 0 0
\(711\) 1021.83i 1.43717i
\(712\) 0 0
\(713\) −0.140137 −0.000196545
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 122.335i 0.170621i
\(718\) 0 0
\(719\) −312.167 −0.434168 −0.217084 0.976153i \(-0.569655\pi\)
−0.217084 + 0.976153i \(0.569655\pi\)
\(720\) 0 0
\(721\) 679.213i 0.942043i
\(722\) 0 0
\(723\) 71.0551i 0.0982782i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −1414.10 −1.94512 −0.972558 0.232662i \(-0.925256\pi\)
−0.972558 + 0.232662i \(0.925256\pi\)
\(728\) 0 0
\(729\) −538.090 −0.738121
\(730\) 0 0
\(731\) 276.498 0.378246
\(732\) 0 0
\(733\) 122.714i 0.167413i 0.996490 + 0.0837067i \(0.0266759\pi\)
−0.996490 + 0.0837067i \(0.973324\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1000.56 + 432.894i −1.35761 + 0.587373i
\(738\) 0 0
\(739\) 1027.05i 1.38978i −0.719115 0.694891i \(-0.755453\pi\)
0.719115 0.694891i \(-0.244547\pi\)
\(740\) 0 0
\(741\) 186.691 0.251945
\(742\) 0 0
\(743\) 609.811i 0.820742i −0.911919 0.410371i \(-0.865399\pi\)
0.911919 0.410371i \(-0.134601\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 263.244i 0.352402i
\(748\) 0 0
\(749\) −855.979 −1.14283
\(750\) 0 0
\(751\) 232.075 0.309021 0.154511 0.987991i \(-0.450620\pi\)
0.154511 + 0.987991i \(0.450620\pi\)
\(752\) 0 0
\(753\) −92.2229 −0.122474
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 929.780 1.22824 0.614122 0.789211i \(-0.289510\pi\)
0.614122 + 0.789211i \(0.289510\pi\)
\(758\) 0 0
\(759\) −121.394 + 52.5211i −0.159939 + 0.0691978i
\(760\) 0 0
\(761\) 759.425i 0.997931i 0.866622 + 0.498965i \(0.166287\pi\)
−0.866622 + 0.498965i \(0.833713\pi\)
\(762\) 0 0
\(763\) −273.599 −0.358583
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 850.441i 1.10879i
\(768\) 0 0
\(769\) 1242.48i 1.61571i −0.589384 0.807853i \(-0.700630\pi\)
0.589384 0.807853i \(-0.299370\pi\)
\(770\) 0 0
\(771\) 259.728 0.336872
\(772\) 0 0
\(773\) −542.327 −0.701588 −0.350794 0.936453i \(-0.614088\pi\)
−0.350794 + 0.936453i \(0.614088\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 51.9353i 0.0668407i
\(778\) 0 0
\(779\) 465.039 0.596969
\(780\) 0 0
\(781\) 710.326 307.323i 0.909508 0.393500i
\(782\) 0 0
\(783\) 249.772i 0.318994i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1265.30i 1.60775i −0.594796 0.803877i \(-0.702767\pi\)
0.594796 0.803877i \(-0.297233\pi\)
\(788\) 0 0
\(789\) 159.471i 0.202118i
\(790\) 0 0
\(791\) 677.639i 0.856686i
\(792\) 0 0
\(793\) −1196.29 −1.50857
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.70455 0.00464812 0.00232406 0.999997i \(-0.499260\pi\)
0.00232406 + 0.999997i \(0.499260\pi\)
\(798\) 0 0
\(799\) 200.645i 0.251120i
\(800\) 0 0
\(801\) 34.5666 0.0431543
\(802\) 0 0
\(803\) −71.9945 166.403i −0.0896569 0.207227i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 117.361 0.145429
\(808\) 0 0
\(809\) 387.788i 0.479343i 0.970854 + 0.239671i \(0.0770397\pi\)
−0.970854 + 0.239671i \(0.922960\pi\)
\(810\) 0 0
\(811\) 653.974i 0.806379i −0.915116 0.403190i \(-0.867901\pi\)
0.915116 0.403190i \(-0.132099\pi\)
\(812\) 0 0
\(813\) 151.100i 0.185854i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −2284.55 −2.79627
\(818\) 0 0
\(819\) −812.398 −0.991939
\(820\) 0 0
\(821\) 1276.47i 1.55477i −0.629023 0.777387i \(-0.716545\pi\)
0.629023 0.777387i \(-0.283455\pi\)
\(822\) 0 0
\(823\) −946.469 −1.15002 −0.575012 0.818145i \(-0.695003\pi\)
−0.575012 + 0.818145i \(0.695003\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 785.770i 0.950146i −0.879946 0.475073i \(-0.842422\pi\)
0.879946 0.475073i \(-0.157578\pi\)
\(828\) 0 0
\(829\) 711.369 0.858105 0.429052 0.903280i \(-0.358848\pi\)
0.429052 + 0.903280i \(0.358848\pi\)
\(830\) 0 0
\(831\) 14.5288i 0.0174835i
\(832\) 0 0
\(833\) 112.519i 0.135077i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −0.0836695 −9.99635e−5
\(838\) 0 0
\(839\) −1072.89 −1.27877 −0.639386 0.768886i \(-0.720811\pi\)
−0.639386 + 0.768886i \(0.720811\pi\)
\(840\) 0 0
\(841\) 347.035 0.412645
\(842\) 0 0
\(843\) 202.484i 0.240195i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −799.502 751.004i −0.943922 0.886664i
\(848\) 0 0
\(849\) 139.793i 0.164657i
\(850\) 0 0
\(851\) 168.801 0.198356
\(852\) 0 0
\(853\) 678.071i 0.794925i −0.917618 0.397462i \(-0.869891\pi\)
0.917618 0.397462i \(-0.130109\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 514.861i 0.600771i −0.953818 0.300386i \(-0.902885\pi\)
0.953818 0.300386i \(-0.0971154\pi\)
\(858\) 0 0
\(859\) 1048.57 1.22069 0.610346 0.792135i \(-0.291030\pi\)
0.610346 + 0.792135i \(0.291030\pi\)
\(860\) 0 0
\(861\) 96.1193 0.111637
\(862\) 0 0
\(863\) 962.788 1.11563 0.557814 0.829966i \(-0.311640\pi\)
0.557814 + 0.829966i \(0.311640\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 177.275 0.204469
\(868\) 0 0
\(869\) −519.469 1200.67i −0.597778 1.38166i
\(870\) 0 0
\(871\) 1033.72i 1.18682i
\(872\) 0 0
\(873\) 876.117 1.00357
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 297.443i 0.339160i 0.985516 + 0.169580i \(0.0542410\pi\)
−0.985516 + 0.169580i \(0.945759\pi\)
\(878\) 0 0
\(879\) 131.399i 0.149487i
\(880\) 0 0
\(881\) 1259.46 1.42958 0.714789 0.699341i \(-0.246523\pi\)
0.714789 + 0.699341i \(0.246523\pi\)
\(882\) 0 0
\(883\) −645.648 −0.731199 −0.365599 0.930772i \(-0.619136\pi\)
−0.365599 + 0.930772i \(0.619136\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 545.781i 0.615312i 0.951498 + 0.307656i \(0.0995445\pi\)
−0.951498 + 0.307656i \(0.900455\pi\)
\(888\) 0 0
\(889\) 974.417 1.09608
\(890\) 0 0
\(891\) 708.186 306.398i 0.794822 0.343881i
\(892\) 0 0
\(893\) 1657.82i 1.85646i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 125.417i 0.139819i
\(898\) 0 0
\(899\) 0.165470i 0.000184060i
\(900\) 0 0
\(901\) 203.976i 0.226388i
\(902\) 0 0
\(903\) −472.196 −0.522919
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −146.166 −0.161153 −0.0805766 0.996748i \(-0.525676\pi\)
−0.0805766 + 0.996748i \(0.525676\pi\)
\(908\) 0 0
\(909\) 1284.21i 1.41278i
\(910\) 0 0
\(911\) −1533.17 −1.68296 −0.841478 0.540292i \(-0.818314\pi\)
−0.841478 + 0.540292i \(0.818314\pi\)
\(912\) 0 0
\(913\) −133.826 309.317i −0.146578 0.338791i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1830.18 1.99583
\(918\) 0 0
\(919\) 402.371i 0.437836i −0.975743 0.218918i \(-0.929747\pi\)
0.975743 0.218918i \(-0.0702527\pi\)
\(920\) 0 0
\(921\) 224.556i 0.243817i
\(922\) 0 0
\(923\) 733.869i 0.795091i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −643.739 −0.694433
\(928\) 0 0
\(929\) −602.857 −0.648932 −0.324466 0.945897i \(-0.605185\pi\)
−0.324466 + 0.945897i \(0.605185\pi\)
\(930\) 0 0
\(931\) 929.685i 0.998587i
\(932\) 0 0
\(933\) 252.811 0.270965
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 847.671i 0.904665i −0.891849 0.452333i \(-0.850592\pi\)
0.891849 0.452333i \(-0.149408\pi\)
\(938\) 0 0
\(939\) −217.763 −0.231910
\(940\) 0 0
\(941\) 1337.24i 1.42109i 0.703653 + 0.710544i \(0.251551\pi\)
−0.703653 + 0.710544i \(0.748449\pi\)
\(942\) 0 0
\(943\) 312.408i 0.331292i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1205.82 −1.27331 −0.636653 0.771151i \(-0.719682\pi\)
−0.636653 + 0.771151i \(0.719682\pi\)
\(948\) 0 0
\(949\) 171.918 0.181158
\(950\) 0 0
\(951\) 392.103 0.412306
\(952\) 0 0
\(953\) 647.299i 0.679223i 0.940566 + 0.339611i \(0.110296\pi\)
−0.940566 + 0.339611i \(0.889704\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 62.0157 + 143.339i 0.0648022 + 0.149779i
\(958\) 0 0
\(959\) 1233.47i 1.28620i
\(960\) 0 0
\(961\) −961.000 −1.00000
\(962\) 0 0
\(963\) 811.273i 0.842443i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 887.321i 0.917602i 0.888539 + 0.458801i \(0.151721\pi\)
−0.888539 + 0.458801i \(0.848279\pi\)
\(968\) 0 0
\(969\) 60.6971 0.0626389
\(970\) 0 0
\(971\) 1104.79 1.13778 0.568891 0.822413i \(-0.307373\pi\)
0.568891 + 0.822413i \(0.307373\pi\)
\(972\) 0 0
\(973\) −62.7721 −0.0645140
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1577.70 1.61484 0.807420 0.589976i \(-0.200863\pi\)
0.807420 + 0.589976i \(0.200863\pi\)
\(978\) 0 0
\(979\) −40.6163 + 17.5727i −0.0414876 + 0.0179496i
\(980\) 0 0
\(981\) 259.310i 0.264332i
\(982\) 0 0
\(983\) 860.925 0.875814 0.437907 0.899020i \(-0.355720\pi\)
0.437907 + 0.899020i \(0.355720\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 342.657i 0.347170i
\(988\) 0 0
\(989\) 1534.74i 1.55181i
\(990\) 0 0
\(991\) −620.455 −0.626090 −0.313045 0.949738i \(-0.601349\pi\)
−0.313045 + 0.949738i \(0.601349\pi\)
\(992\) 0 0
\(993\) −1.89408 −0.00190743
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 148.972i 0.149420i −0.997205 0.0747100i \(-0.976197\pi\)
0.997205 0.0747100i \(-0.0238031\pi\)
\(998\) 0 0
\(999\) 100.784 0.100884
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.3.f.c.901.5 8
5.2 odd 4 1100.3.e.c.549.8 16
5.3 odd 4 1100.3.e.c.549.9 16
5.4 even 2 1100.3.f.e.901.4 yes 8
11.10 odd 2 inner 1100.3.f.c.901.6 yes 8
55.32 even 4 1100.3.e.c.549.7 16
55.43 even 4 1100.3.e.c.549.10 16
55.54 odd 2 1100.3.f.e.901.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.3.e.c.549.7 16 55.32 even 4
1100.3.e.c.549.8 16 5.2 odd 4
1100.3.e.c.549.9 16 5.3 odd 4
1100.3.e.c.549.10 16 55.43 even 4
1100.3.f.c.901.5 8 1.1 even 1 trivial
1100.3.f.c.901.6 yes 8 11.10 odd 2 inner
1100.3.f.e.901.3 yes 8 55.54 odd 2
1100.3.f.e.901.4 yes 8 5.4 even 2