Properties

Label 1100.3.e.c.549.8
Level $1100$
Weight $3$
Character 1100.549
Analytic conductor $29.973$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1100,3,Mod(549,1100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1100.549"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1100.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.9728290796\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 174 x^{14} + 10969 x^{12} + 318076 x^{10} + 4442560 x^{8} + 28982576 x^{6} + 77210944 x^{4} + \cdots + 26790976 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 549.8
Root \(-1.49129i\) of defining polynomial
Character \(\chi\) \(=\) 1100.549
Dual form 1100.3.e.c.549.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.638826i q^{3} +9.06537 q^{7} +8.59190 q^{9} +(10.0956 - 4.36788i) q^{11} +10.4302 q^{13} -3.39108 q^{17} +28.0187i q^{19} -5.79120i q^{21} +18.8226i q^{23} -11.2382i q^{27} -22.2253i q^{29} +0.00744511 q^{31} +(-2.79032 - 6.44935i) q^{33} -8.96796i q^{37} -6.66311i q^{39} +16.5975i q^{41} -81.5368 q^{43} -59.1685i q^{47} +33.1809 q^{49} +2.16631i q^{51} +60.1508i q^{53} +17.8991 q^{57} +81.5361 q^{59} +114.695i q^{61} +77.8888 q^{63} -99.1084i q^{67} +12.0244 q^{69} +70.3598 q^{71} -16.4827 q^{73} +(91.5206 - 39.5965i) q^{77} +118.929i q^{79} +70.1479 q^{81} -30.6387 q^{83} -14.1981 q^{87} +4.02316 q^{89} +94.5539 q^{91} -0.00475614i q^{93} -101.970i q^{97} +(86.7406 - 37.5284i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{9} + 6 q^{11} + 28 q^{31} - 28 q^{49} - 256 q^{59} + 352 q^{69} - 68 q^{71} - 256 q^{81} + 292 q^{89} + 228 q^{91} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.638826i 0.212942i −0.994316 0.106471i \(-0.966045\pi\)
0.994316 0.106471i \(-0.0339552\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 9.06537 1.29505 0.647526 0.762043i \(-0.275804\pi\)
0.647526 + 0.762043i \(0.275804\pi\)
\(8\) 0 0
\(9\) 8.59190 0.954656
\(10\) 0 0
\(11\) 10.0956 4.36788i 0.917784 0.397080i
\(12\) 0 0
\(13\) 10.4302 0.802326 0.401163 0.916007i \(-0.368606\pi\)
0.401163 + 0.916007i \(0.368606\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.39108 −0.199475 −0.0997376 0.995014i \(-0.531800\pi\)
−0.0997376 + 0.995014i \(0.531800\pi\)
\(18\) 0 0
\(19\) 28.0187i 1.47467i 0.675529 + 0.737333i \(0.263915\pi\)
−0.675529 + 0.737333i \(0.736085\pi\)
\(20\) 0 0
\(21\) 5.79120i 0.275771i
\(22\) 0 0
\(23\) 18.8226i 0.818375i 0.912450 + 0.409188i \(0.134188\pi\)
−0.912450 + 0.409188i \(0.865812\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 11.2382i 0.416229i
\(28\) 0 0
\(29\) 22.2253i 0.766391i −0.923667 0.383195i \(-0.874824\pi\)
0.923667 0.383195i \(-0.125176\pi\)
\(30\) 0 0
\(31\) 0.00744511 0.000240165 0.000120082 1.00000i \(-0.499962\pi\)
0.000120082 1.00000i \(0.499962\pi\)
\(32\) 0 0
\(33\) −2.79032 6.44935i −0.0845551 0.195435i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.96796i 0.242377i −0.992629 0.121189i \(-0.961329\pi\)
0.992629 0.121189i \(-0.0386706\pi\)
\(38\) 0 0
\(39\) 6.66311i 0.170849i
\(40\) 0 0
\(41\) 16.5975i 0.404817i 0.979301 + 0.202408i \(0.0648768\pi\)
−0.979301 + 0.202408i \(0.935123\pi\)
\(42\) 0 0
\(43\) −81.5368 −1.89621 −0.948103 0.317964i \(-0.897001\pi\)
−0.948103 + 0.317964i \(0.897001\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 59.1685i 1.25890i −0.777039 0.629452i \(-0.783279\pi\)
0.777039 0.629452i \(-0.216721\pi\)
\(48\) 0 0
\(49\) 33.1809 0.677162
\(50\) 0 0
\(51\) 2.16631i 0.0424767i
\(52\) 0 0
\(53\) 60.1508i 1.13492i 0.823401 + 0.567460i \(0.192074\pi\)
−0.823401 + 0.567460i \(0.807926\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 17.8991 0.314019
\(58\) 0 0
\(59\) 81.5361 1.38197 0.690984 0.722870i \(-0.257177\pi\)
0.690984 + 0.722870i \(0.257177\pi\)
\(60\) 0 0
\(61\) 114.695i 1.88024i 0.340843 + 0.940120i \(0.389288\pi\)
−0.340843 + 0.940120i \(0.610712\pi\)
\(62\) 0 0
\(63\) 77.8888 1.23633
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 99.1084i 1.47923i −0.673030 0.739615i \(-0.735008\pi\)
0.673030 0.739615i \(-0.264992\pi\)
\(68\) 0 0
\(69\) 12.0244 0.174267
\(70\) 0 0
\(71\) 70.3598 0.990983 0.495491 0.868613i \(-0.334988\pi\)
0.495491 + 0.868613i \(0.334988\pi\)
\(72\) 0 0
\(73\) −16.4827 −0.225791 −0.112895 0.993607i \(-0.536012\pi\)
−0.112895 + 0.993607i \(0.536012\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 91.5206 39.5965i 1.18858 0.514240i
\(78\) 0 0
\(79\) 118.929i 1.50543i 0.658344 + 0.752717i \(0.271257\pi\)
−0.658344 + 0.752717i \(0.728743\pi\)
\(80\) 0 0
\(81\) 70.1479 0.866023
\(82\) 0 0
\(83\) −30.6387 −0.369141 −0.184570 0.982819i \(-0.559089\pi\)
−0.184570 + 0.982819i \(0.559089\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −14.1981 −0.163197
\(88\) 0 0
\(89\) 4.02316 0.0452041 0.0226020 0.999745i \(-0.492805\pi\)
0.0226020 + 0.999745i \(0.492805\pi\)
\(90\) 0 0
\(91\) 94.5539 1.03905
\(92\) 0 0
\(93\) 0.00475614i 5.11412e-5i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 101.970i 1.05124i −0.850720 0.525619i \(-0.823834\pi\)
0.850720 0.525619i \(-0.176166\pi\)
\(98\) 0 0
\(99\) 86.7406 37.5284i 0.876168 0.379075i
\(100\) 0 0
\(101\) 149.468i 1.47988i −0.672672 0.739940i \(-0.734854\pi\)
0.672672 0.739940i \(-0.265146\pi\)
\(102\) 0 0
\(103\) 74.9240i 0.727417i −0.931513 0.363709i \(-0.881510\pi\)
0.931513 0.363709i \(-0.118490\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 94.4230 0.882458 0.441229 0.897395i \(-0.354543\pi\)
0.441229 + 0.897395i \(0.354543\pi\)
\(108\) 0 0
\(109\) 30.1807i 0.276887i 0.990370 + 0.138444i \(0.0442100\pi\)
−0.990370 + 0.138444i \(0.955790\pi\)
\(110\) 0 0
\(111\) −5.72897 −0.0516124
\(112\) 0 0
\(113\) 74.7503i 0.661507i 0.943717 + 0.330753i \(0.107303\pi\)
−0.943717 + 0.330753i \(0.892697\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 89.6155 0.765945
\(118\) 0 0
\(119\) −30.7414 −0.258331
\(120\) 0 0
\(121\) 82.8432 88.1930i 0.684655 0.728868i
\(122\) 0 0
\(123\) 10.6029 0.0862025
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −107.488 −0.846361 −0.423181 0.906045i \(-0.639086\pi\)
−0.423181 + 0.906045i \(0.639086\pi\)
\(128\) 0 0
\(129\) 52.0879i 0.403782i
\(130\) 0 0
\(131\) 201.887i 1.54112i 0.637367 + 0.770560i \(0.280024\pi\)
−0.637367 + 0.770560i \(0.719976\pi\)
\(132\) 0 0
\(133\) 254.000i 1.90977i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 136.064i 0.993166i −0.867989 0.496583i \(-0.834588\pi\)
0.867989 0.496583i \(-0.165412\pi\)
\(138\) 0 0
\(139\) 6.92439i 0.0498157i 0.999690 + 0.0249079i \(0.00792924\pi\)
−0.999690 + 0.0249079i \(0.992071\pi\)
\(140\) 0 0
\(141\) −37.7984 −0.268074
\(142\) 0 0
\(143\) 105.300 45.5580i 0.736362 0.318588i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 21.1968i 0.144196i
\(148\) 0 0
\(149\) 94.2807i 0.632756i −0.948633 0.316378i \(-0.897533\pi\)
0.948633 0.316378i \(-0.102467\pi\)
\(150\) 0 0
\(151\) 152.478i 1.00979i −0.863181 0.504894i \(-0.831532\pi\)
0.863181 0.504894i \(-0.168468\pi\)
\(152\) 0 0
\(153\) −29.1358 −0.190430
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 168.579i 1.07375i −0.843661 0.536876i \(-0.819604\pi\)
0.843661 0.536876i \(-0.180396\pi\)
\(158\) 0 0
\(159\) 38.4259 0.241672
\(160\) 0 0
\(161\) 170.634i 1.05984i
\(162\) 0 0
\(163\) 21.6126i 0.132592i −0.997800 0.0662962i \(-0.978882\pi\)
0.997800 0.0662962i \(-0.0211182\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 247.745 1.48350 0.741750 0.670676i \(-0.233996\pi\)
0.741750 + 0.670676i \(0.233996\pi\)
\(168\) 0 0
\(169\) −60.2103 −0.356274
\(170\) 0 0
\(171\) 240.734i 1.40780i
\(172\) 0 0
\(173\) −208.255 −1.20379 −0.601894 0.798576i \(-0.705587\pi\)
−0.601894 + 0.798576i \(0.705587\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 52.0874i 0.294279i
\(178\) 0 0
\(179\) 147.992 0.826770 0.413385 0.910556i \(-0.364346\pi\)
0.413385 + 0.910556i \(0.364346\pi\)
\(180\) 0 0
\(181\) −11.0571 −0.0610887 −0.0305444 0.999533i \(-0.509724\pi\)
−0.0305444 + 0.999533i \(0.509724\pi\)
\(182\) 0 0
\(183\) 73.2700 0.400382
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −34.2350 + 14.8118i −0.183075 + 0.0792076i
\(188\) 0 0
\(189\) 101.878i 0.539038i
\(190\) 0 0
\(191\) 104.092 0.544985 0.272492 0.962158i \(-0.412152\pi\)
0.272492 + 0.962158i \(0.412152\pi\)
\(192\) 0 0
\(193\) −267.361 −1.38529 −0.692644 0.721280i \(-0.743554\pi\)
−0.692644 + 0.721280i \(0.743554\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −264.837 −1.34435 −0.672175 0.740392i \(-0.734640\pi\)
−0.672175 + 0.740392i \(0.734640\pi\)
\(198\) 0 0
\(199\) 108.882 0.547145 0.273572 0.961851i \(-0.411795\pi\)
0.273572 + 0.961851i \(0.411795\pi\)
\(200\) 0 0
\(201\) −63.3131 −0.314990
\(202\) 0 0
\(203\) 201.481i 0.992516i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 161.722i 0.781266i
\(208\) 0 0
\(209\) 122.382 + 282.866i 0.585561 + 1.35343i
\(210\) 0 0
\(211\) 91.2096i 0.432273i −0.976363 0.216136i \(-0.930654\pi\)
0.976363 0.216136i \(-0.0693456\pi\)
\(212\) 0 0
\(213\) 44.9477i 0.211022i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0.0674927 0.000311026
\(218\) 0 0
\(219\) 10.5296i 0.0480803i
\(220\) 0 0
\(221\) −35.3697 −0.160044
\(222\) 0 0
\(223\) 2.12864i 0.00954548i −0.999989 0.00477274i \(-0.998481\pi\)
0.999989 0.00477274i \(-0.00151922\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −247.145 −1.08875 −0.544373 0.838843i \(-0.683232\pi\)
−0.544373 + 0.838843i \(0.683232\pi\)
\(228\) 0 0
\(229\) −307.707 −1.34370 −0.671849 0.740688i \(-0.734500\pi\)
−0.671849 + 0.740688i \(0.734500\pi\)
\(230\) 0 0
\(231\) −25.2953 58.4658i −0.109503 0.253098i
\(232\) 0 0
\(233\) 274.895 1.17981 0.589903 0.807474i \(-0.299166\pi\)
0.589903 + 0.807474i \(0.299166\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 75.9752 0.320571
\(238\) 0 0
\(239\) 191.500i 0.801253i −0.916241 0.400627i \(-0.868792\pi\)
0.916241 0.400627i \(-0.131208\pi\)
\(240\) 0 0
\(241\) 111.228i 0.461525i 0.973010 + 0.230763i \(0.0741221\pi\)
−0.973010 + 0.230763i \(0.925878\pi\)
\(242\) 0 0
\(243\) 145.956i 0.600641i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 292.241i 1.18316i
\(248\) 0 0
\(249\) 19.5728i 0.0786056i
\(250\) 0 0
\(251\) −144.363 −0.575152 −0.287576 0.957758i \(-0.592849\pi\)
−0.287576 + 0.957758i \(0.592849\pi\)
\(252\) 0 0
\(253\) 82.2150 + 190.026i 0.324961 + 0.751092i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 406.571i 1.58199i 0.611823 + 0.790994i \(0.290436\pi\)
−0.611823 + 0.790994i \(0.709564\pi\)
\(258\) 0 0
\(259\) 81.2979i 0.313892i
\(260\) 0 0
\(261\) 190.958i 0.731639i
\(262\) 0 0
\(263\) 249.632 0.949171 0.474585 0.880209i \(-0.342598\pi\)
0.474585 + 0.880209i \(0.342598\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.57010i 0.00962585i
\(268\) 0 0
\(269\) −183.714 −0.682952 −0.341476 0.939890i \(-0.610927\pi\)
−0.341476 + 0.939890i \(0.610927\pi\)
\(270\) 0 0
\(271\) 236.527i 0.872792i −0.899755 0.436396i \(-0.856255\pi\)
0.899755 0.436396i \(-0.143745\pi\)
\(272\) 0 0
\(273\) 60.4035i 0.221258i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −22.7429 −0.0821043 −0.0410522 0.999157i \(-0.513071\pi\)
−0.0410522 + 0.999157i \(0.513071\pi\)
\(278\) 0 0
\(279\) 0.0639677 0.000229275
\(280\) 0 0
\(281\) 316.963i 1.12798i −0.825781 0.563991i \(-0.809265\pi\)
0.825781 0.563991i \(-0.190735\pi\)
\(282\) 0 0
\(283\) 218.829 0.773246 0.386623 0.922238i \(-0.373642\pi\)
0.386623 + 0.922238i \(0.373642\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 150.462i 0.524259i
\(288\) 0 0
\(289\) −277.501 −0.960210
\(290\) 0 0
\(291\) −65.1412 −0.223853
\(292\) 0 0
\(293\) −205.688 −0.702005 −0.351003 0.936374i \(-0.614159\pi\)
−0.351003 + 0.936374i \(0.614159\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −49.0870 113.456i −0.165276 0.382008i
\(298\) 0 0
\(299\) 196.324i 0.656603i
\(300\) 0 0
\(301\) −739.161 −2.45569
\(302\) 0 0
\(303\) −95.4841 −0.315129
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 351.513 1.14499 0.572497 0.819907i \(-0.305975\pi\)
0.572497 + 0.819907i \(0.305975\pi\)
\(308\) 0 0
\(309\) −47.8634 −0.154898
\(310\) 0 0
\(311\) 395.742 1.27248 0.636241 0.771490i \(-0.280488\pi\)
0.636241 + 0.771490i \(0.280488\pi\)
\(312\) 0 0
\(313\) 340.880i 1.08907i 0.838736 + 0.544537i \(0.183295\pi\)
−0.838736 + 0.544537i \(0.816705\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 613.787i 1.93624i 0.250493 + 0.968118i \(0.419407\pi\)
−0.250493 + 0.968118i \(0.580593\pi\)
\(318\) 0 0
\(319\) −97.0776 224.379i −0.304319 0.703381i
\(320\) 0 0
\(321\) 60.3199i 0.187912i
\(322\) 0 0
\(323\) 95.0134i 0.294159i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 19.2802 0.0589609
\(328\) 0 0
\(329\) 536.385i 1.63035i
\(330\) 0 0
\(331\) −2.96493 −0.00895750 −0.00447875 0.999990i \(-0.501426\pi\)
−0.00447875 + 0.999990i \(0.501426\pi\)
\(332\) 0 0
\(333\) 77.0519i 0.231387i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −44.4138 −0.131792 −0.0658958 0.997827i \(-0.520991\pi\)
−0.0658958 + 0.997827i \(0.520991\pi\)
\(338\) 0 0
\(339\) 47.7525 0.140863
\(340\) 0 0
\(341\) 0.0751631 0.0325194i 0.000220420 9.53647e-5i
\(342\) 0 0
\(343\) −143.406 −0.418093
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −481.360 −1.38720 −0.693602 0.720358i \(-0.743977\pi\)
−0.693602 + 0.720358i \(0.743977\pi\)
\(348\) 0 0
\(349\) 75.1868i 0.215435i 0.994182 + 0.107717i \(0.0343542\pi\)
−0.994182 + 0.107717i \(0.965646\pi\)
\(350\) 0 0
\(351\) 117.217i 0.333951i
\(352\) 0 0
\(353\) 187.670i 0.531643i −0.964022 0.265822i \(-0.914357\pi\)
0.964022 0.265822i \(-0.0856432\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 19.6384i 0.0550095i
\(358\) 0 0
\(359\) 402.781i 1.12195i 0.827832 + 0.560976i \(0.189574\pi\)
−0.827832 + 0.560976i \(0.810426\pi\)
\(360\) 0 0
\(361\) −424.046 −1.17464
\(362\) 0 0
\(363\) −56.3400 52.9224i −0.155207 0.145792i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 292.427i 0.796805i 0.917211 + 0.398402i \(0.130435\pi\)
−0.917211 + 0.398402i \(0.869565\pi\)
\(368\) 0 0
\(369\) 142.604i 0.386460i
\(370\) 0 0
\(371\) 545.289i 1.46978i
\(372\) 0 0
\(373\) −232.155 −0.622398 −0.311199 0.950345i \(-0.600731\pi\)
−0.311199 + 0.950345i \(0.600731\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 231.815i 0.614895i
\(378\) 0 0
\(379\) −467.391 −1.23322 −0.616611 0.787268i \(-0.711495\pi\)
−0.616611 + 0.787268i \(0.711495\pi\)
\(380\) 0 0
\(381\) 68.6661i 0.180226i
\(382\) 0 0
\(383\) 721.494i 1.88380i −0.335899 0.941898i \(-0.609040\pi\)
0.335899 0.941898i \(-0.390960\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −700.556 −1.81022
\(388\) 0 0
\(389\) −643.293 −1.65371 −0.826854 0.562416i \(-0.809872\pi\)
−0.826854 + 0.562416i \(0.809872\pi\)
\(390\) 0 0
\(391\) 63.8290i 0.163245i
\(392\) 0 0
\(393\) 128.971 0.328170
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 151.518i 0.381658i 0.981623 + 0.190829i \(0.0611176\pi\)
−0.981623 + 0.190829i \(0.938882\pi\)
\(398\) 0 0
\(399\) 162.262 0.406671
\(400\) 0 0
\(401\) −314.057 −0.783184 −0.391592 0.920139i \(-0.628076\pi\)
−0.391592 + 0.920139i \(0.628076\pi\)
\(402\) 0 0
\(403\) 0.0776543 0.000192690
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −39.1710 90.5372i −0.0962433 0.222450i
\(408\) 0 0
\(409\) 691.237i 1.69007i −0.534713 0.845034i \(-0.679580\pi\)
0.534713 0.845034i \(-0.320420\pi\)
\(410\) 0 0
\(411\) −86.9211 −0.211487
\(412\) 0 0
\(413\) 739.155 1.78972
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4.42348 0.0106079
\(418\) 0 0
\(419\) 439.877 1.04983 0.524913 0.851156i \(-0.324098\pi\)
0.524913 + 0.851156i \(0.324098\pi\)
\(420\) 0 0
\(421\) −274.014 −0.650864 −0.325432 0.945565i \(-0.605510\pi\)
−0.325432 + 0.945565i \(0.605510\pi\)
\(422\) 0 0
\(423\) 508.370i 1.20182i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1039.75i 2.43501i
\(428\) 0 0
\(429\) −29.1037 67.2682i −0.0678407 0.156802i
\(430\) 0 0
\(431\) 419.940i 0.974340i 0.873307 + 0.487170i \(0.161971\pi\)
−0.873307 + 0.487170i \(0.838029\pi\)
\(432\) 0 0
\(433\) 396.492i 0.915686i 0.889033 + 0.457843i \(0.151378\pi\)
−0.889033 + 0.457843i \(0.848622\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −527.385 −1.20683
\(438\) 0 0
\(439\) 120.848i 0.275279i 0.990482 + 0.137640i \(0.0439516\pi\)
−0.990482 + 0.137640i \(0.956048\pi\)
\(440\) 0 0
\(441\) 285.087 0.646456
\(442\) 0 0
\(443\) 374.096i 0.844461i −0.906488 0.422231i \(-0.861247\pi\)
0.906488 0.422231i \(-0.138753\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −60.2290 −0.134741
\(448\) 0 0
\(449\) −282.403 −0.628959 −0.314480 0.949264i \(-0.601830\pi\)
−0.314480 + 0.949264i \(0.601830\pi\)
\(450\) 0 0
\(451\) 72.4958 + 167.562i 0.160745 + 0.371534i
\(452\) 0 0
\(453\) −97.4069 −0.215026
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 513.069 1.12269 0.561345 0.827582i \(-0.310284\pi\)
0.561345 + 0.827582i \(0.310284\pi\)
\(458\) 0 0
\(459\) 38.1095i 0.0830272i
\(460\) 0 0
\(461\) 712.598i 1.54577i −0.634549 0.772883i \(-0.718814\pi\)
0.634549 0.772883i \(-0.281186\pi\)
\(462\) 0 0
\(463\) 129.526i 0.279754i −0.990169 0.139877i \(-0.955329\pi\)
0.990169 0.139877i \(-0.0446708\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 397.672i 0.851547i 0.904830 + 0.425773i \(0.139998\pi\)
−0.904830 + 0.425773i \(0.860002\pi\)
\(468\) 0 0
\(469\) 898.454i 1.91568i
\(470\) 0 0
\(471\) −107.693 −0.228647
\(472\) 0 0
\(473\) −823.165 + 356.143i −1.74031 + 0.752946i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 516.809i 1.08346i
\(478\) 0 0
\(479\) 409.935i 0.855815i 0.903823 + 0.427907i \(0.140749\pi\)
−0.903823 + 0.427907i \(0.859251\pi\)
\(480\) 0 0
\(481\) 93.5380i 0.194466i
\(482\) 0 0
\(483\) 109.006 0.225684
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 847.021i 1.73926i −0.493702 0.869631i \(-0.664357\pi\)
0.493702 0.869631i \(-0.335643\pi\)
\(488\) 0 0
\(489\) −13.8067 −0.0282345
\(490\) 0 0
\(491\) 634.763i 1.29280i −0.763000 0.646398i \(-0.776275\pi\)
0.763000 0.646398i \(-0.223725\pi\)
\(492\) 0 0
\(493\) 75.3678i 0.152876i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 637.837 1.28337
\(498\) 0 0
\(499\) −360.573 −0.722591 −0.361296 0.932451i \(-0.617665\pi\)
−0.361296 + 0.932451i \(0.617665\pi\)
\(500\) 0 0
\(501\) 158.266i 0.315900i
\(502\) 0 0
\(503\) 239.586 0.476314 0.238157 0.971227i \(-0.423457\pi\)
0.238157 + 0.971227i \(0.423457\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 38.4639i 0.0758657i
\(508\) 0 0
\(509\) 92.3407 0.181416 0.0907080 0.995878i \(-0.471087\pi\)
0.0907080 + 0.995878i \(0.471087\pi\)
\(510\) 0 0
\(511\) −149.422 −0.292411
\(512\) 0 0
\(513\) 314.879 0.613798
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −258.441 597.343i −0.499886 1.15540i
\(518\) 0 0
\(519\) 133.039i 0.256337i
\(520\) 0 0
\(521\) −439.053 −0.842712 −0.421356 0.906895i \(-0.638446\pi\)
−0.421356 + 0.906895i \(0.638446\pi\)
\(522\) 0 0
\(523\) 495.619 0.947647 0.473823 0.880620i \(-0.342874\pi\)
0.473823 + 0.880620i \(0.342874\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.0252470 −4.79069e−5
\(528\) 0 0
\(529\) 174.709 0.330262
\(530\) 0 0
\(531\) 700.550 1.31930
\(532\) 0 0
\(533\) 173.116i 0.324795i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 94.5410i 0.176054i
\(538\) 0 0
\(539\) 334.982 144.930i 0.621488 0.268887i
\(540\) 0 0
\(541\) 572.642i 1.05849i 0.848470 + 0.529244i \(0.177524\pi\)
−0.848470 + 0.529244i \(0.822476\pi\)
\(542\) 0 0
\(543\) 7.06354i 0.0130084i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 131.117 0.239702 0.119851 0.992792i \(-0.461758\pi\)
0.119851 + 0.992792i \(0.461758\pi\)
\(548\) 0 0
\(549\) 985.445i 1.79498i
\(550\) 0 0
\(551\) 622.724 1.13017
\(552\) 0 0
\(553\) 1078.14i 1.94962i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 433.908 0.779008 0.389504 0.921025i \(-0.372646\pi\)
0.389504 + 0.921025i \(0.372646\pi\)
\(558\) 0 0
\(559\) −850.448 −1.52137
\(560\) 0 0
\(561\) 9.46218 + 21.8702i 0.0168666 + 0.0389844i
\(562\) 0 0
\(563\) −405.058 −0.719464 −0.359732 0.933056i \(-0.617132\pi\)
−0.359732 + 0.933056i \(0.617132\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 635.916 1.12155
\(568\) 0 0
\(569\) 422.003i 0.741657i 0.928701 + 0.370829i \(0.120926\pi\)
−0.928701 + 0.370829i \(0.879074\pi\)
\(570\) 0 0
\(571\) 395.151i 0.692034i −0.938228 0.346017i \(-0.887534\pi\)
0.938228 0.346017i \(-0.112466\pi\)
\(572\) 0 0
\(573\) 66.4968i 0.116050i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 728.545i 1.26264i −0.775521 0.631322i \(-0.782513\pi\)
0.775521 0.631322i \(-0.217487\pi\)
\(578\) 0 0
\(579\) 170.797i 0.294986i
\(580\) 0 0
\(581\) −277.751 −0.478057
\(582\) 0 0
\(583\) 262.731 + 607.259i 0.450654 + 1.04161i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 292.478i 0.498259i 0.968470 + 0.249129i \(0.0801444\pi\)
−0.968470 + 0.249129i \(0.919856\pi\)
\(588\) 0 0
\(589\) 0.208602i 0.000354163i
\(590\) 0 0
\(591\) 169.185i 0.286269i
\(592\) 0 0
\(593\) 189.061 0.318821 0.159410 0.987212i \(-0.449041\pi\)
0.159410 + 0.987212i \(0.449041\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 69.5566i 0.116510i
\(598\) 0 0
\(599\) 333.334 0.556485 0.278242 0.960511i \(-0.410248\pi\)
0.278242 + 0.960511i \(0.410248\pi\)
\(600\) 0 0
\(601\) 473.020i 0.787055i 0.919313 + 0.393527i \(0.128745\pi\)
−0.919313 + 0.393527i \(0.871255\pi\)
\(602\) 0 0
\(603\) 851.529i 1.41215i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −1062.30 −1.75008 −0.875039 0.484052i \(-0.839164\pi\)
−0.875039 + 0.484052i \(0.839164\pi\)
\(608\) 0 0
\(609\) −128.711 −0.211349
\(610\) 0 0
\(611\) 617.141i 1.01005i
\(612\) 0 0
\(613\) −1093.66 −1.78411 −0.892057 0.451923i \(-0.850738\pi\)
−0.892057 + 0.451923i \(0.850738\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 793.012i 1.28527i −0.766172 0.642636i \(-0.777841\pi\)
0.766172 0.642636i \(-0.222159\pi\)
\(618\) 0 0
\(619\) 1156.20 1.86786 0.933928 0.357462i \(-0.116358\pi\)
0.933928 + 0.357462i \(0.116358\pi\)
\(620\) 0 0
\(621\) 211.532 0.340631
\(622\) 0 0
\(623\) 36.4715 0.0585417
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 180.702 78.1810i 0.288201 0.124691i
\(628\) 0 0
\(629\) 30.4111i 0.0483483i
\(630\) 0 0
\(631\) −184.009 −0.291614 −0.145807 0.989313i \(-0.546578\pi\)
−0.145807 + 0.989313i \(0.546578\pi\)
\(632\) 0 0
\(633\) −58.2671 −0.0920491
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 346.085 0.543304
\(638\) 0 0
\(639\) 604.524 0.946047
\(640\) 0 0
\(641\) 1060.80 1.65492 0.827458 0.561528i \(-0.189786\pi\)
0.827458 + 0.561528i \(0.189786\pi\)
\(642\) 0 0
\(643\) 345.954i 0.538031i 0.963136 + 0.269015i \(0.0866982\pi\)
−0.963136 + 0.269015i \(0.913302\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 582.248i 0.899919i 0.893049 + 0.449959i \(0.148562\pi\)
−0.893049 + 0.449959i \(0.851438\pi\)
\(648\) 0 0
\(649\) 823.158 356.140i 1.26835 0.548752i
\(650\) 0 0
\(651\) 0.0431161i 6.62306e-5i
\(652\) 0 0
\(653\) 860.284i 1.31743i −0.752391 0.658717i \(-0.771100\pi\)
0.752391 0.658717i \(-0.228900\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −141.618 −0.215552
\(658\) 0 0
\(659\) 494.828i 0.750876i −0.926847 0.375438i \(-0.877492\pi\)
0.926847 0.375438i \(-0.122508\pi\)
\(660\) 0 0
\(661\) −321.241 −0.485993 −0.242996 0.970027i \(-0.578130\pi\)
−0.242996 + 0.970027i \(0.578130\pi\)
\(662\) 0 0
\(663\) 22.5951i 0.0340801i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 418.339 0.627195
\(668\) 0 0
\(669\) −1.35983 −0.00203264
\(670\) 0 0
\(671\) 500.973 + 1157.91i 0.746606 + 1.72565i
\(672\) 0 0
\(673\) −775.168 −1.15181 −0.575905 0.817517i \(-0.695350\pi\)
−0.575905 + 0.817517i \(0.695350\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −273.752 −0.404360 −0.202180 0.979348i \(-0.564803\pi\)
−0.202180 + 0.979348i \(0.564803\pi\)
\(678\) 0 0
\(679\) 924.397i 1.36141i
\(680\) 0 0
\(681\) 157.883i 0.231840i
\(682\) 0 0
\(683\) 645.794i 0.945526i 0.881190 + 0.472763i \(0.156743\pi\)
−0.881190 + 0.472763i \(0.843257\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 196.571i 0.286130i
\(688\) 0 0
\(689\) 627.386i 0.910575i
\(690\) 0 0
\(691\) −519.100 −0.751231 −0.375615 0.926776i \(-0.622569\pi\)
−0.375615 + 0.926776i \(0.622569\pi\)
\(692\) 0 0
\(693\) 786.335 340.209i 1.13468 0.490922i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 56.2833i 0.0807508i
\(698\) 0 0
\(699\) 175.610i 0.251231i
\(700\) 0 0
\(701\) 450.375i 0.642475i 0.946999 + 0.321237i \(0.104099\pi\)
−0.946999 + 0.321237i \(0.895901\pi\)
\(702\) 0 0
\(703\) 251.270 0.357426
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1354.98i 1.91652i
\(708\) 0 0
\(709\) −527.930 −0.744612 −0.372306 0.928110i \(-0.621433\pi\)
−0.372306 + 0.928110i \(0.621433\pi\)
\(710\) 0 0
\(711\) 1021.83i 1.43717i
\(712\) 0 0
\(713\) 0.140137i 0.000196545i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −122.335 −0.170621
\(718\) 0 0
\(719\) 312.167 0.434168 0.217084 0.976153i \(-0.430345\pi\)
0.217084 + 0.976153i \(0.430345\pi\)
\(720\) 0 0
\(721\) 679.213i 0.942043i
\(722\) 0 0
\(723\) 71.0551 0.0982782
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1414.10i 1.94512i −0.232662 0.972558i \(-0.574744\pi\)
0.232662 0.972558i \(-0.425256\pi\)
\(728\) 0 0
\(729\) 538.090 0.738121
\(730\) 0 0
\(731\) 276.498 0.378246
\(732\) 0 0
\(733\) 122.714 0.167413 0.0837067 0.996490i \(-0.473324\pi\)
0.0837067 + 0.996490i \(0.473324\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −432.894 1000.56i −0.587373 1.35761i
\(738\) 0 0
\(739\) 1027.05i 1.38978i 0.719115 + 0.694891i \(0.244547\pi\)
−0.719115 + 0.694891i \(0.755453\pi\)
\(740\) 0 0
\(741\) 186.691 0.251945
\(742\) 0 0
\(743\) −609.811 −0.820742 −0.410371 0.911919i \(-0.634601\pi\)
−0.410371 + 0.911919i \(0.634601\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −263.244 −0.352402
\(748\) 0 0
\(749\) 855.979 1.14283
\(750\) 0 0
\(751\) 232.075 0.309021 0.154511 0.987991i \(-0.450620\pi\)
0.154511 + 0.987991i \(0.450620\pi\)
\(752\) 0 0
\(753\) 92.2229i 0.122474i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 929.780i 1.22824i 0.789211 + 0.614122i \(0.210490\pi\)
−0.789211 + 0.614122i \(0.789510\pi\)
\(758\) 0 0
\(759\) 121.394 52.5211i 0.159939 0.0691978i
\(760\) 0 0
\(761\) 759.425i 0.997931i 0.866622 + 0.498965i \(0.166287\pi\)
−0.866622 + 0.498965i \(0.833713\pi\)
\(762\) 0 0
\(763\) 273.599i 0.358583i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 850.441 1.10879
\(768\) 0 0
\(769\) 1242.48i 1.61571i 0.589384 + 0.807853i \(0.299370\pi\)
−0.589384 + 0.807853i \(0.700630\pi\)
\(770\) 0 0
\(771\) 259.728 0.336872
\(772\) 0 0
\(773\) 542.327i 0.701588i 0.936453 + 0.350794i \(0.114088\pi\)
−0.936453 + 0.350794i \(0.885912\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −51.9353 −0.0668407
\(778\) 0 0
\(779\) −465.039 −0.596969
\(780\) 0 0
\(781\) 710.326 307.323i 0.909508 0.393500i
\(782\) 0 0
\(783\) −249.772 −0.318994
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1265.30 1.60775 0.803877 0.594796i \(-0.202767\pi\)
0.803877 + 0.594796i \(0.202767\pi\)
\(788\) 0 0
\(789\) 159.471i 0.202118i
\(790\) 0 0
\(791\) 677.639i 0.856686i
\(792\) 0 0
\(793\) 1196.29i 1.50857i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.70455i 0.00464812i 0.999997 + 0.00232406i \(0.000739772\pi\)
−0.999997 + 0.00232406i \(0.999260\pi\)
\(798\) 0 0
\(799\) 200.645i 0.251120i
\(800\) 0 0
\(801\) 34.5666 0.0431543
\(802\) 0 0
\(803\) −166.403 + 71.9945i −0.207227 + 0.0896569i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 117.361i 0.145429i
\(808\) 0 0
\(809\) 387.788i 0.479343i −0.970854 0.239671i \(-0.922960\pi\)
0.970854 0.239671i \(-0.0770397\pi\)
\(810\) 0 0
\(811\) 653.974i 0.806379i −0.915116 0.403190i \(-0.867901\pi\)
0.915116 0.403190i \(-0.132099\pi\)
\(812\) 0 0
\(813\) −151.100 −0.185854
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 2284.55i 2.79627i
\(818\) 0 0
\(819\) 812.398 0.991939
\(820\) 0 0
\(821\) 1276.47i 1.55477i −0.629023 0.777387i \(-0.716545\pi\)
0.629023 0.777387i \(-0.283455\pi\)
\(822\) 0 0
\(823\) 946.469i 1.15002i 0.818145 + 0.575012i \(0.195003\pi\)
−0.818145 + 0.575012i \(0.804997\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 785.770 0.950146 0.475073 0.879946i \(-0.342422\pi\)
0.475073 + 0.879946i \(0.342422\pi\)
\(828\) 0 0
\(829\) −711.369 −0.858105 −0.429052 0.903280i \(-0.641152\pi\)
−0.429052 + 0.903280i \(0.641152\pi\)
\(830\) 0 0
\(831\) 14.5288i 0.0174835i
\(832\) 0 0
\(833\) −112.519 −0.135077
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0.0836695i 9.99635e-5i
\(838\) 0 0
\(839\) 1072.89 1.27877 0.639386 0.768886i \(-0.279189\pi\)
0.639386 + 0.768886i \(0.279189\pi\)
\(840\) 0 0
\(841\) 347.035 0.412645
\(842\) 0 0
\(843\) −202.484 −0.240195
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 751.004 799.502i 0.886664 0.943922i
\(848\) 0 0
\(849\) 139.793i 0.164657i
\(850\) 0 0
\(851\) 168.801 0.198356
\(852\) 0 0
\(853\) −678.071 −0.794925 −0.397462 0.917618i \(-0.630109\pi\)
−0.397462 + 0.917618i \(0.630109\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 514.861 0.600771 0.300386 0.953818i \(-0.402885\pi\)
0.300386 + 0.953818i \(0.402885\pi\)
\(858\) 0 0
\(859\) −1048.57 −1.22069 −0.610346 0.792135i \(-0.708970\pi\)
−0.610346 + 0.792135i \(0.708970\pi\)
\(860\) 0 0
\(861\) 96.1193 0.111637
\(862\) 0 0
\(863\) 962.788i 1.11563i −0.829966 0.557814i \(-0.811640\pi\)
0.829966 0.557814i \(-0.188360\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 177.275i 0.204469i
\(868\) 0 0
\(869\) 519.469 + 1200.67i 0.597778 + 1.38166i
\(870\) 0 0
\(871\) 1033.72i 1.18682i
\(872\) 0 0
\(873\) 876.117i 1.00357i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −297.443 −0.339160 −0.169580 0.985516i \(-0.554241\pi\)
−0.169580 + 0.985516i \(0.554241\pi\)
\(878\) 0 0
\(879\) 131.399i 0.149487i
\(880\) 0 0
\(881\) 1259.46 1.42958 0.714789 0.699341i \(-0.246523\pi\)
0.714789 + 0.699341i \(0.246523\pi\)
\(882\) 0 0
\(883\) 645.648i 0.731199i 0.930772 + 0.365599i \(0.119136\pi\)
−0.930772 + 0.365599i \(0.880864\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −545.781 −0.615312 −0.307656 0.951498i \(-0.599545\pi\)
−0.307656 + 0.951498i \(0.599545\pi\)
\(888\) 0 0
\(889\) −974.417 −1.09608
\(890\) 0 0
\(891\) 708.186 306.398i 0.794822 0.343881i
\(892\) 0 0
\(893\) 1657.82 1.85646
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 125.417 0.139819
\(898\) 0 0
\(899\) 0.165470i 0.000184060i
\(900\) 0 0
\(901\) 203.976i 0.226388i
\(902\) 0 0
\(903\) 472.196i 0.522919i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 146.166i 0.161153i −0.996748 0.0805766i \(-0.974324\pi\)
0.996748 0.0805766i \(-0.0256762\pi\)
\(908\) 0 0
\(909\) 1284.21i 1.41278i
\(910\) 0 0
\(911\) −1533.17 −1.68296 −0.841478 0.540292i \(-0.818314\pi\)
−0.841478 + 0.540292i \(0.818314\pi\)
\(912\) 0 0
\(913\) −309.317 + 133.826i −0.338791 + 0.146578i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1830.18i 1.99583i
\(918\) 0 0
\(919\) 402.371i 0.437836i 0.975743 + 0.218918i \(0.0702527\pi\)
−0.975743 + 0.218918i \(0.929747\pi\)
\(920\) 0 0
\(921\) 224.556i 0.243817i
\(922\) 0 0
\(923\) 733.869 0.795091
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 643.739i 0.694433i
\(928\) 0 0
\(929\) 602.857 0.648932 0.324466 0.945897i \(-0.394815\pi\)
0.324466 + 0.945897i \(0.394815\pi\)
\(930\) 0 0
\(931\) 929.685i 0.998587i
\(932\) 0 0
\(933\) 252.811i 0.270965i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 847.671 0.904665 0.452333 0.891849i \(-0.350592\pi\)
0.452333 + 0.891849i \(0.350592\pi\)
\(938\) 0 0
\(939\) 217.763 0.231910
\(940\) 0 0
\(941\) 1337.24i 1.42109i 0.703653 + 0.710544i \(0.251551\pi\)
−0.703653 + 0.710544i \(0.748449\pi\)
\(942\) 0 0
\(943\) −312.408 −0.331292
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1205.82i 1.27331i −0.771151 0.636653i \(-0.780318\pi\)
0.771151 0.636653i \(-0.219682\pi\)
\(948\) 0 0
\(949\) −171.918 −0.181158
\(950\) 0 0
\(951\) 392.103 0.412306
\(952\) 0 0
\(953\) 647.299 0.679223 0.339611 0.940566i \(-0.389704\pi\)
0.339611 + 0.940566i \(0.389704\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −143.339 + 62.0157i −0.149779 + 0.0648022i
\(958\) 0 0
\(959\) 1233.47i 1.28620i
\(960\) 0 0
\(961\) −961.000 −1.00000
\(962\) 0 0
\(963\) 811.273 0.842443
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −887.321 −0.917602 −0.458801 0.888539i \(-0.651721\pi\)
−0.458801 + 0.888539i \(0.651721\pi\)
\(968\) 0 0
\(969\) −60.6971 −0.0626389
\(970\) 0 0
\(971\) 1104.79 1.13778 0.568891 0.822413i \(-0.307373\pi\)
0.568891 + 0.822413i \(0.307373\pi\)
\(972\) 0 0
\(973\) 62.7721i 0.0645140i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1577.70i 1.61484i 0.589976 + 0.807420i \(0.299137\pi\)
−0.589976 + 0.807420i \(0.700863\pi\)
\(978\) 0 0
\(979\) 40.6163 17.5727i 0.0414876 0.0179496i
\(980\) 0 0
\(981\) 259.310i 0.264332i
\(982\) 0 0
\(983\) 860.925i 0.875814i −0.899020 0.437907i \(-0.855720\pi\)
0.899020 0.437907i \(-0.144280\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −342.657 −0.347170
\(988\) 0 0
\(989\) 1534.74i 1.55181i
\(990\) 0 0
\(991\) −620.455 −0.626090 −0.313045 0.949738i \(-0.601349\pi\)
−0.313045 + 0.949738i \(0.601349\pi\)
\(992\) 0 0
\(993\) 1.89408i 0.00190743i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 148.972 0.149420 0.0747100 0.997205i \(-0.476197\pi\)
0.0747100 + 0.997205i \(0.476197\pi\)
\(998\) 0 0
\(999\) −100.784 −0.100884
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.3.e.c.549.8 16
5.2 odd 4 1100.3.f.e.901.4 yes 8
5.3 odd 4 1100.3.f.c.901.5 8
5.4 even 2 inner 1100.3.e.c.549.9 16
11.10 odd 2 inner 1100.3.e.c.549.7 16
55.32 even 4 1100.3.f.e.901.3 yes 8
55.43 even 4 1100.3.f.c.901.6 yes 8
55.54 odd 2 inner 1100.3.e.c.549.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.3.e.c.549.7 16 11.10 odd 2 inner
1100.3.e.c.549.8 16 1.1 even 1 trivial
1100.3.e.c.549.9 16 5.4 even 2 inner
1100.3.e.c.549.10 16 55.54 odd 2 inner
1100.3.f.c.901.5 8 5.3 odd 4
1100.3.f.c.901.6 yes 8 55.43 even 4
1100.3.f.e.901.3 yes 8 55.32 even 4
1100.3.f.e.901.4 yes 8 5.2 odd 4