Properties

Label 2-1100-11.10-c2-0-32
Degree $2$
Conductor $1100$
Sign $-0.917 + 0.397i$
Analytic cond. $29.9728$
Root an. cond. $5.47474$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.638·3-s − 9.06i·7-s − 8.59·9-s + (10.0 − 4.36i)11-s + 10.4i·13-s + 3.39i·17-s − 28.0i·19-s − 5.79i·21-s − 18.8·23-s − 11.2·27-s + 22.2i·29-s + 0.00744·31-s + (6.44 − 2.79i)33-s − 8.96·37-s + 6.66i·39-s + ⋯
L(s)  = 1  + 0.212·3-s − 1.29i·7-s − 0.954·9-s + (0.917 − 0.397i)11-s + 0.802i·13-s + 0.199i·17-s − 1.47i·19-s − 0.275i·21-s − 0.818·23-s − 0.416·27-s + 0.766i·29-s + 0.000240·31-s + (0.195 − 0.0845i)33-s − 0.242·37-s + 0.170i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.917 + 0.397i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.917 + 0.397i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1100\)    =    \(2^{2} \cdot 5^{2} \cdot 11\)
Sign: $-0.917 + 0.397i$
Analytic conductor: \(29.9728\)
Root analytic conductor: \(5.47474\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1100} (901, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1100,\ (\ :1),\ -0.917 + 0.397i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.8502174465\)
\(L(\frac12)\) \(\approx\) \(0.8502174465\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + (-10.0 + 4.36i)T \)
good3 \( 1 - 0.638T + 9T^{2} \)
7 \( 1 + 9.06iT - 49T^{2} \)
13 \( 1 - 10.4iT - 169T^{2} \)
17 \( 1 - 3.39iT - 289T^{2} \)
19 \( 1 + 28.0iT - 361T^{2} \)
23 \( 1 + 18.8T + 529T^{2} \)
29 \( 1 - 22.2iT - 841T^{2} \)
31 \( 1 - 0.00744T + 961T^{2} \)
37 \( 1 + 8.96T + 1.36e3T^{2} \)
41 \( 1 - 16.5iT - 1.68e3T^{2} \)
43 \( 1 + 81.5iT - 1.84e3T^{2} \)
47 \( 1 + 59.1T + 2.20e3T^{2} \)
53 \( 1 + 60.1T + 2.80e3T^{2} \)
59 \( 1 + 81.5T + 3.48e3T^{2} \)
61 \( 1 - 114. iT - 3.72e3T^{2} \)
67 \( 1 + 99.1T + 4.48e3T^{2} \)
71 \( 1 - 70.3T + 5.04e3T^{2} \)
73 \( 1 + 16.4iT - 5.32e3T^{2} \)
79 \( 1 + 118. iT - 6.24e3T^{2} \)
83 \( 1 + 30.6iT - 6.88e3T^{2} \)
89 \( 1 + 4.02T + 7.92e3T^{2} \)
97 \( 1 + 101.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.120248189958140763509329170860, −8.675328453290467346412746162987, −7.56488205129248793878977963400, −6.82537028850410592495352329772, −6.06930706796753183656638355114, −4.80185692118510947708187108754, −3.94836177509535554787297865084, −3.05860759320748793684913141012, −1.61112609737087099095012156214, −0.24054109330313020973063016649, 1.68852746158432730657088559090, 2.75906206554837077468095360508, 3.68640283340405334095963975501, 4.97850359310795713734823341824, 5.91762054073863179527615287662, 6.35964449189387360158651058438, 7.954488516376281844351440766608, 8.200346659471150979457235400587, 9.311749527282980963037877267389, 9.720308818126509130726772446586

Graph of the $Z$-function along the critical line