Properties

Label 110.4.g.a.31.2
Level $110$
Weight $4$
Character 110.31
Analytic conductor $6.490$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [110,4,Mod(31,110)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(110, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("110.31"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 110.g (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.49021010063\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 26x^{6} - 51x^{5} + 301x^{4} - 125x^{3} + 250x^{2} + 3125x + 15625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 31.2
Root \(2.56926 + 1.86668i\) of defining polynomial
Character \(\chi\) \(=\) 110.31
Dual form 110.4.g.a.71.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.618034 + 1.90211i) q^{2} +(1.56926 - 1.14014i) q^{3} +(-3.23607 - 2.35114i) q^{4} +(1.54508 + 4.75528i) q^{5} +(1.19881 + 3.68956i) q^{6} +(2.32355 + 1.68816i) q^{7} +(6.47214 - 4.70228i) q^{8} +(-7.18078 + 22.1002i) q^{9} -10.0000 q^{10} +(32.9286 + 15.7068i) q^{11} -7.75887 q^{12} +(-9.69990 + 29.8532i) q^{13} +(-4.64710 + 3.37632i) q^{14} +(7.84632 + 5.70069i) q^{15} +(4.94427 + 15.2169i) q^{16} +(24.7342 + 76.1240i) q^{17} +(-37.5991 - 27.3173i) q^{18} +(-22.8513 + 16.6024i) q^{19} +(6.18034 - 19.0211i) q^{20} +5.57100 q^{21} +(-50.2272 + 52.9267i) q^{22} -11.0833 q^{23} +(4.79525 - 14.7583i) q^{24} +(-20.2254 + 14.6946i) q^{25} +(-50.7893 - 36.9006i) q^{26} +(30.1126 + 92.6772i) q^{27} +(-3.55007 - 10.9260i) q^{28} +(-120.709 - 87.7006i) q^{29} +(-15.6926 + 11.4014i) q^{30} +(-1.30501 + 4.01639i) q^{31} -32.0000 q^{32} +(69.5817 - 12.8950i) q^{33} -160.083 q^{34} +(-4.43759 + 13.6575i) q^{35} +(75.1981 - 54.6346i) q^{36} +(95.6389 + 69.4857i) q^{37} +(-17.4568 - 53.7266i) q^{38} +(18.8151 + 57.9068i) q^{39} +(32.3607 + 23.5114i) q^{40} +(178.364 - 129.589i) q^{41} +(-3.44307 + 10.5967i) q^{42} +305.021 q^{43} +(-69.6304 - 128.248i) q^{44} -116.187 q^{45} +(6.84983 - 21.0816i) q^{46} +(395.602 - 287.422i) q^{47} +(25.1082 + 18.2422i) q^{48} +(-103.444 - 318.367i) q^{49} +(-15.4508 - 47.5528i) q^{50} +(125.606 + 91.2583i) q^{51} +(101.579 - 73.8012i) q^{52} +(135.112 - 415.832i) q^{53} -194.893 q^{54} +(-23.8128 + 180.853i) q^{55} +22.9765 q^{56} +(-16.9307 + 52.1072i) q^{57} +(241.419 - 175.401i) q^{58} +(-339.772 - 246.859i) q^{59} +(-11.9881 - 36.8956i) q^{60} +(74.1097 + 228.086i) q^{61} +(-6.83310 - 4.96454i) q^{62} +(-53.9935 + 39.2286i) q^{63} +(19.7771 - 60.8676i) q^{64} -156.948 q^{65} +(-18.4760 + 140.322i) q^{66} -382.944 q^{67} +(98.9367 - 304.496i) q^{68} +(-17.3926 + 12.6364i) q^{69} +(-23.2355 - 16.8816i) q^{70} +(-126.799 - 390.246i) q^{71} +(57.4462 + 176.801i) q^{72} +(364.465 + 264.800i) q^{73} +(-191.278 + 138.971i) q^{74} +(-14.9851 + 46.1195i) q^{75} +112.983 q^{76} +(49.9958 + 92.0844i) q^{77} -121.774 q^{78} +(-150.166 + 462.163i) q^{79} +(-64.7214 + 47.0228i) q^{80} +(-354.668 - 257.681i) q^{81} +(136.258 + 419.358i) q^{82} +(372.213 + 1145.55i) q^{83} +(-18.0281 - 13.0982i) q^{84} +(-323.775 + 235.236i) q^{85} +(-188.514 + 580.185i) q^{86} -289.416 q^{87} +(286.977 - 53.1832i) q^{88} -1533.91 q^{89} +(71.8078 - 221.002i) q^{90} +(-72.9352 + 52.9905i) q^{91} +(35.8662 + 26.0583i) q^{92} +(2.53134 + 7.79067i) q^{93} +(302.213 + 930.117i) q^{94} +(-114.256 - 83.0121i) q^{95} +(-50.2165 + 36.4844i) q^{96} +(317.163 - 976.128i) q^{97} +669.502 q^{98} +(-583.577 + 614.942i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 7 q^{3} - 8 q^{4} - 10 q^{5} - 26 q^{6} - 15 q^{7} + 16 q^{8} - 41 q^{9} - 80 q^{10} + 23 q^{11} - 48 q^{12} - 32 q^{13} + 30 q^{14} - 35 q^{15} - 32 q^{16} + 81 q^{17} - 138 q^{18} + 157 q^{19}+ \cdots - 2906 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/110\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.618034 + 1.90211i −0.218508 + 0.672499i
\(3\) 1.56926 1.14014i 0.302005 0.219420i −0.426453 0.904510i \(-0.640237\pi\)
0.728458 + 0.685090i \(0.240237\pi\)
\(4\) −3.23607 2.35114i −0.404508 0.293893i
\(5\) 1.54508 + 4.75528i 0.138197 + 0.425325i
\(6\) 1.19881 + 3.68956i 0.0815688 + 0.251043i
\(7\) 2.32355 + 1.68816i 0.125460 + 0.0911520i 0.648746 0.761005i \(-0.275294\pi\)
−0.523286 + 0.852157i \(0.675294\pi\)
\(8\) 6.47214 4.70228i 0.286031 0.207813i
\(9\) −7.18078 + 22.1002i −0.265955 + 0.818525i
\(10\) −10.0000 −0.316228
\(11\) 32.9286 + 15.7068i 0.902578 + 0.430526i
\(12\) −7.75887 −0.186649
\(13\) −9.69990 + 29.8532i −0.206944 + 0.636907i 0.792684 + 0.609632i \(0.208683\pi\)
−0.999628 + 0.0272749i \(0.991317\pi\)
\(14\) −4.64710 + 3.37632i −0.0887136 + 0.0644542i
\(15\) 7.84632 + 5.70069i 0.135061 + 0.0981274i
\(16\) 4.94427 + 15.2169i 0.0772542 + 0.237764i
\(17\) 24.7342 + 76.1240i 0.352878 + 1.08605i 0.957230 + 0.289329i \(0.0934320\pi\)
−0.604352 + 0.796717i \(0.706568\pi\)
\(18\) −37.5991 27.3173i −0.492343 0.357708i
\(19\) −22.8513 + 16.6024i −0.275918 + 0.200466i −0.717135 0.696934i \(-0.754547\pi\)
0.441217 + 0.897400i \(0.354547\pi\)
\(20\) 6.18034 19.0211i 0.0690983 0.212663i
\(21\) 5.57100 0.0578901
\(22\) −50.2272 + 52.9267i −0.486748 + 0.512909i
\(23\) −11.0833 −0.100479 −0.0502395 0.998737i \(-0.515998\pi\)
−0.0502395 + 0.998737i \(0.515998\pi\)
\(24\) 4.79525 14.7583i 0.0407844 0.125521i
\(25\) −20.2254 + 14.6946i −0.161803 + 0.117557i
\(26\) −50.7893 36.9006i −0.383100 0.278339i
\(27\) 30.1126 + 92.6772i 0.214636 + 0.660583i
\(28\) −3.55007 10.9260i −0.0239607 0.0737435i
\(29\) −120.709 87.7006i −0.772937 0.561572i 0.129914 0.991525i \(-0.458530\pi\)
−0.902851 + 0.429953i \(0.858530\pi\)
\(30\) −15.6926 + 11.4014i −0.0955024 + 0.0693866i
\(31\) −1.30501 + 4.01639i −0.00756084 + 0.0232699i −0.954766 0.297359i \(-0.903894\pi\)
0.947205 + 0.320629i \(0.103894\pi\)
\(32\) −32.0000 −0.176777
\(33\) 69.5817 12.8950i 0.367049 0.0680224i
\(34\) −160.083 −0.807471
\(35\) −4.43759 + 13.6575i −0.0214311 + 0.0659582i
\(36\) 75.1981 54.6346i 0.348139 0.252938i
\(37\) 95.6389 + 69.4857i 0.424944 + 0.308740i 0.779624 0.626248i \(-0.215410\pi\)
−0.354680 + 0.934988i \(0.615410\pi\)
\(38\) −17.4568 53.7266i −0.0745229 0.229358i
\(39\) 18.8151 + 57.9068i 0.0772519 + 0.237757i
\(40\) 32.3607 + 23.5114i 0.127917 + 0.0929370i
\(41\) 178.364 129.589i 0.679408 0.493619i −0.193753 0.981050i \(-0.562066\pi\)
0.873161 + 0.487431i \(0.162066\pi\)
\(42\) −3.44307 + 10.5967i −0.0126494 + 0.0389310i
\(43\) 305.021 1.08175 0.540876 0.841102i \(-0.318093\pi\)
0.540876 + 0.841102i \(0.318093\pi\)
\(44\) −69.6304 128.248i −0.238572 0.439412i
\(45\) −116.187 −0.384893
\(46\) 6.84983 21.0816i 0.0219555 0.0675720i
\(47\) 395.602 287.422i 1.22776 0.892017i 0.231036 0.972945i \(-0.425789\pi\)
0.996720 + 0.0809287i \(0.0257886\pi\)
\(48\) 25.1082 + 18.2422i 0.0755013 + 0.0548549i
\(49\) −103.444 318.367i −0.301585 0.928185i
\(50\) −15.4508 47.5528i −0.0437016 0.134500i
\(51\) 125.606 + 91.2583i 0.344871 + 0.250563i
\(52\) 101.579 73.8012i 0.270893 0.196815i
\(53\) 135.112 415.832i 0.350171 1.07772i −0.608585 0.793488i \(-0.708263\pi\)
0.958757 0.284228i \(-0.0917373\pi\)
\(54\) −194.893 −0.491141
\(55\) −23.8128 + 180.853i −0.0583803 + 0.443387i
\(56\) 22.9765 0.0548280
\(57\) −16.9307 + 52.1072i −0.0393425 + 0.121084i
\(58\) 241.419 175.401i 0.546549 0.397091i
\(59\) −339.772 246.859i −0.749738 0.544717i 0.146007 0.989283i \(-0.453358\pi\)
−0.895746 + 0.444567i \(0.853358\pi\)
\(60\) −11.9881 36.8956i −0.0257943 0.0793867i
\(61\) 74.1097 + 228.086i 0.155554 + 0.478745i 0.998217 0.0596966i \(-0.0190133\pi\)
−0.842663 + 0.538441i \(0.819013\pi\)
\(62\) −6.83310 4.96454i −0.0139968 0.0101693i
\(63\) −53.9935 + 39.2286i −0.107977 + 0.0784498i
\(64\) 19.7771 60.8676i 0.0386271 0.118882i
\(65\) −156.948 −0.299492
\(66\) −18.4760 + 140.322i −0.0344582 + 0.261703i
\(67\) −382.944 −0.698270 −0.349135 0.937073i \(-0.613524\pi\)
−0.349135 + 0.937073i \(0.613524\pi\)
\(68\) 98.9367 304.496i 0.176439 0.543023i
\(69\) −17.3926 + 12.6364i −0.0303452 + 0.0220471i
\(70\) −23.2355 16.8816i −0.0396739 0.0288248i
\(71\) −126.799 390.246i −0.211947 0.652306i −0.999356 0.0358754i \(-0.988578\pi\)
0.787409 0.616431i \(-0.211422\pi\)
\(72\) 57.4462 + 176.801i 0.0940292 + 0.289392i
\(73\) 364.465 + 264.800i 0.584349 + 0.424554i 0.840289 0.542138i \(-0.182385\pi\)
−0.255941 + 0.966693i \(0.582385\pi\)
\(74\) −191.278 + 138.971i −0.300481 + 0.218312i
\(75\) −14.9851 + 46.1195i −0.0230711 + 0.0710057i
\(76\) 112.983 0.170527
\(77\) 49.9958 + 92.0844i 0.0739942 + 0.136286i
\(78\) −121.774 −0.176771
\(79\) −150.166 + 462.163i −0.213860 + 0.658194i 0.785372 + 0.619024i \(0.212472\pi\)
−0.999233 + 0.0391706i \(0.987528\pi\)
\(80\) −64.7214 + 47.0228i −0.0904508 + 0.0657164i
\(81\) −354.668 257.681i −0.486513 0.353472i
\(82\) 136.258 + 419.358i 0.183502 + 0.564761i
\(83\) 372.213 + 1145.55i 0.492237 + 1.51495i 0.821219 + 0.570613i \(0.193294\pi\)
−0.328982 + 0.944336i \(0.606706\pi\)
\(84\) −18.0281 13.0982i −0.0234170 0.0170135i
\(85\) −323.775 + 235.236i −0.413156 + 0.300176i
\(86\) −188.514 + 580.185i −0.236371 + 0.727477i
\(87\) −289.416 −0.356651
\(88\) 286.977 53.1832i 0.347634 0.0644244i
\(89\) −1533.91 −1.82689 −0.913447 0.406957i \(-0.866590\pi\)
−0.913447 + 0.406957i \(0.866590\pi\)
\(90\) 71.8078 221.002i 0.0841023 0.258840i
\(91\) −72.9352 + 52.9905i −0.0840185 + 0.0610430i
\(92\) 35.8662 + 26.0583i 0.0406446 + 0.0295301i
\(93\) 2.53134 + 7.79067i 0.00282245 + 0.00868661i
\(94\) 302.213 + 930.117i 0.331605 + 1.02058i
\(95\) −114.256 83.0121i −0.123394 0.0896512i
\(96\) −50.2165 + 36.4844i −0.0533875 + 0.0387883i
\(97\) 317.163 976.128i 0.331990 1.02176i −0.636196 0.771528i \(-0.719493\pi\)
0.968186 0.250233i \(-0.0805071\pi\)
\(98\) 669.502 0.690102
\(99\) −583.577 + 614.942i −0.592441 + 0.624282i
\(100\) 100.000 0.100000
\(101\) 465.025 1431.20i 0.458136 1.41000i −0.409278 0.912410i \(-0.634219\pi\)
0.867414 0.497588i \(-0.165781\pi\)
\(102\) −251.213 + 182.517i −0.243860 + 0.177175i
\(103\) 949.546 + 689.885i 0.908364 + 0.659965i 0.940601 0.339515i \(-0.110263\pi\)
−0.0322362 + 0.999480i \(0.510263\pi\)
\(104\) 77.5992 + 238.826i 0.0731657 + 0.225181i
\(105\) 8.60767 + 26.4917i 0.00800021 + 0.0246221i
\(106\) 707.456 + 513.997i 0.648247 + 0.470979i
\(107\) 152.328 110.673i 0.137627 0.0999918i −0.516842 0.856081i \(-0.672892\pi\)
0.654469 + 0.756089i \(0.272892\pi\)
\(108\) 120.451 370.709i 0.107318 0.330291i
\(109\) −670.930 −0.589572 −0.294786 0.955563i \(-0.595248\pi\)
−0.294786 + 0.955563i \(0.595248\pi\)
\(110\) −329.286 157.068i −0.285420 0.136144i
\(111\) 229.306 0.196079
\(112\) −14.2003 + 43.7040i −0.0119804 + 0.0368718i
\(113\) −321.668 + 233.705i −0.267787 + 0.194559i −0.713573 0.700581i \(-0.752924\pi\)
0.445786 + 0.895140i \(0.352924\pi\)
\(114\) −88.6501 64.4080i −0.0728319 0.0529155i
\(115\) −17.1246 52.7040i −0.0138859 0.0427363i
\(116\) 184.428 + 567.610i 0.147618 + 0.454321i
\(117\) −590.108 428.739i −0.466287 0.338777i
\(118\) 679.544 493.718i 0.530145 0.385173i
\(119\) −71.0382 + 218.633i −0.0547232 + 0.168421i
\(120\) 77.5887 0.0590237
\(121\) 837.592 + 1034.41i 0.629295 + 0.777166i
\(122\) −479.648 −0.355945
\(123\) 132.151 406.718i 0.0968751 0.298151i
\(124\) 13.6662 9.92907i 0.00989726 0.00719078i
\(125\) −101.127 73.4732i −0.0723607 0.0525731i
\(126\) −41.2474 126.946i −0.0291636 0.0897562i
\(127\) 513.360 + 1579.96i 0.358688 + 1.10393i 0.953840 + 0.300314i \(0.0970916\pi\)
−0.595153 + 0.803613i \(0.702908\pi\)
\(128\) 103.554 + 75.2365i 0.0715077 + 0.0519534i
\(129\) 478.659 347.766i 0.326695 0.237358i
\(130\) 96.9990 298.532i 0.0654413 0.201408i
\(131\) −442.249 −0.294958 −0.147479 0.989065i \(-0.547116\pi\)
−0.147479 + 0.989065i \(0.547116\pi\)
\(132\) −255.489 121.867i −0.168466 0.0803574i
\(133\) −81.1236 −0.0528896
\(134\) 236.672 728.403i 0.152577 0.469585i
\(135\) −394.180 + 286.388i −0.251301 + 0.182581i
\(136\) 518.040 + 376.378i 0.326629 + 0.237310i
\(137\) −881.478 2712.91i −0.549706 1.69182i −0.709529 0.704677i \(-0.751092\pi\)
0.159822 0.987146i \(-0.448908\pi\)
\(138\) −13.2867 40.8924i −0.00819596 0.0252246i
\(139\) 1272.62 + 924.609i 0.776560 + 0.564204i 0.903945 0.427650i \(-0.140658\pi\)
−0.127385 + 0.991853i \(0.540658\pi\)
\(140\) 46.4710 33.7632i 0.0280537 0.0203822i
\(141\) 293.104 902.082i 0.175063 0.538787i
\(142\) 820.659 0.484987
\(143\) −788.304 + 830.672i −0.460988 + 0.485764i
\(144\) −371.800 −0.215162
\(145\) 230.535 709.512i 0.132033 0.406357i
\(146\) −728.931 + 529.599i −0.413197 + 0.300205i
\(147\) −525.313 381.662i −0.294742 0.214143i
\(148\) −146.123 449.721i −0.0811571 0.249776i
\(149\) −114.189 351.437i −0.0627834 0.193227i 0.914745 0.404032i \(-0.132392\pi\)
−0.977528 + 0.210805i \(0.932392\pi\)
\(150\) −78.4632 57.0069i −0.0427100 0.0310306i
\(151\) 1547.13 1124.06i 0.833799 0.605790i −0.0868326 0.996223i \(-0.527675\pi\)
0.920632 + 0.390433i \(0.127675\pi\)
\(152\) −69.8273 + 214.906i −0.0372615 + 0.114679i
\(153\) −1859.96 −0.982805
\(154\) −206.054 + 38.1864i −0.107820 + 0.0199815i
\(155\) −21.1154 −0.0109421
\(156\) 75.2603 231.627i 0.0386259 0.118878i
\(157\) 928.671 674.719i 0.472076 0.342984i −0.326174 0.945310i \(-0.605759\pi\)
0.798250 + 0.602326i \(0.205759\pi\)
\(158\) −786.278 571.264i −0.395905 0.287642i
\(159\) −262.079 806.598i −0.130719 0.402310i
\(160\) −49.4427 152.169i −0.0244299 0.0751876i
\(161\) −25.7525 18.7103i −0.0126061 0.00915887i
\(162\) 709.336 515.362i 0.344016 0.249943i
\(163\) −269.044 + 828.033i −0.129283 + 0.397893i −0.994657 0.103234i \(-0.967081\pi\)
0.865374 + 0.501127i \(0.167081\pi\)
\(164\) −881.879 −0.419897
\(165\) 168.829 + 310.957i 0.0796566 + 0.146715i
\(166\) −2409.01 −1.12636
\(167\) 13.6235 41.9290i 0.00631271 0.0194285i −0.947851 0.318715i \(-0.896749\pi\)
0.954163 + 0.299287i \(0.0967487\pi\)
\(168\) 36.0563 26.1964i 0.0165583 0.0120303i
\(169\) 980.283 + 712.218i 0.446192 + 0.324177i
\(170\) −247.342 761.240i −0.111590 0.343438i
\(171\) −202.826 624.236i −0.0907048 0.279161i
\(172\) −987.070 717.148i −0.437578 0.317919i
\(173\) 1205.36 875.748i 0.529723 0.384866i −0.290531 0.956866i \(-0.593832\pi\)
0.820254 + 0.571999i \(0.193832\pi\)
\(174\) 178.869 550.502i 0.0779311 0.239847i
\(175\) −71.8017 −0.0310154
\(176\) −76.2009 + 578.731i −0.0326356 + 0.247861i
\(177\) −814.645 −0.345946
\(178\) 948.006 2917.66i 0.399191 1.22858i
\(179\) 2001.39 1454.10i 0.835705 0.607175i −0.0854628 0.996341i \(-0.527237\pi\)
0.921167 + 0.389166i \(0.127237\pi\)
\(180\) 375.991 + 273.173i 0.155693 + 0.113117i
\(181\) −1059.02 3259.32i −0.434895 1.33847i −0.893194 0.449672i \(-0.851541\pi\)
0.458298 0.888798i \(-0.348459\pi\)
\(182\) −55.7175 171.481i −0.0226926 0.0698407i
\(183\) 376.347 + 273.432i 0.152024 + 0.110452i
\(184\) −71.7323 + 52.1166i −0.0287401 + 0.0208809i
\(185\) −182.654 + 562.151i −0.0725891 + 0.223406i
\(186\) −16.3832 −0.00645846
\(187\) −381.202 + 2895.16i −0.149071 + 1.13216i
\(188\) −1955.96 −0.758795
\(189\) −86.4855 + 266.175i −0.0332852 + 0.102441i
\(190\) 228.513 166.024i 0.0872529 0.0633930i
\(191\) 2502.85 + 1818.43i 0.948166 + 0.688883i 0.950372 0.311115i \(-0.100702\pi\)
−0.00220633 + 0.999998i \(0.500702\pi\)
\(192\) −38.3620 118.066i −0.0144195 0.0443785i
\(193\) 874.704 + 2692.06i 0.326231 + 1.00404i 0.970882 + 0.239558i \(0.0770027\pi\)
−0.644651 + 0.764477i \(0.722997\pi\)
\(194\) 1660.69 + 1206.56i 0.614590 + 0.446526i
\(195\) −246.292 + 178.942i −0.0904480 + 0.0657144i
\(196\) −413.775 + 1273.47i −0.150793 + 0.464092i
\(197\) 3173.44 1.14771 0.573854 0.818957i \(-0.305448\pi\)
0.573854 + 0.818957i \(0.305448\pi\)
\(198\) −809.018 1490.08i −0.290376 0.534826i
\(199\) 1815.07 0.646569 0.323284 0.946302i \(-0.395213\pi\)
0.323284 + 0.946302i \(0.395213\pi\)
\(200\) −61.8034 + 190.211i −0.0218508 + 0.0672499i
\(201\) −600.941 + 436.609i −0.210881 + 0.153214i
\(202\) 2434.90 + 1769.06i 0.848115 + 0.616192i
\(203\) −132.422 407.553i −0.0457843 0.140910i
\(204\) −191.909 590.636i −0.0658644 0.202710i
\(205\) 891.819 + 647.944i 0.303841 + 0.220753i
\(206\) −1899.09 + 1379.77i −0.642311 + 0.466666i
\(207\) 79.5864 244.942i 0.0267229 0.0822446i
\(208\) −502.233 −0.167421
\(209\) −1013.23 + 187.775i −0.335343 + 0.0621466i
\(210\) −55.7100 −0.0183065
\(211\) −117.772 + 362.464i −0.0384253 + 0.118261i −0.968429 0.249289i \(-0.919803\pi\)
0.930004 + 0.367550i \(0.119803\pi\)
\(212\) −1414.91 + 1027.99i −0.458380 + 0.333033i
\(213\) −643.915 467.832i −0.207138 0.150494i
\(214\) 116.368 + 358.144i 0.0371718 + 0.114403i
\(215\) 471.284 + 1450.46i 0.149494 + 0.460097i
\(216\) 630.687 + 458.221i 0.198671 + 0.144343i
\(217\) −9.81256 + 7.12924i −0.00306968 + 0.00223025i
\(218\) 414.657 1276.18i 0.128826 0.396487i
\(219\) 873.851 0.269632
\(220\) 502.272 529.267i 0.153923 0.162196i
\(221\) −2512.47 −0.764736
\(222\) −141.719 + 436.166i −0.0428448 + 0.131863i
\(223\) −3165.65 + 2299.98i −0.950617 + 0.690664i −0.950953 0.309336i \(-0.899893\pi\)
0.000335732 1.00000i \(0.499893\pi\)
\(224\) −74.3536 54.0211i −0.0221784 0.0161136i
\(225\) −179.520 552.504i −0.0531910 0.163705i
\(226\) −245.732 756.286i −0.0723268 0.222599i
\(227\) −296.703 215.567i −0.0867527 0.0630295i 0.543563 0.839368i \(-0.317075\pi\)
−0.630316 + 0.776339i \(0.717075\pi\)
\(228\) 177.300 128.816i 0.0514999 0.0374169i
\(229\) −537.357 + 1653.81i −0.155063 + 0.477236i −0.998167 0.0605146i \(-0.980726\pi\)
0.843104 + 0.537751i \(0.180726\pi\)
\(230\) 110.833 0.0317743
\(231\) 183.446 + 87.5027i 0.0522503 + 0.0249232i
\(232\) −1193.64 −0.337786
\(233\) −1519.32 + 4675.98i −0.427183 + 1.31474i 0.473705 + 0.880684i \(0.342916\pi\)
−0.900888 + 0.434051i \(0.857084\pi\)
\(234\) 1180.22 857.478i 0.329715 0.239552i
\(235\) 1978.01 + 1437.11i 0.549069 + 0.398922i
\(236\) 519.126 + 1597.70i 0.143187 + 0.440685i
\(237\) 291.279 + 896.465i 0.0798338 + 0.245703i
\(238\) −371.961 270.246i −0.101305 0.0736026i
\(239\) 5869.70 4264.59i 1.58862 1.15420i 0.682736 0.730666i \(-0.260790\pi\)
0.905881 0.423532i \(-0.139210\pi\)
\(240\) −47.9525 + 147.583i −0.0128972 + 0.0396934i
\(241\) −2416.59 −0.645918 −0.322959 0.946413i \(-0.604678\pi\)
−0.322959 + 0.946413i \(0.604678\pi\)
\(242\) −2485.22 + 953.895i −0.660149 + 0.253383i
\(243\) −3481.42 −0.919066
\(244\) 296.439 912.344i 0.0777768 0.239372i
\(245\) 1354.10 983.809i 0.353102 0.256544i
\(246\) 691.951 + 502.732i 0.179338 + 0.130297i
\(247\) −273.981 843.226i −0.0705789 0.217219i
\(248\) 10.4400 + 32.1311i 0.00267316 + 0.00822714i
\(249\) 1890.19 + 1373.30i 0.481068 + 0.349516i
\(250\) 202.254 146.946i 0.0511667 0.0371748i
\(251\) −1342.96 + 4133.21i −0.337717 + 1.03939i 0.627651 + 0.778495i \(0.284017\pi\)
−0.965368 + 0.260892i \(0.915983\pi\)
\(252\) 266.959 0.0667334
\(253\) −364.957 174.083i −0.0906902 0.0432588i
\(254\) −3322.54 −0.820765
\(255\) −239.887 + 738.295i −0.0589109 + 0.181309i
\(256\) −207.108 + 150.473i −0.0505636 + 0.0367366i
\(257\) 1722.57 + 1251.52i 0.418098 + 0.303766i 0.776872 0.629659i \(-0.216805\pi\)
−0.358774 + 0.933424i \(0.616805\pi\)
\(258\) 365.663 + 1125.40i 0.0882372 + 0.271566i
\(259\) 104.919 + 322.907i 0.0251712 + 0.0774690i
\(260\) 507.893 + 369.006i 0.121147 + 0.0880184i
\(261\) 2804.99 2037.94i 0.665227 0.483316i
\(262\) 273.325 841.207i 0.0644506 0.198359i
\(263\) −5969.13 −1.39952 −0.699758 0.714380i \(-0.746709\pi\)
−0.699758 + 0.714380i \(0.746709\pi\)
\(264\) 389.706 410.651i 0.0908513 0.0957342i
\(265\) 2186.16 0.506773
\(266\) 50.1372 154.306i 0.0115568 0.0355682i
\(267\) −2407.10 + 1748.86i −0.551732 + 0.400857i
\(268\) 1239.23 + 900.355i 0.282456 + 0.205216i
\(269\) −1290.89 3972.94i −0.292590 0.900499i −0.984020 0.178056i \(-0.943019\pi\)
0.691431 0.722443i \(-0.256981\pi\)
\(270\) −301.126 926.772i −0.0678740 0.208895i
\(271\) −6437.30 4676.97i −1.44295 1.04836i −0.987417 0.158140i \(-0.949450\pi\)
−0.455528 0.890221i \(-0.650550\pi\)
\(272\) −1036.08 + 752.755i −0.230961 + 0.167803i
\(273\) −54.0381 + 166.312i −0.0119800 + 0.0368706i
\(274\) 5705.05 1.25786
\(275\) −896.802 + 166.197i −0.196652 + 0.0364439i
\(276\) 85.9936 0.0187544
\(277\) −553.488 + 1703.46i −0.120057 + 0.369499i −0.992968 0.118381i \(-0.962230\pi\)
0.872911 + 0.487880i \(0.162230\pi\)
\(278\) −2545.23 + 1849.22i −0.549111 + 0.398952i
\(279\) −79.3920 57.6817i −0.0170361 0.0123775i
\(280\) 35.5007 + 109.260i 0.00757705 + 0.0233197i
\(281\) 358.047 + 1101.95i 0.0760116 + 0.233940i 0.981842 0.189701i \(-0.0607519\pi\)
−0.905830 + 0.423641i \(0.860752\pi\)
\(282\) 1534.71 + 1115.03i 0.324081 + 0.235459i
\(283\) 5873.31 4267.21i 1.23368 0.896323i 0.236522 0.971626i \(-0.423992\pi\)
0.997161 + 0.0753032i \(0.0239925\pi\)
\(284\) −507.195 + 1560.99i −0.105974 + 0.326153i
\(285\) −273.944 −0.0569369
\(286\) −1092.83 2012.83i −0.225946 0.416157i
\(287\) 633.204 0.130233
\(288\) 229.785 707.205i 0.0470146 0.144696i
\(289\) −1208.38 + 877.941i −0.245956 + 0.178698i
\(290\) 1207.09 + 877.006i 0.244424 + 0.177585i
\(291\) −615.207 1893.41i −0.123931 0.381422i
\(292\) −556.854 1713.82i −0.111601 0.343471i
\(293\) −1899.19 1379.84i −0.378676 0.275124i 0.382123 0.924111i \(-0.375193\pi\)
−0.760799 + 0.648987i \(0.775193\pi\)
\(294\) 1050.63 763.325i 0.208414 0.151422i
\(295\) 648.907 1997.13i 0.128071 0.394161i
\(296\) 945.729 0.185707
\(297\) −464.095 + 3524.71i −0.0906717 + 0.688634i
\(298\) 739.046 0.143664
\(299\) 107.506 330.871i 0.0207935 0.0639959i
\(300\) 156.926 114.014i 0.0302005 0.0219420i
\(301\) 708.733 + 514.925i 0.135717 + 0.0986039i
\(302\) 1181.90 + 3637.52i 0.225201 + 0.693099i
\(303\) −902.018 2776.12i −0.171022 0.526351i
\(304\) −365.620 265.639i −0.0689795 0.0501165i
\(305\) −970.108 + 704.825i −0.182125 + 0.132322i
\(306\) 1149.52 3537.86i 0.214751 0.660935i
\(307\) −1382.74 −0.257059 −0.128529 0.991706i \(-0.541026\pi\)
−0.128529 + 0.991706i \(0.541026\pi\)
\(308\) 54.7135 415.538i 0.0101221 0.0768750i
\(309\) 2276.65 0.419140
\(310\) 13.0501 40.1639i 0.00239095 0.00735858i
\(311\) 3797.08 2758.74i 0.692324 0.503003i −0.185099 0.982720i \(-0.559261\pi\)
0.877423 + 0.479717i \(0.159261\pi\)
\(312\) 394.068 + 286.307i 0.0715055 + 0.0519518i
\(313\) −85.9171 264.426i −0.0155154 0.0477515i 0.942999 0.332795i \(-0.107992\pi\)
−0.958514 + 0.285044i \(0.907992\pi\)
\(314\) 709.441 + 2183.44i 0.127503 + 0.392415i
\(315\) −269.968 196.143i −0.0482887 0.0350838i
\(316\) 1572.56 1142.53i 0.279947 0.203393i
\(317\) 2555.85 7866.09i 0.452841 1.39370i −0.420810 0.907149i \(-0.638254\pi\)
0.873651 0.486553i \(-0.161746\pi\)
\(318\) 1696.21 0.299116
\(319\) −2597.30 4783.82i −0.455865 0.839632i
\(320\) 320.000 0.0559017
\(321\) 112.861 347.349i 0.0196239 0.0603961i
\(322\) 51.5050 37.4206i 0.00891386 0.00647630i
\(323\) −1829.05 1328.88i −0.315081 0.228920i
\(324\) 541.884 + 1667.75i 0.0929157 + 0.285965i
\(325\) −242.498 746.331i −0.0413887 0.127381i
\(326\) −1408.73 1023.51i −0.239333 0.173886i
\(327\) −1052.87 + 764.952i −0.178054 + 0.129364i
\(328\) 545.031 1677.43i 0.0917510 0.282380i
\(329\) 1404.42 0.235343
\(330\) −695.817 + 128.950i −0.116071 + 0.0215106i
\(331\) −702.849 −0.116713 −0.0583566 0.998296i \(-0.518586\pi\)
−0.0583566 + 0.998296i \(0.518586\pi\)
\(332\) 1488.85 4582.21i 0.246118 0.757475i
\(333\) −2222.41 + 1614.67i −0.365727 + 0.265717i
\(334\) 71.3338 + 51.8271i 0.0116863 + 0.00849057i
\(335\) −591.681 1821.01i −0.0964985 0.296992i
\(336\) 27.5445 + 84.7734i 0.00447226 + 0.0137642i
\(337\) −3207.13 2330.11i −0.518407 0.376645i 0.297596 0.954692i \(-0.403815\pi\)
−0.816004 + 0.578047i \(0.803815\pi\)
\(338\) −1960.57 + 1424.44i −0.315505 + 0.229228i
\(339\) −238.326 + 733.491i −0.0381831 + 0.117515i
\(340\) 1600.83 0.255345
\(341\) −106.057 + 111.757i −0.0168425 + 0.0177477i
\(342\) 1312.72 0.207555
\(343\) 601.516 1851.28i 0.0946904 0.291427i
\(344\) 1974.14 1434.30i 0.309414 0.224803i
\(345\) −86.9628 63.1822i −0.0135708 0.00985975i
\(346\) 920.816 + 2833.98i 0.143073 + 0.440335i
\(347\) −2696.34 8298.48i −0.417138 1.28382i −0.910324 0.413896i \(-0.864168\pi\)
0.493186 0.869924i \(-0.335832\pi\)
\(348\) 936.569 + 680.457i 0.144268 + 0.104817i
\(349\) −1172.32 + 851.740i −0.179807 + 0.130638i −0.674048 0.738687i \(-0.735446\pi\)
0.494241 + 0.869325i \(0.335446\pi\)
\(350\) 44.3759 136.575i 0.00677712 0.0208578i
\(351\) −3058.80 −0.465148
\(352\) −1053.72 502.618i −0.159555 0.0761069i
\(353\) 6713.24 1.01221 0.506104 0.862472i \(-0.331085\pi\)
0.506104 + 0.862472i \(0.331085\pi\)
\(354\) 503.479 1549.55i 0.0755920 0.232648i
\(355\) 1659.82 1205.93i 0.248152 0.180293i
\(356\) 4963.82 + 3606.43i 0.738994 + 0.536911i
\(357\) 137.794 + 424.087i 0.0204281 + 0.0628713i
\(358\) 1528.93 + 4705.56i 0.225716 + 0.694683i
\(359\) 10476.8 + 7611.84i 1.54024 + 1.11905i 0.950188 + 0.311678i \(0.100891\pi\)
0.590048 + 0.807368i \(0.299109\pi\)
\(360\) −751.981 + 546.346i −0.110091 + 0.0799860i
\(361\) −1873.01 + 5764.52i −0.273073 + 0.840432i
\(362\) 6854.10 0.995148
\(363\) 2493.77 + 668.291i 0.360576 + 0.0966285i
\(364\) 360.611 0.0519263
\(365\) −696.067 + 2142.27i −0.0998187 + 0.307210i
\(366\) −752.694 + 546.865i −0.107497 + 0.0781013i
\(367\) −3884.64 2822.36i −0.552525 0.401433i 0.276191 0.961103i \(-0.410928\pi\)
−0.828715 + 0.559670i \(0.810928\pi\)
\(368\) −54.7986 168.653i −0.00776244 0.0238903i
\(369\) 1583.14 + 4872.42i 0.223348 + 0.687393i
\(370\) −956.389 694.857i −0.134379 0.0976322i
\(371\) 1015.93 738.117i 0.142168 0.103291i
\(372\) 10.1254 31.1627i 0.00141123 0.00434331i
\(373\) −4200.11 −0.583039 −0.291519 0.956565i \(-0.594161\pi\)
−0.291519 + 0.956565i \(0.594161\pi\)
\(374\) −5271.32 2514.39i −0.728806 0.347637i
\(375\) −242.465 −0.0333889
\(376\) 1208.85 3720.47i 0.165803 0.510288i
\(377\) 3789.01 2752.88i 0.517624 0.376076i
\(378\) −452.844 329.011i −0.0616185 0.0447685i
\(379\) −1887.82 5810.10i −0.255859 0.787453i −0.993659 0.112434i \(-0.964135\pi\)
0.737800 0.675019i \(-0.235865\pi\)
\(380\) 174.568 + 537.266i 0.0235662 + 0.0725294i
\(381\) 2606.97 + 1894.07i 0.350549 + 0.254689i
\(382\) −5005.70 + 3636.85i −0.670455 + 0.487114i
\(383\) 1645.94 5065.69i 0.219592 0.675834i −0.779204 0.626771i \(-0.784376\pi\)
0.998796 0.0490637i \(-0.0156237\pi\)
\(384\) 248.284 0.0329953
\(385\) −360.639 + 380.022i −0.0477400 + 0.0503058i
\(386\) −5661.20 −0.746496
\(387\) −2190.29 + 6741.03i −0.287697 + 0.885441i
\(388\) −3321.37 + 2413.12i −0.434581 + 0.315741i
\(389\) −9823.78 7137.39i −1.28042 0.930283i −0.280859 0.959749i \(-0.590619\pi\)
−0.999566 + 0.0294661i \(0.990619\pi\)
\(390\) −188.151 579.068i −0.0244292 0.0751853i
\(391\) −274.135 843.702i −0.0354568 0.109125i
\(392\) −2166.56 1574.09i −0.279152 0.202816i
\(393\) −694.005 + 504.224i −0.0890787 + 0.0647195i
\(394\) −1961.30 + 6036.25i −0.250784 + 0.771832i
\(395\) −2429.73 −0.309502
\(396\) 3334.31 617.922i 0.423119 0.0784135i
\(397\) 3856.36 0.487519 0.243759 0.969836i \(-0.421619\pi\)
0.243759 + 0.969836i \(0.421619\pi\)
\(398\) −1121.78 + 3452.48i −0.141280 + 0.434816i
\(399\) −127.304 + 92.4921i −0.0159729 + 0.0116050i
\(400\) −323.607 235.114i −0.0404508 0.0293893i
\(401\) 3735.26 + 11495.9i 0.465161 + 1.43162i 0.858779 + 0.512346i \(0.171223\pi\)
−0.393618 + 0.919274i \(0.628777\pi\)
\(402\) −459.078 1412.90i −0.0569570 0.175296i
\(403\) −107.244 77.9172i −0.0132561 0.00963110i
\(404\) −4869.81 + 3538.12i −0.599708 + 0.435713i
\(405\) 677.355 2084.68i 0.0831063 0.255775i
\(406\) 857.054 0.104766
\(407\) 2057.86 + 3790.25i 0.250625 + 0.461612i
\(408\) 1242.06 0.150714
\(409\) −4189.09 + 12892.7i −0.506448 + 1.55869i 0.291874 + 0.956457i \(0.405721\pi\)
−0.798322 + 0.602230i \(0.794279\pi\)
\(410\) −1783.64 + 1295.89i −0.214848 + 0.156096i
\(411\) −4476.37 3252.27i −0.537233 0.390323i
\(412\) −1450.78 4465.03i −0.173482 0.533923i
\(413\) −372.741 1147.18i −0.0444101 0.136680i
\(414\) 416.720 + 302.765i 0.0494702 + 0.0359422i
\(415\) −4872.33 + 3539.95i −0.576321 + 0.418722i
\(416\) 310.397 955.303i 0.0365828 0.112590i
\(417\) 3051.25 0.358322
\(418\) 269.044 2043.33i 0.0314817 0.239098i
\(419\) 5570.74 0.649519 0.324759 0.945797i \(-0.394717\pi\)
0.324759 + 0.945797i \(0.394717\pi\)
\(420\) 34.4307 105.967i 0.00400011 0.0123111i
\(421\) −6102.80 + 4433.94i −0.706490 + 0.513295i −0.882039 0.471176i \(-0.843830\pi\)
0.175549 + 0.984471i \(0.443830\pi\)
\(422\) −616.660 448.030i −0.0711340 0.0516819i
\(423\) 3511.34 + 10806.8i 0.403610 + 1.24218i
\(424\) −1080.90 3326.66i −0.123804 0.381030i
\(425\) −1618.87 1176.18i −0.184769 0.134243i
\(426\) 1287.83 935.664i 0.146469 0.106416i
\(427\) −212.848 + 655.079i −0.0241228 + 0.0742423i
\(428\) −753.150 −0.0850581
\(429\) −289.977 + 2202.32i −0.0326345 + 0.247853i
\(430\) −3050.21 −0.342080
\(431\) −3361.73 + 10346.3i −0.375705 + 1.15630i 0.567297 + 0.823513i \(0.307989\pi\)
−0.943002 + 0.332787i \(0.892011\pi\)
\(432\) −1261.37 + 916.442i −0.140481 + 0.102066i
\(433\) 271.965 + 197.594i 0.0301843 + 0.0219301i 0.602775 0.797911i \(-0.294062\pi\)
−0.572591 + 0.819841i \(0.694062\pi\)
\(434\) −7.49613 23.0707i −0.000829091 0.00255168i
\(435\) −447.172 1376.25i −0.0492879 0.151693i
\(436\) 2171.17 + 1577.45i 0.238487 + 0.173271i
\(437\) 253.267 184.009i 0.0277240 0.0201427i
\(438\) −540.069 + 1662.16i −0.0589167 + 0.181327i
\(439\) −9150.35 −0.994811 −0.497406 0.867518i \(-0.665714\pi\)
−0.497406 + 0.867518i \(0.665714\pi\)
\(440\) 696.304 + 1282.48i 0.0754432 + 0.138954i
\(441\) 7778.78 0.839950
\(442\) 1552.79 4778.99i 0.167101 0.514284i
\(443\) 9199.44 6683.78i 0.986633 0.716831i 0.0274521 0.999623i \(-0.491261\pi\)
0.959181 + 0.282792i \(0.0912606\pi\)
\(444\) −742.050 539.131i −0.0793156 0.0576262i
\(445\) −2370.01 7294.15i −0.252471 0.777025i
\(446\) −2418.34 7442.89i −0.256753 0.790204i
\(447\) −579.880 421.307i −0.0613588 0.0445798i
\(448\) 148.707 108.042i 0.0156825 0.0113940i
\(449\) −5688.80 + 17508.3i −0.597931 + 1.84024i −0.0583718 + 0.998295i \(0.518591\pi\)
−0.539559 + 0.841948i \(0.681409\pi\)
\(450\) 1161.87 0.121714
\(451\) 7908.71 1465.66i 0.825735 0.153027i
\(452\) 1590.41 0.165502
\(453\) 1146.28 3527.88i 0.118889 0.365904i
\(454\) 593.406 431.134i 0.0613434 0.0445686i
\(455\) −364.676 264.953i −0.0375742 0.0272993i
\(456\) 135.445 + 416.858i 0.0139097 + 0.0428095i
\(457\) 2147.54 + 6609.44i 0.219820 + 0.676535i 0.998776 + 0.0494573i \(0.0157492\pi\)
−0.778957 + 0.627078i \(0.784251\pi\)
\(458\) −2813.64 2044.23i −0.287058 0.208560i
\(459\) −6310.15 + 4584.59i −0.641683 + 0.466210i
\(460\) −68.4983 + 210.816i −0.00694293 + 0.0213682i
\(461\) 10094.3 1.01982 0.509911 0.860227i \(-0.329678\pi\)
0.509911 + 0.860227i \(0.329678\pi\)
\(462\) −279.816 + 294.854i −0.0281779 + 0.0296924i
\(463\) 8936.31 0.896988 0.448494 0.893786i \(-0.351961\pi\)
0.448494 + 0.893786i \(0.351961\pi\)
\(464\) 737.711 2270.44i 0.0738090 0.227161i
\(465\) −33.1357 + 24.0745i −0.00330458 + 0.00240092i
\(466\) −7955.24 5779.82i −0.790815 0.574560i
\(467\) −744.092 2290.08i −0.0737312 0.226921i 0.907399 0.420271i \(-0.138065\pi\)
−0.981130 + 0.193349i \(0.938065\pi\)
\(468\) 901.605 + 2774.86i 0.0890528 + 0.274076i
\(469\) −889.790 646.470i −0.0876049 0.0636487i
\(470\) −3956.02 + 2874.22i −0.388250 + 0.282080i
\(471\) 688.058 2117.62i 0.0673122 0.207166i
\(472\) −3359.85 −0.327648
\(473\) 10043.9 + 4790.92i 0.976366 + 0.465722i
\(474\) −1885.20 −0.182679
\(475\) 218.210 671.582i 0.0210783 0.0648722i
\(476\) 743.922 540.491i 0.0716336 0.0520449i
\(477\) 8219.76 + 5972.00i 0.789008 + 0.573248i
\(478\) 4484.05 + 13800.5i 0.429071 + 1.32054i
\(479\) −3013.21 9273.72i −0.287426 0.884607i −0.985661 0.168738i \(-0.946031\pi\)
0.698234 0.715869i \(-0.253969\pi\)
\(480\) −251.082 182.422i −0.0238756 0.0173466i
\(481\) −3002.06 + 2181.12i −0.284578 + 0.206758i
\(482\) 1493.53 4596.63i 0.141138 0.434379i
\(483\) −61.7448 −0.00581674
\(484\) −278.465 5316.71i −0.0261518 0.499316i
\(485\) 5131.81 0.480460
\(486\) 2151.63 6622.05i 0.200823 0.618070i
\(487\) −12492.9 + 9076.59i −1.16243 + 0.844558i −0.990084 0.140478i \(-0.955136\pi\)
−0.172350 + 0.985036i \(0.555136\pi\)
\(488\) 1552.17 + 1127.72i 0.143983 + 0.104610i
\(489\) 521.870 + 1606.15i 0.0482613 + 0.148533i
\(490\) 1034.44 + 3183.67i 0.0953697 + 0.293518i
\(491\) 4955.37 + 3600.28i 0.455463 + 0.330914i 0.791749 0.610847i \(-0.209171\pi\)
−0.336286 + 0.941760i \(0.609171\pi\)
\(492\) −1383.90 + 1005.46i −0.126811 + 0.0921337i
\(493\) 3690.47 11358.1i 0.337140 1.03761i
\(494\) 1773.24 0.161502
\(495\) −3825.90 1824.94i −0.347396 0.165707i
\(496\) −67.5694 −0.00611684
\(497\) 364.175 1120.81i 0.0328681 0.101158i
\(498\) −3780.38 + 2746.60i −0.340166 + 0.247145i
\(499\) −13051.8 9482.70i −1.17090 0.850709i −0.179784 0.983706i \(-0.557540\pi\)
−0.991116 + 0.132997i \(0.957540\pi\)
\(500\) 154.508 + 475.528i 0.0138197 + 0.0425325i
\(501\) −26.4258 81.3304i −0.00235653 0.00725264i
\(502\) −7031.84 5108.93i −0.625192 0.454229i
\(503\) 12878.4 9356.70i 1.14159 0.829413i 0.154249 0.988032i \(-0.450704\pi\)
0.987340 + 0.158619i \(0.0507042\pi\)
\(504\) −164.989 + 507.785i −0.0145818 + 0.0448781i
\(505\) 7524.27 0.663021
\(506\) 556.681 586.600i 0.0489080 0.0515366i
\(507\) 2350.35 0.205883
\(508\) 2053.44 6319.84i 0.179344 0.551963i
\(509\) 15539.1 11289.8i 1.35316 0.983126i 0.354309 0.935128i \(-0.384716\pi\)
0.998847 0.0479977i \(-0.0152840\pi\)
\(510\) −1256.06 912.583i −0.109058 0.0792350i
\(511\) 399.830 + 1230.55i 0.0346134 + 0.106529i
\(512\) −158.217 486.941i −0.0136568 0.0420312i
\(513\) −2226.78 1617.85i −0.191647 0.139239i
\(514\) −3445.15 + 2503.05i −0.295640 + 0.214795i
\(515\) −1813.47 + 5581.29i −0.155167 + 0.477555i
\(516\) −2366.62 −0.201908
\(517\) 17541.1 3250.76i 1.49218 0.276535i
\(518\) −679.050 −0.0575979
\(519\) 893.062 2748.56i 0.0755319 0.232463i
\(520\) −1015.79 + 738.012i −0.0856638 + 0.0622384i
\(521\) −6479.75 4707.81i −0.544881 0.395879i 0.281014 0.959704i \(-0.409329\pi\)
−0.825894 + 0.563825i \(0.809329\pi\)
\(522\) 2142.82 + 6594.92i 0.179672 + 0.552973i
\(523\) −1961.39 6036.53i −0.163988 0.504702i 0.834973 0.550291i \(-0.185483\pi\)
−0.998960 + 0.0455895i \(0.985483\pi\)
\(524\) 1431.15 + 1039.79i 0.119313 + 0.0866859i
\(525\) −112.676 + 81.8638i −0.00936681 + 0.00680539i
\(526\) 3689.13 11354.0i 0.305805 0.941172i
\(527\) −338.022 −0.0279402
\(528\) 540.253 + 995.061i 0.0445294 + 0.0820161i
\(529\) −12044.2 −0.989904
\(530\) −1351.12 + 4158.32i −0.110734 + 0.340804i
\(531\) 7895.45 5736.38i 0.645261 0.468809i
\(532\) 262.522 + 190.733i 0.0213943 + 0.0155439i
\(533\) 2138.53 + 6581.73i 0.173790 + 0.534871i
\(534\) −1838.86 5659.44i −0.149018 0.458629i
\(535\) 761.639 + 553.363i 0.0615486 + 0.0447177i
\(536\) −2478.47 + 1800.71i −0.199727 + 0.145110i
\(537\) 1482.84 4563.73i 0.119161 0.366740i
\(538\) 8354.79 0.669517
\(539\) 1594.27 12108.2i 0.127403 0.967600i
\(540\) 1948.93 0.155312
\(541\) 2634.27 8107.44i 0.209346 0.644300i −0.790161 0.612899i \(-0.790003\pi\)
0.999507 0.0314006i \(-0.00999677\pi\)
\(542\) 12874.6 9353.94i 1.02032 0.741303i
\(543\) −5377.95 3907.31i −0.425027 0.308800i
\(544\) −791.494 2435.97i −0.0623806 0.191988i
\(545\) −1036.64 3190.46i −0.0814769 0.250760i
\(546\) −282.947 205.573i −0.0221777 0.0161131i
\(547\) −17047.2 + 12385.5i −1.33252 + 0.968129i −0.332832 + 0.942986i \(0.608004\pi\)
−0.999684 + 0.0251428i \(0.991996\pi\)
\(548\) −3525.91 + 10851.6i −0.274853 + 0.845911i
\(549\) −5572.91 −0.433235
\(550\) 238.128 1808.53i 0.0184615 0.140211i
\(551\) 4214.41 0.325844
\(552\) −53.1469 + 163.569i −0.00409798 + 0.0126123i
\(553\) −1129.12 + 820.355i −0.0868267 + 0.0630833i
\(554\) −2898.10 2105.59i −0.222254 0.161477i
\(555\) 354.297 + 1090.42i 0.0270974 + 0.0833974i
\(556\) −1944.38 5984.19i −0.148310 0.456450i
\(557\) −16098.2 11696.0i −1.22460 0.889725i −0.228127 0.973631i \(-0.573260\pi\)
−0.996474 + 0.0839066i \(0.973260\pi\)
\(558\) 158.784 115.363i 0.0120464 0.00875219i
\(559\) −2958.68 + 9105.87i −0.223862 + 0.688976i
\(560\) −229.765 −0.0173381
\(561\) 2702.67 + 4977.89i 0.203399 + 0.374629i
\(562\) −2317.33 −0.173933
\(563\) 3664.27 11277.5i 0.274299 0.844206i −0.715105 0.699017i \(-0.753621\pi\)
0.989404 0.145189i \(-0.0463790\pi\)
\(564\) −3069.43 + 2230.07i −0.229160 + 0.166494i
\(565\) −1608.34 1168.53i −0.119758 0.0870093i
\(566\) 4486.81 + 13809.0i 0.333206 + 1.02550i
\(567\) −389.082 1197.47i −0.0288182 0.0886932i
\(568\) −2655.71 1929.48i −0.196181 0.142534i
\(569\) −21642.6 + 15724.3i −1.59456 + 1.15852i −0.697525 + 0.716560i \(0.745715\pi\)
−0.897036 + 0.441957i \(0.854285\pi\)
\(570\) 169.307 521.072i 0.0124412 0.0382900i
\(571\) −7238.07 −0.530480 −0.265240 0.964182i \(-0.585451\pi\)
−0.265240 + 0.964182i \(0.585451\pi\)
\(572\) 4504.03 834.697i 0.329236 0.0610148i
\(573\) 6000.89 0.437505
\(574\) −391.342 + 1204.43i −0.0284569 + 0.0875814i
\(575\) 224.164 162.864i 0.0162579 0.0118120i
\(576\) 1203.17 + 874.154i 0.0870349 + 0.0632345i
\(577\) 112.542 + 346.370i 0.00811993 + 0.0249906i 0.955034 0.296495i \(-0.0958178\pi\)
−0.946914 + 0.321486i \(0.895818\pi\)
\(578\) −923.122 2841.08i −0.0664305 0.204452i
\(579\) 4441.96 + 3227.27i 0.318828 + 0.231642i
\(580\) −2414.19 + 1754.01i −0.172834 + 0.125571i
\(581\) −1069.02 + 3290.11i −0.0763346 + 0.234934i
\(582\) 3981.70 0.283586
\(583\) 10980.5 11570.6i 0.780042 0.821966i
\(584\) 3604.03 0.255370
\(585\) 1127.01 3468.57i 0.0796513 0.245141i
\(586\) 3798.39 2759.69i 0.267764 0.194542i
\(587\) 5732.74 + 4165.08i 0.403093 + 0.292864i 0.770800 0.637078i \(-0.219857\pi\)
−0.367707 + 0.929942i \(0.619857\pi\)
\(588\) 802.607 + 2470.17i 0.0562908 + 0.173245i
\(589\) −36.8608 113.446i −0.00257865 0.00793627i
\(590\) 3397.72 + 2468.59i 0.237088 + 0.172255i
\(591\) 4979.98 3618.16i 0.346614 0.251830i
\(592\) −584.493 + 1798.88i −0.0405786 + 0.124888i
\(593\) −23897.0 −1.65486 −0.827431 0.561567i \(-0.810199\pi\)
−0.827431 + 0.561567i \(0.810199\pi\)
\(594\) −6417.57 3061.15i −0.443293 0.211449i
\(595\) −1149.42 −0.0791962
\(596\) −456.756 + 1405.75i −0.0313917 + 0.0966137i
\(597\) 2848.33 2069.43i 0.195267 0.141870i
\(598\) 562.911 + 408.979i 0.0384936 + 0.0279672i
\(599\) −3744.71 11525.0i −0.255434 0.786144i −0.993744 0.111683i \(-0.964376\pi\)
0.738310 0.674461i \(-0.235624\pi\)
\(600\) 119.881 + 368.956i 0.00815688 + 0.0251043i
\(601\) −16956.8 12319.8i −1.15089 0.836168i −0.162288 0.986744i \(-0.551887\pi\)
−0.988598 + 0.150576i \(0.951887\pi\)
\(602\) −1417.47 + 1029.85i −0.0959661 + 0.0697235i
\(603\) 2749.84 8463.13i 0.185708 0.571551i
\(604\) −7649.43 −0.515316
\(605\) −3624.75 + 5581.24i −0.243582 + 0.375057i
\(606\) 5837.98 0.391340
\(607\) −6828.48 + 21015.9i −0.456605 + 1.40529i 0.412635 + 0.910897i \(0.364609\pi\)
−0.869240 + 0.494390i \(0.835391\pi\)
\(608\) 731.241 531.278i 0.0487759 0.0354378i
\(609\) −672.472 488.580i −0.0447454 0.0325094i
\(610\) −741.097 2280.86i −0.0491904 0.151392i
\(611\) 4743.17 + 14598.0i 0.314056 + 0.966564i
\(612\) 6018.97 + 4373.04i 0.397553 + 0.288839i
\(613\) 750.817 545.500i 0.0494702 0.0359422i −0.562775 0.826610i \(-0.690266\pi\)
0.612246 + 0.790668i \(0.290266\pi\)
\(614\) 854.580 2630.13i 0.0561694 0.172872i
\(615\) 2138.25 0.140199
\(616\) 756.586 + 360.888i 0.0494866 + 0.0236049i
\(617\) 12800.1 0.835191 0.417596 0.908633i \(-0.362873\pi\)
0.417596 + 0.908633i \(0.362873\pi\)
\(618\) −1407.05 + 4330.45i −0.0915855 + 0.281871i
\(619\) 15837.5 11506.6i 1.02837 0.747155i 0.0603884 0.998175i \(-0.480766\pi\)
0.967982 + 0.251020i \(0.0807661\pi\)
\(620\) 68.3310 + 49.6454i 0.00442619 + 0.00321582i
\(621\) −333.746 1027.17i −0.0215665 0.0663747i
\(622\) 2900.71 + 8927.48i 0.186990 + 0.575497i
\(623\) −3564.11 2589.48i −0.229202 0.166525i
\(624\) −788.136 + 572.614i −0.0505620 + 0.0367354i
\(625\) 193.136 594.410i 0.0123607 0.0380423i
\(626\) 556.067 0.0355030
\(627\) −1375.94 + 1449.89i −0.0876393 + 0.0923495i
\(628\) −4591.60 −0.291759
\(629\) −2923.98 + 8999.09i −0.185353 + 0.570456i
\(630\) 539.935 392.286i 0.0341453 0.0248080i
\(631\) −9684.98 7036.55i −0.611019 0.443931i 0.238754 0.971080i \(-0.423261\pi\)
−0.849773 + 0.527149i \(0.823261\pi\)
\(632\) 1201.33 + 3697.30i 0.0756110 + 0.232707i
\(633\) 228.444 + 703.077i 0.0143441 + 0.0441466i
\(634\) 13382.6 + 9723.02i 0.838313 + 0.609070i
\(635\) −6719.97 + 4882.34i −0.419959 + 0.305118i
\(636\) −1048.32 + 3226.39i −0.0653593 + 0.201155i
\(637\) 10507.7 0.653579
\(638\) 10704.6 1983.80i 0.664262 0.123102i
\(639\) 9535.03 0.590297
\(640\) −197.771 + 608.676i −0.0122150 + 0.0375938i
\(641\) −21566.4 + 15668.9i −1.32889 + 0.965498i −0.329118 + 0.944289i \(0.606752\pi\)
−0.999775 + 0.0212090i \(0.993248\pi\)
\(642\) 590.946 + 429.347i 0.0363283 + 0.0263941i
\(643\) 8832.08 + 27182.3i 0.541684 + 1.66713i 0.728745 + 0.684785i \(0.240104\pi\)
−0.187061 + 0.982348i \(0.559896\pi\)
\(644\) 39.3463 + 121.096i 0.00240755 + 0.00740968i
\(645\) 2393.30 + 1738.83i 0.146102 + 0.106150i
\(646\) 3658.10 2657.77i 0.222796 0.161871i
\(647\) −4267.14 + 13132.9i −0.259287 + 0.798003i 0.733668 + 0.679508i \(0.237807\pi\)
−0.992955 + 0.118495i \(0.962193\pi\)
\(648\) −3507.15 −0.212614
\(649\) −7310.87 13465.5i −0.442183 0.814431i
\(650\) 1569.48 0.0947076
\(651\) −7.27019 + 22.3753i −0.000437697 + 0.00134709i
\(652\) 2817.47 2047.01i 0.169234 0.122956i
\(653\) −3543.63 2574.60i −0.212363 0.154291i 0.476519 0.879164i \(-0.341898\pi\)
−0.688882 + 0.724873i \(0.741898\pi\)
\(654\) −804.318 2475.44i −0.0480907 0.148008i
\(655\) −683.312 2103.02i −0.0407621 0.125453i
\(656\) 2853.82 + 2073.42i 0.169852 + 0.123405i
\(657\) −8469.26 + 6153.28i −0.502918 + 0.365392i
\(658\) −867.977 + 2671.36i −0.0514244 + 0.158268i
\(659\) 17328.6 1.02432 0.512161 0.858889i \(-0.328845\pi\)
0.512161 + 0.858889i \(0.328845\pi\)
\(660\) 184.760 1403.22i 0.0108966 0.0827579i
\(661\) 20384.7 1.19950 0.599752 0.800186i \(-0.295266\pi\)
0.599752 + 0.800186i \(0.295266\pi\)
\(662\) 434.384 1336.90i 0.0255028 0.0784894i
\(663\) −3942.72 + 2864.56i −0.230954 + 0.167798i
\(664\) 7795.72 + 5663.93i 0.455622 + 0.331029i
\(665\) −125.343 385.766i −0.00730916 0.0224953i
\(666\) −1697.77 5225.20i −0.0987796 0.304012i
\(667\) 1337.85 + 972.008i 0.0776640 + 0.0564262i
\(668\) −142.668 + 103.654i −0.00826344 + 0.00600374i
\(669\) −2345.45 + 7218.55i −0.135546 + 0.417168i
\(670\) 3829.44 0.220812
\(671\) −1142.17 + 8674.59i −0.0657126 + 0.499074i
\(672\) −178.272 −0.0102336
\(673\) −2003.17 + 6165.13i −0.114735 + 0.353118i −0.991892 0.127086i \(-0.959437\pi\)
0.877157 + 0.480204i \(0.159437\pi\)
\(674\) 6414.25 4660.23i 0.366569 0.266328i
\(675\) −1970.90 1431.94i −0.112385 0.0816525i
\(676\) −1497.74 4609.57i −0.0852151 0.262265i
\(677\) −9194.56 28297.9i −0.521973 1.60647i −0.770225 0.637772i \(-0.779856\pi\)
0.248252 0.968695i \(-0.420144\pi\)
\(678\) −1247.89 906.644i −0.0706857 0.0513561i
\(679\) 2384.80 1732.66i 0.134787 0.0979285i
\(680\) −989.367 + 3044.96i −0.0557949 + 0.171719i
\(681\) −711.382 −0.0400297
\(682\) −147.028 270.802i −0.00825510 0.0152046i
\(683\) −26343.9 −1.47587 −0.737937 0.674870i \(-0.764200\pi\)
−0.737937 + 0.674870i \(0.764200\pi\)
\(684\) −811.306 + 2496.94i −0.0453524 + 0.139580i
\(685\) 11538.7 8383.36i 0.643608 0.467608i
\(686\) 3149.58 + 2288.30i 0.175294 + 0.127358i
\(687\) 1042.32 + 3207.93i 0.0578850 + 0.178152i
\(688\) 1508.11 + 4641.48i 0.0835699 + 0.257202i
\(689\) 11103.4 + 8067.07i 0.613940 + 0.446053i
\(690\) 173.926 126.364i 0.00959599 0.00697190i
\(691\) 2152.30 6624.11i 0.118491 0.364679i −0.874168 0.485624i \(-0.838592\pi\)
0.992659 + 0.120945i \(0.0385925\pi\)
\(692\) −5959.65 −0.327387
\(693\) −2394.09 + 443.678i −0.131232 + 0.0243203i
\(694\) 17451.1 0.954515
\(695\) −2430.48 + 7480.24i −0.132652 + 0.408262i
\(696\) −1873.14 + 1360.91i −0.102013 + 0.0741169i
\(697\) 14276.5 + 10372.5i 0.775841 + 0.563682i
\(698\) −895.572 2756.29i −0.0485643 0.149466i
\(699\) 2947.05 + 9070.07i 0.159467 + 0.490789i
\(700\) 232.355 + 168.816i 0.0125460 + 0.00911520i
\(701\) −13116.0 + 9529.32i −0.706682 + 0.513435i −0.882102 0.471059i \(-0.843872\pi\)
0.175420 + 0.984494i \(0.443872\pi\)
\(702\) 1890.44 5818.19i 0.101638 0.312811i
\(703\) −3339.10 −0.179142
\(704\) 1607.27 1693.65i 0.0860458 0.0906704i
\(705\) 4742.52 0.253353
\(706\) −4149.01 + 12769.3i −0.221176 + 0.680709i
\(707\) 3496.60 2540.43i 0.186002 0.135138i
\(708\) 2636.25 + 1915.35i 0.139938 + 0.101671i
\(709\) −6780.97 20869.7i −0.359188 1.10547i −0.953541 0.301264i \(-0.902592\pi\)
0.594352 0.804205i \(-0.297408\pi\)
\(710\) 1267.99 + 3902.46i 0.0670236 + 0.206277i
\(711\) −9135.57 6637.38i −0.481871 0.350100i
\(712\) −9927.64 + 7212.86i −0.522548 + 0.379653i
\(713\) 14.4637 44.5147i 0.000759706 0.00233813i
\(714\) −891.822 −0.0467446
\(715\) −5168.08 2465.15i −0.270315 0.128939i
\(716\) −9895.43 −0.516494
\(717\) 4348.90 13384.5i 0.226517 0.697147i
\(718\) −20953.6 + 15223.7i −1.08911 + 0.791285i
\(719\) 6461.80 + 4694.77i 0.335166 + 0.243512i 0.742620 0.669714i \(-0.233583\pi\)
−0.407453 + 0.913226i \(0.633583\pi\)
\(720\) −574.462 1768.01i −0.0297347 0.0915139i
\(721\) 1041.68 + 3205.97i 0.0538062 + 0.165598i
\(722\) −9807.19 7125.34i −0.505521 0.367282i
\(723\) −3792.27 + 2755.25i −0.195071 + 0.141727i
\(724\) −4236.07 + 13037.3i −0.217448 + 0.669235i
\(725\) 3730.13 0.191081
\(726\) −2812.40 + 4330.41i −0.143771 + 0.221373i
\(727\) 4693.26 0.239427 0.119714 0.992808i \(-0.461802\pi\)
0.119714 + 0.992808i \(0.461802\pi\)
\(728\) −222.870 + 685.924i −0.0113463 + 0.0349204i
\(729\) 4112.77 2988.10i 0.208950 0.151811i
\(730\) −3644.65 2648.00i −0.184787 0.134256i
\(731\) 7544.46 + 23219.5i 0.381726 + 1.17483i
\(732\) −575.007 1769.69i −0.0290340 0.0893574i
\(733\) −17479.8 12699.8i −0.880808 0.639945i 0.0526570 0.998613i \(-0.483231\pi\)
−0.933465 + 0.358668i \(0.883231\pi\)
\(734\) 7769.28 5644.71i 0.390694 0.283856i
\(735\) 1003.26 3087.71i 0.0503480 0.154955i
\(736\) 354.664 0.0177624
\(737\) −12609.8 6014.83i −0.630243 0.300623i
\(738\) −10246.3 −0.511074
\(739\) −2328.58 + 7166.63i −0.115911 + 0.356737i −0.992136 0.125165i \(-0.960054\pi\)
0.876225 + 0.481902i \(0.160054\pi\)
\(740\) 1912.78 1389.71i 0.0950204 0.0690364i
\(741\) −1391.34 1010.87i −0.0689774 0.0501150i
\(742\) 776.102 + 2388.60i 0.0383984 + 0.118178i
\(743\) −3113.63 9582.76i −0.153739 0.473159i 0.844292 0.535883i \(-0.180021\pi\)
−0.998031 + 0.0627238i \(0.980021\pi\)
\(744\) 53.0171 + 38.5192i 0.00261250 + 0.00189809i
\(745\) 1494.75 1086.00i 0.0735081 0.0534067i
\(746\) 2595.81 7989.08i 0.127399 0.392093i
\(747\) −27989.7 −1.37094
\(748\) 8040.52 8472.66i 0.393035 0.414159i
\(749\) 540.774 0.0263811
\(750\) 149.851 461.195i 0.00729574 0.0224540i
\(751\) −14093.6 + 10239.6i −0.684797 + 0.497534i −0.874946 0.484221i \(-0.839103\pi\)
0.190149 + 0.981755i \(0.439103\pi\)
\(752\) 6329.63 + 4598.75i 0.306939 + 0.223004i
\(753\) 2604.97 + 8017.27i 0.126069 + 0.388002i
\(754\) 2894.55 + 8908.51i 0.139805 + 0.430277i
\(755\) 7735.65 + 5620.28i 0.372886 + 0.270918i
\(756\) 905.688 658.021i 0.0435709 0.0316561i
\(757\) 6895.77 21223.0i 0.331085 1.01897i −0.637534 0.770422i \(-0.720046\pi\)
0.968619 0.248551i \(-0.0799545\pi\)
\(758\) 12218.2 0.585468
\(759\) −771.192 + 142.919i −0.0368808 + 0.00683483i
\(760\) −1129.83 −0.0539253
\(761\) −3432.03 + 10562.7i −0.163483 + 0.503150i −0.998921 0.0464345i \(-0.985214\pi\)
0.835438 + 0.549585i \(0.185214\pi\)
\(762\) −5213.94 + 3788.15i −0.247875 + 0.180092i
\(763\) −1558.94 1132.64i −0.0739677 0.0537407i
\(764\) −3824.01 11769.1i −0.181084 0.557318i
\(765\) −2873.80 8844.65i −0.135820 0.418012i
\(766\) 8618.26 + 6261.53i 0.406515 + 0.295350i
\(767\) 10665.3 7748.79i 0.502088 0.364788i
\(768\) −153.448 + 472.264i −0.00720973 + 0.0221893i
\(769\) 38068.8 1.78517 0.892585 0.450879i \(-0.148889\pi\)
0.892585 + 0.450879i \(0.148889\pi\)
\(770\) −499.958 920.844i −0.0233990 0.0430973i
\(771\) 4130.08 0.192920
\(772\) 3498.81 10768.2i 0.163115 0.502018i
\(773\) −20989.5 + 15249.8i −0.976638 + 0.709569i −0.956955 0.290237i \(-0.906266\pi\)
−0.0196831 + 0.999806i \(0.506266\pi\)
\(774\) −11468.5 8332.37i −0.532594 0.386952i
\(775\) −32.6251 100.410i −0.00151217 0.00465397i
\(776\) −2537.30 7809.02i −0.117376 0.361247i
\(777\) 532.804 + 387.105i 0.0246001 + 0.0178730i
\(778\) 19647.6 14274.8i 0.905397 0.657809i
\(779\) −1924.35 + 5922.54i −0.0885071 + 0.272397i
\(780\) 1217.74 0.0559000
\(781\) 1954.22 14841.9i 0.0895357 0.680006i
\(782\) 1774.24 0.0811339
\(783\) 4492.96 13827.9i 0.205064 0.631123i
\(784\) 4333.11 3148.19i 0.197390 0.143412i
\(785\) 4643.35 + 3373.59i 0.211119 + 0.153387i
\(786\) −530.173 1631.70i −0.0240593 0.0740470i
\(787\) 6510.15 + 20036.2i 0.294869 + 0.907514i 0.983265 + 0.182179i \(0.0583150\pi\)
−0.688396 + 0.725335i \(0.741685\pi\)
\(788\) −10269.5 7461.22i −0.464258 0.337303i
\(789\) −9367.15 + 6805.63i −0.422661 + 0.307081i
\(790\) 1501.66 4621.63i 0.0676286 0.208139i
\(791\) −1141.94 −0.0513310
\(792\) −885.359 + 6724.13i −0.0397220 + 0.301681i
\(793\) −7527.96 −0.337107
\(794\) −2383.36 + 7335.23i −0.106527 + 0.327856i
\(795\) 3430.66 2492.52i 0.153048 0.111196i
\(796\) −5873.70 4267.49i −0.261543 0.190022i
\(797\) −6378.63 19631.4i −0.283491 0.872497i −0.986847 0.161658i \(-0.948316\pi\)
0.703355 0.710838i \(-0.251684\pi\)
\(798\) −97.2520 299.311i −0.00431414 0.0132776i
\(799\) 31664.6 + 23005.7i 1.40202 + 1.01863i
\(800\) 647.214 470.228i 0.0286031 0.0207813i
\(801\) 11014.6 33899.6i 0.485872 1.49536i
\(802\) −24175.1 −1.06440
\(803\) 7842.19 + 14444.1i 0.344639 + 0.634770i
\(804\) 2971.21 0.130332
\(805\) 49.1829 151.369i 0.00215338 0.00662742i
\(806\) 214.488 155.834i 0.00937346 0.00681022i
\(807\) −6555.44 4762.80i −0.285951 0.207755i
\(808\) −3720.20 11449.6i −0.161976 0.498509i
\(809\) −5434.69 16726.3i −0.236185 0.726903i −0.996962 0.0778893i \(-0.975182\pi\)
0.760777 0.649013i \(-0.224818\pi\)
\(810\) 3546.68 + 2576.81i 0.153849 + 0.111778i
\(811\) 35540.9 25822.0i 1.53885 1.11804i 0.587801 0.809005i \(-0.299994\pi\)
0.951050 0.309036i \(-0.100006\pi\)
\(812\) −529.689 + 1630.21i −0.0228922 + 0.0704548i
\(813\) −15434.2 −0.665808
\(814\) −8481.32 + 1571.78i −0.365197 + 0.0676791i
\(815\) −4353.23 −0.187101
\(816\) −767.637 + 2362.55i −0.0329322 + 0.101355i
\(817\) −6970.13 + 5064.10i −0.298475 + 0.216855i
\(818\) −21934.4 15936.3i −0.937552 0.681171i
\(819\) −647.368 1992.39i −0.0276201 0.0850059i
\(820\) −1362.58 4193.58i −0.0580284 0.178593i
\(821\) −22619.7 16434.2i −0.961551 0.698608i −0.00804086 0.999968i \(-0.502560\pi\)
−0.953511 + 0.301360i \(0.902560\pi\)
\(822\) 8952.73 6504.54i 0.379881 0.276000i
\(823\) −2774.43 + 8538.83i −0.117510 + 0.361658i −0.992462 0.122551i \(-0.960893\pi\)
0.874952 + 0.484209i \(0.160893\pi\)
\(824\) 9389.63 0.396970
\(825\) −1217.83 + 1283.29i −0.0513933 + 0.0541555i
\(826\) 2412.43 0.101621
\(827\) 6767.14 20827.1i 0.284542 0.875732i −0.701993 0.712184i \(-0.747706\pi\)
0.986535 0.163548i \(-0.0522938\pi\)
\(828\) −833.440 + 605.530i −0.0349807 + 0.0254150i
\(829\) 16864.4 + 12252.7i 0.706542 + 0.513333i 0.882056 0.471144i \(-0.156159\pi\)
−0.175514 + 0.984477i \(0.556159\pi\)
\(830\) −3722.13 11455.5i −0.155659 0.479069i
\(831\) 1073.61 + 3304.24i 0.0448173 + 0.137933i
\(832\) 1625.26 + 1180.82i 0.0677232 + 0.0492038i
\(833\) 21676.8 15749.1i 0.901628 0.655071i
\(834\) −1885.78 + 5803.83i −0.0782963 + 0.240971i
\(835\) 220.434 0.00913583
\(836\) 3720.38 + 1774.60i 0.153914 + 0.0734161i
\(837\) −411.525 −0.0169945
\(838\) −3442.90 + 10596.2i −0.141925 + 0.436800i
\(839\) 26466.6 19229.1i 1.08907 0.791255i 0.109827 0.993951i \(-0.464970\pi\)
0.979242 + 0.202696i \(0.0649703\pi\)
\(840\) 180.281 + 130.982i 0.00740512 + 0.00538013i
\(841\) −657.229 2022.74i −0.0269477 0.0829366i
\(842\) −4662.12 14348.5i −0.190816 0.587273i
\(843\) 1818.25 + 1321.04i 0.0742869 + 0.0539726i
\(844\) 1233.32 896.060i 0.0502993 0.0365446i
\(845\) −1872.17 + 5761.96i −0.0762187 + 0.234577i
\(846\) −22725.9 −0.923559
\(847\) 199.942 + 3817.49i 0.00811109 + 0.154865i
\(848\) 6995.71 0.283295
\(849\) 4351.57 13392.8i 0.175908 0.541388i
\(850\) 3237.75 2352.36i 0.130652 0.0949239i
\(851\) −1059.99 770.128i −0.0426980 0.0310219i
\(852\) 983.815 + 3027.87i 0.0395598 + 0.121753i
\(853\) −3789.26 11662.1i −0.152101 0.468117i 0.845755 0.533571i \(-0.179150\pi\)
−0.997856 + 0.0654540i \(0.979150\pi\)
\(854\) −1114.49 809.722i −0.0446568 0.0324451i
\(855\) 2655.03 1928.99i 0.106199 0.0771581i
\(856\) 465.472 1432.58i 0.0185859 0.0572015i
\(857\) 16771.7 0.668508 0.334254 0.942483i \(-0.391516\pi\)
0.334254 + 0.942483i \(0.391516\pi\)
\(858\) −4009.84 1912.68i −0.159550 0.0761046i
\(859\) 22891.0 0.909232 0.454616 0.890688i \(-0.349776\pi\)
0.454616 + 0.890688i \(0.349776\pi\)
\(860\) 1885.14 5801.85i 0.0747472 0.230048i
\(861\) 993.665 721.940i 0.0393310 0.0285757i
\(862\) −17602.2 12788.8i −0.695516 0.505322i
\(863\) 14422.5 + 44387.8i 0.568883 + 1.75084i 0.656121 + 0.754656i \(0.272196\pi\)
−0.0872374 + 0.996188i \(0.527804\pi\)
\(864\) −963.605 2965.67i −0.0379427 0.116776i
\(865\) 6026.82 + 4378.74i 0.236899 + 0.172118i
\(866\) −543.929 + 395.188i −0.0213435 + 0.0155070i
\(867\) −895.298 + 2755.44i −0.0350703 + 0.107935i
\(868\) 48.5160 0.00189716
\(869\) −12203.9 + 12859.8i −0.476395 + 0.502000i
\(870\) 2894.16 0.112783
\(871\) 3714.52 11432.1i 0.144502 0.444733i
\(872\) −4342.35 + 3154.90i −0.168636 + 0.122521i
\(873\) 19295.1 + 14018.7i 0.748042 + 0.543484i
\(874\) 193.478 + 595.465i 0.00748799 + 0.0230457i
\(875\) −110.940 341.437i −0.00428622 0.0131916i
\(876\) −2827.84 2054.55i −0.109068 0.0792428i
\(877\) 16555.2 12028.1i 0.637434 0.463123i −0.221533 0.975153i \(-0.571106\pi\)
0.858968 + 0.512030i \(0.171106\pi\)
\(878\) 5655.23 17405.0i 0.217374 0.669009i
\(879\) −4553.55 −0.174730
\(880\) −2869.77 + 531.832i −0.109932 + 0.0203728i
\(881\) −36028.5 −1.37779 −0.688894 0.724862i \(-0.741904\pi\)
−0.688894 + 0.724862i \(0.741904\pi\)
\(882\) −4807.55 + 14796.1i −0.183536 + 0.564865i
\(883\) −27451.5 + 19944.7i −1.04622 + 0.760126i −0.971491 0.237077i \(-0.923810\pi\)
−0.0747331 + 0.997204i \(0.523810\pi\)
\(884\) 8130.51 + 5907.16i 0.309342 + 0.224750i
\(885\) −1258.70 3873.87i −0.0478086 0.147140i
\(886\) 7027.75 + 21629.2i 0.266481 + 0.820143i
\(887\) −3452.05 2508.06i −0.130675 0.0949408i 0.520528 0.853845i \(-0.325735\pi\)
−0.651203 + 0.758904i \(0.725735\pi\)
\(888\) 1484.10 1078.26i 0.0560846 0.0407479i
\(889\) −1474.40 + 4537.75i −0.0556242 + 0.171194i
\(890\) 15339.1 0.577715
\(891\) −7631.38 14055.8i −0.286937 0.528493i
\(892\) 15651.8 0.587514
\(893\) −4268.12 + 13135.9i −0.159941 + 0.492247i
\(894\) 1159.76 842.615i 0.0433872 0.0315226i
\(895\) 10007.0 + 7270.49i 0.373739 + 0.271537i
\(896\) 113.602 + 349.632i 0.00423570 + 0.0130361i
\(897\) −208.532 641.796i −0.00776220 0.0238896i
\(898\) −29786.9 21641.5i −1.10691 0.804215i
\(899\) 509.766 370.367i 0.0189118 0.0137402i
\(900\) −718.078 + 2210.02i −0.0265955 + 0.0818525i
\(901\) 34996.7 1.29402
\(902\) −2100.00 + 15949.1i −0.0775192 + 0.588743i
\(903\) 1699.27 0.0626227
\(904\) −982.929 + 3025.14i −0.0361634 + 0.111300i
\(905\) 13862.7 10071.8i 0.509184 0.369944i
\(906\) 6001.99 + 4360.70i 0.220091 + 0.159906i
\(907\) 2316.40 + 7129.13i 0.0848012 + 0.260991i 0.984462 0.175599i \(-0.0561861\pi\)
−0.899661 + 0.436590i \(0.856186\pi\)
\(908\) 453.322 + 1395.18i 0.0165683 + 0.0509919i
\(909\) 28290.5 + 20554.3i 1.03227 + 0.749991i
\(910\) 729.352 529.905i 0.0265690 0.0193035i
\(911\) −10333.1 + 31802.2i −0.375798 + 1.15659i 0.567140 + 0.823621i \(0.308050\pi\)
−0.942938 + 0.332967i \(0.891950\pi\)
\(912\) −876.620 −0.0318287
\(913\) −5736.53 + 43567.8i −0.207942 + 1.57928i
\(914\) −13899.1 −0.503001
\(915\) −718.759 + 2212.11i −0.0259688 + 0.0799237i
\(916\) 5627.27 4088.45i 0.202981 0.147474i
\(917\) −1027.59 746.586i −0.0370054 0.0268860i
\(918\) −4820.52 14836.0i −0.173313 0.533401i
\(919\) 3442.39 + 10594.6i 0.123562 + 0.380286i 0.993636 0.112635i \(-0.0359291\pi\)
−0.870074 + 0.492921i \(0.835929\pi\)
\(920\) −358.662 260.583i −0.0128530 0.00933822i
\(921\) −2169.88 + 1576.51i −0.0776331 + 0.0564038i
\(922\) −6238.61 + 19200.5i −0.222839 + 0.685828i
\(923\) 12880.0 0.459320
\(924\) −387.911 714.471i −0.0138110 0.0254376i
\(925\) −2955.40 −0.105052
\(926\) −5522.94 + 16997.9i −0.195999 + 0.603223i
\(927\) −22065.1 + 16031.2i −0.781782 + 0.567998i
\(928\) 3862.70 + 2806.42i 0.136637 + 0.0992728i
\(929\) −11367.1 34984.2i −0.401444 1.23552i −0.923828 0.382807i \(-0.874958\pi\)
0.522385 0.852710i \(-0.325042\pi\)
\(930\) −25.3134 77.9067i −0.000892537 0.00274695i
\(931\) 7649.49 + 5557.68i 0.269283 + 0.195645i
\(932\) 15910.5 11559.6i 0.559190 0.406276i
\(933\) 2813.28 8658.40i 0.0987168 0.303819i
\(934\) 4815.87 0.168715
\(935\) −14356.3 + 2660.54i −0.502139 + 0.0930576i
\(936\) −5835.31 −0.203775
\(937\) 329.826 1015.10i 0.0114994 0.0353915i −0.945142 0.326659i \(-0.894077\pi\)
0.956642 + 0.291268i \(0.0940771\pi\)
\(938\) 1779.58 1292.94i 0.0619460 0.0450064i
\(939\) −436.308 316.996i −0.0151633 0.0110168i
\(940\) −3022.13 9301.17i −0.104863 0.322735i
\(941\) −15.6920 48.2950i −0.000543618 0.00167309i 0.950784 0.309853i \(-0.100280\pi\)
−0.951328 + 0.308180i \(0.900280\pi\)
\(942\) 3602.72 + 2617.53i 0.124610 + 0.0905347i
\(943\) −1976.85 + 1436.27i −0.0682663 + 0.0495984i
\(944\) 2076.50 6390.82i 0.0715936 0.220343i
\(945\) −1399.37 −0.0481708
\(946\) −15320.4 + 16143.8i −0.526541 + 0.554841i
\(947\) −49011.4 −1.68179 −0.840895 0.541198i \(-0.817971\pi\)
−0.840895 + 0.541198i \(0.817971\pi\)
\(948\) 1165.12 3585.86i 0.0399169 0.122852i
\(949\) −11440.4 + 8311.94i −0.391329 + 0.284317i
\(950\) 1142.56 + 830.121i 0.0390207 + 0.0283502i
\(951\) −4957.62 15258.0i −0.169045 0.520267i
\(952\) 568.306 + 1749.07i 0.0193476 + 0.0595457i
\(953\) −14374.9 10444.0i −0.488614 0.354999i 0.316037 0.948747i \(-0.397648\pi\)
−0.804651 + 0.593748i \(0.797648\pi\)
\(954\) −16439.5 + 11944.0i −0.557913 + 0.405347i
\(955\) −4780.01 + 14711.4i −0.161966 + 0.498480i
\(956\) −29021.4 −0.981819
\(957\) −9530.07 4545.80i −0.321905 0.153547i
\(958\) 19501.9 0.657702
\(959\) 2531.67 7791.66i 0.0852469 0.262363i
\(960\) 502.165 364.844i 0.0168826 0.0122659i
\(961\) 24087.0 + 17500.2i 0.808533 + 0.587433i
\(962\) −2293.37 7058.27i −0.0768620 0.236557i
\(963\) 1352.05 + 4161.19i 0.0452432 + 0.139244i
\(964\) 7820.25 + 5681.74i 0.261279 + 0.189831i
\(965\) −11450.0 + 8318.93i −0.381958 + 0.277509i
\(966\) 38.1604 117.446i 0.00127100 0.00391175i
\(967\) 31017.2 1.03148 0.515742 0.856744i \(-0.327516\pi\)
0.515742 + 0.856744i \(0.327516\pi\)
\(968\) 10285.1 + 2756.24i 0.341503 + 0.0915174i
\(969\) −4385.37 −0.145385
\(970\) −3171.63 + 9761.28i −0.104984 + 0.323109i
\(971\) −23080.8 + 16769.2i −0.762821 + 0.554222i −0.899774 0.436356i \(-0.856269\pi\)
0.136953 + 0.990577i \(0.456269\pi\)
\(972\) 11266.1 + 8185.30i 0.371770 + 0.270107i
\(973\) 1396.10 + 4296.75i 0.0459989 + 0.141570i
\(974\) −9543.69 29372.5i −0.313963 0.966278i
\(975\) −1231.46 894.710i −0.0404496 0.0293884i
\(976\) −3104.35 + 2255.44i −0.101811 + 0.0739701i
\(977\) −2552.71 + 7856.45i −0.0835912 + 0.257267i −0.984113 0.177544i \(-0.943185\pi\)
0.900522 + 0.434811i \(0.143185\pi\)
\(978\) −3377.61 −0.110434
\(979\) −50509.4 24092.8i −1.64892 0.786525i
\(980\) −6695.02 −0.218229
\(981\) 4817.80 14827.7i 0.156800 0.482580i
\(982\) −9910.73 + 7200.57i −0.322061 + 0.233991i
\(983\) 18502.9 + 13443.2i 0.600358 + 0.436186i 0.846006 0.533173i \(-0.179001\pi\)
−0.245648 + 0.969359i \(0.579001\pi\)
\(984\) −1057.21 3253.75i −0.0342505 0.105412i
\(985\) 4903.24 + 15090.6i 0.158609 + 0.488150i
\(986\) 19323.5 + 14039.4i 0.624124 + 0.453453i
\(987\) 2203.90 1601.23i 0.0710749 0.0516389i
\(988\) −1095.92 + 3372.90i −0.0352894 + 0.108610i
\(989\) −3380.63 −0.108693
\(990\) 5835.77 6149.42i 0.187346 0.197415i
\(991\) −26496.6 −0.849337 −0.424668 0.905349i \(-0.639609\pi\)
−0.424668 + 0.905349i \(0.639609\pi\)
\(992\) 41.7602 128.525i 0.00133658 0.00411357i
\(993\) −1102.96 + 801.344i −0.0352480 + 0.0256092i
\(994\) 1906.84 + 1385.40i 0.0608465 + 0.0442075i
\(995\) 2804.44 + 8631.19i 0.0893536 + 0.275002i
\(996\) −2887.95 8888.20i −0.0918757 0.282764i
\(997\) 30148.6 + 21904.3i 0.957690 + 0.695803i 0.952613 0.304184i \(-0.0983839\pi\)
0.00507718 + 0.999987i \(0.498384\pi\)
\(998\) 26103.6 18965.4i 0.827952 0.601542i
\(999\) −3559.80 + 10955.9i −0.112740 + 0.346978i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 110.4.g.a.31.2 8
11.4 even 5 1210.4.a.y.1.2 4
11.5 even 5 inner 110.4.g.a.71.2 yes 8
11.7 odd 10 1210.4.a.ba.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.4.g.a.31.2 8 1.1 even 1 trivial
110.4.g.a.71.2 yes 8 11.5 even 5 inner
1210.4.a.y.1.2 4 11.4 even 5
1210.4.a.ba.1.2 4 11.7 odd 10