Properties

Label 11.8.a.b.1.3
Level $11$
Weight $8$
Character 11.1
Self dual yes
Analytic conductor $3.436$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [11,8,Mod(1,11)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("11.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(11, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 11 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 11.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.43623528033\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 341x^{2} + 1417x - 1412 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.64802\) of defining polynomial
Character \(\chi\) \(=\) 11.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+11.0598 q^{2} +59.6211 q^{3} -5.68000 q^{4} -60.1766 q^{5} +659.400 q^{6} +698.069 q^{7} -1478.48 q^{8} +1367.68 q^{9} -665.544 q^{10} -1331.00 q^{11} -338.648 q^{12} -10970.2 q^{13} +7720.53 q^{14} -3587.80 q^{15} -15624.7 q^{16} -1820.14 q^{17} +15126.3 q^{18} +49614.4 q^{19} +341.803 q^{20} +41619.7 q^{21} -14720.6 q^{22} +80659.2 q^{23} -88148.6 q^{24} -74503.8 q^{25} -121329. q^{26} -48848.8 q^{27} -3965.03 q^{28} +88686.8 q^{29} -39680.5 q^{30} +176260. q^{31} +16438.7 q^{32} -79355.7 q^{33} -20130.5 q^{34} -42007.4 q^{35} -7768.43 q^{36} +106270. q^{37} +548728. q^{38} -654056. q^{39} +88969.9 q^{40} -464715. q^{41} +460307. q^{42} +837231. q^{43} +7560.08 q^{44} -82302.4 q^{45} +892077. q^{46} -679973. q^{47} -931562. q^{48} -336243. q^{49} -824000. q^{50} -108519. q^{51} +62310.8 q^{52} -177071. q^{53} -540259. q^{54} +80095.1 q^{55} -1.03208e6 q^{56} +2.95807e6 q^{57} +980861. q^{58} -2.54327e6 q^{59} +20378.7 q^{60} -23420.1 q^{61} +1.94941e6 q^{62} +954735. q^{63} +2.18177e6 q^{64} +660150. q^{65} -877662. q^{66} -1.88677e6 q^{67} +10338.4 q^{68} +4.80899e6 q^{69} -464595. q^{70} -4.49270e6 q^{71} -2.02209e6 q^{72} +3.15445e6 q^{73} +1.17533e6 q^{74} -4.44200e6 q^{75} -281810. q^{76} -929130. q^{77} -7.23375e6 q^{78} +4.45391e6 q^{79} +940241. q^{80} -5.90354e6 q^{81} -5.13968e6 q^{82} +2.74298e6 q^{83} -236400. q^{84} +109530. q^{85} +9.25964e6 q^{86} +5.28761e6 q^{87} +1.96786e6 q^{88} +1.10880e7 q^{89} -910251. q^{90} -7.65796e6 q^{91} -458144. q^{92} +1.05088e7 q^{93} -7.52039e6 q^{94} -2.98563e6 q^{95} +980095. q^{96} -3.95601e6 q^{97} -3.71879e6 q^{98} -1.82038e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 35 q^{3} + 604 q^{4} + 537 q^{5} + 1558 q^{6} + 170 q^{7} - 420 q^{8} + 1823 q^{9} + 1470 q^{10} - 5324 q^{11} - 34360 q^{12} + 4250 q^{13} - 29988 q^{14} + 6841 q^{15} + 52744 q^{16} + 54300 q^{17}+ \cdots - 2426413 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 11.0598 0.977561 0.488780 0.872407i \(-0.337442\pi\)
0.488780 + 0.872407i \(0.337442\pi\)
\(3\) 59.6211 1.27490 0.637450 0.770492i \(-0.279989\pi\)
0.637450 + 0.770492i \(0.279989\pi\)
\(4\) −5.68000 −0.0443750
\(5\) −60.1766 −0.215294 −0.107647 0.994189i \(-0.534332\pi\)
−0.107647 + 0.994189i \(0.534332\pi\)
\(6\) 659.400 1.24629
\(7\) 698.069 0.769228 0.384614 0.923077i \(-0.374335\pi\)
0.384614 + 0.923077i \(0.374335\pi\)
\(8\) −1478.48 −1.02094
\(9\) 1367.68 0.625368
\(10\) −665.544 −0.210463
\(11\) −1331.00 −0.301511
\(12\) −338.648 −0.0565737
\(13\) −10970.2 −1.38488 −0.692441 0.721474i \(-0.743465\pi\)
−0.692441 + 0.721474i \(0.743465\pi\)
\(14\) 7720.53 0.751967
\(15\) −3587.80 −0.274479
\(16\) −15624.7 −0.953656
\(17\) −1820.14 −0.0898533 −0.0449266 0.998990i \(-0.514305\pi\)
−0.0449266 + 0.998990i \(0.514305\pi\)
\(18\) 15126.3 0.611335
\(19\) 49614.4 1.65947 0.829737 0.558154i \(-0.188490\pi\)
0.829737 + 0.558154i \(0.188490\pi\)
\(20\) 341.803 0.00955369
\(21\) 41619.7 0.980688
\(22\) −14720.6 −0.294746
\(23\) 80659.2 1.38231 0.691157 0.722705i \(-0.257102\pi\)
0.691157 + 0.722705i \(0.257102\pi\)
\(24\) −88148.6 −1.30160
\(25\) −74503.8 −0.953648
\(26\) −121329. −1.35381
\(27\) −48848.8 −0.477618
\(28\) −3965.03 −0.0341345
\(29\) 88686.8 0.675252 0.337626 0.941280i \(-0.390376\pi\)
0.337626 + 0.941280i \(0.390376\pi\)
\(30\) −39680.5 −0.268320
\(31\) 176260. 1.06265 0.531323 0.847170i \(-0.321695\pi\)
0.531323 + 0.847170i \(0.321695\pi\)
\(32\) 16438.7 0.0886835
\(33\) −79355.7 −0.384397
\(34\) −20130.5 −0.0878370
\(35\) −42007.4 −0.165611
\(36\) −7768.43 −0.0277507
\(37\) 106270. 0.344909 0.172454 0.985017i \(-0.444830\pi\)
0.172454 + 0.985017i \(0.444830\pi\)
\(38\) 548728. 1.62224
\(39\) −654056. −1.76559
\(40\) 88969.9 0.219803
\(41\) −464715. −1.05304 −0.526519 0.850164i \(-0.676503\pi\)
−0.526519 + 0.850164i \(0.676503\pi\)
\(42\) 460307. 0.958683
\(43\) 837231. 1.60585 0.802927 0.596078i \(-0.203275\pi\)
0.802927 + 0.596078i \(0.203275\pi\)
\(44\) 7560.08 0.0133796
\(45\) −82302.4 −0.134638
\(46\) 892077. 1.35129
\(47\) −679973. −0.955321 −0.477661 0.878544i \(-0.658515\pi\)
−0.477661 + 0.878544i \(0.658515\pi\)
\(48\) −931562. −1.21582
\(49\) −336243. −0.408288
\(50\) −824000. −0.932249
\(51\) −108519. −0.114554
\(52\) 62310.8 0.0614542
\(53\) −177071. −0.163374 −0.0816868 0.996658i \(-0.526031\pi\)
−0.0816868 + 0.996658i \(0.526031\pi\)
\(54\) −540259. −0.466900
\(55\) 80095.1 0.0649137
\(56\) −1.03208e6 −0.785336
\(57\) 2.95807e6 2.11566
\(58\) 980861. 0.660100
\(59\) −2.54327e6 −1.61217 −0.806083 0.591803i \(-0.798417\pi\)
−0.806083 + 0.591803i \(0.798417\pi\)
\(60\) 20378.7 0.0121800
\(61\) −23420.1 −0.0132110 −0.00660548 0.999978i \(-0.502103\pi\)
−0.00660548 + 0.999978i \(0.502103\pi\)
\(62\) 1.94941e6 1.03880
\(63\) 954735. 0.481051
\(64\) 2.18177e6 1.04035
\(65\) 660150. 0.298158
\(66\) −877662. −0.375771
\(67\) −1.88677e6 −0.766404 −0.383202 0.923665i \(-0.625179\pi\)
−0.383202 + 0.923665i \(0.625179\pi\)
\(68\) 10338.4 0.00398724
\(69\) 4.80899e6 1.76231
\(70\) −464595. −0.161894
\(71\) −4.49270e6 −1.48971 −0.744857 0.667224i \(-0.767483\pi\)
−0.744857 + 0.667224i \(0.767483\pi\)
\(72\) −2.02209e6 −0.638463
\(73\) 3.15445e6 0.949058 0.474529 0.880240i \(-0.342618\pi\)
0.474529 + 0.880240i \(0.342618\pi\)
\(74\) 1.17533e6 0.337169
\(75\) −4.44200e6 −1.21581
\(76\) −281810. −0.0736392
\(77\) −929130. −0.231931
\(78\) −7.23375e6 −1.72597
\(79\) 4.45391e6 1.01636 0.508178 0.861252i \(-0.330319\pi\)
0.508178 + 0.861252i \(0.330319\pi\)
\(80\) 940241. 0.205317
\(81\) −5.90354e6 −1.23428
\(82\) −5.13968e6 −1.02941
\(83\) 2.74298e6 0.526562 0.263281 0.964719i \(-0.415195\pi\)
0.263281 + 0.964719i \(0.415195\pi\)
\(84\) −236400. −0.0435181
\(85\) 109530. 0.0193449
\(86\) 9.25964e6 1.56982
\(87\) 5.28761e6 0.860878
\(88\) 1.96786e6 0.307825
\(89\) 1.10880e7 1.66721 0.833603 0.552365i \(-0.186274\pi\)
0.833603 + 0.552365i \(0.186274\pi\)
\(90\) −910251. −0.131617
\(91\) −7.65796e6 −1.06529
\(92\) −458144. −0.0613402
\(93\) 1.05088e7 1.35477
\(94\) −7.52039e6 −0.933884
\(95\) −2.98563e6 −0.357276
\(96\) 980095. 0.113063
\(97\) −3.95601e6 −0.440105 −0.220053 0.975488i \(-0.570623\pi\)
−0.220053 + 0.975488i \(0.570623\pi\)
\(98\) −3.71879e6 −0.399126
\(99\) −1.82038e6 −0.188556
\(100\) 423182. 0.0423182
\(101\) −818011. −0.0790013 −0.0395007 0.999220i \(-0.512577\pi\)
−0.0395007 + 0.999220i \(0.512577\pi\)
\(102\) −1.20020e6 −0.111983
\(103\) 750708. 0.0676925 0.0338463 0.999427i \(-0.489224\pi\)
0.0338463 + 0.999427i \(0.489224\pi\)
\(104\) 1.62192e7 1.41388
\(105\) −2.50453e6 −0.211137
\(106\) −1.95838e6 −0.159708
\(107\) −9.70597e6 −0.765942 −0.382971 0.923760i \(-0.625099\pi\)
−0.382971 + 0.923760i \(0.625099\pi\)
\(108\) 277461. 0.0211943
\(109\) 65223.6 0.00482406 0.00241203 0.999997i \(-0.499232\pi\)
0.00241203 + 0.999997i \(0.499232\pi\)
\(110\) 885839. 0.0634571
\(111\) 6.33594e6 0.439724
\(112\) −1.09071e7 −0.733579
\(113\) −1.58160e7 −1.03115 −0.515574 0.856845i \(-0.672421\pi\)
−0.515574 + 0.856845i \(0.672421\pi\)
\(114\) 3.27158e7 2.06819
\(115\) −4.85380e6 −0.297604
\(116\) −503741. −0.0299643
\(117\) −1.50037e7 −0.866062
\(118\) −2.81281e7 −1.57599
\(119\) −1.27058e6 −0.0691177
\(120\) 5.30449e6 0.280226
\(121\) 1.77156e6 0.0909091
\(122\) −259023. −0.0129145
\(123\) −2.77069e7 −1.34252
\(124\) −1.00116e6 −0.0471549
\(125\) 9.18468e6 0.420610
\(126\) 1.05592e7 0.470256
\(127\) 2.14149e7 0.927690 0.463845 0.885916i \(-0.346469\pi\)
0.463845 + 0.885916i \(0.346469\pi\)
\(128\) 2.20259e7 0.928321
\(129\) 4.99167e7 2.04730
\(130\) 7.30115e6 0.291467
\(131\) −5.41196e6 −0.210332 −0.105166 0.994455i \(-0.533537\pi\)
−0.105166 + 0.994455i \(0.533537\pi\)
\(132\) 450741. 0.0170576
\(133\) 3.46343e7 1.27651
\(134\) −2.08674e7 −0.749206
\(135\) 2.93955e6 0.102828
\(136\) 2.69104e6 0.0917348
\(137\) −4.18596e7 −1.39083 −0.695413 0.718610i \(-0.744779\pi\)
−0.695413 + 0.718610i \(0.744779\pi\)
\(138\) 5.31867e7 1.72276
\(139\) −2.86132e7 −0.903681 −0.451840 0.892099i \(-0.649232\pi\)
−0.451840 + 0.892099i \(0.649232\pi\)
\(140\) 238602. 0.00734897
\(141\) −4.05408e7 −1.21794
\(142\) −4.96885e7 −1.45629
\(143\) 1.46013e7 0.417558
\(144\) −2.13696e7 −0.596386
\(145\) −5.33687e6 −0.145378
\(146\) 3.48877e7 0.927762
\(147\) −2.00472e7 −0.520526
\(148\) −603614. −0.0153053
\(149\) 4.55561e6 0.112822 0.0564111 0.998408i \(-0.482034\pi\)
0.0564111 + 0.998408i \(0.482034\pi\)
\(150\) −4.91278e7 −1.18852
\(151\) 5.18767e7 1.22618 0.613089 0.790014i \(-0.289927\pi\)
0.613089 + 0.790014i \(0.289927\pi\)
\(152\) −7.33539e7 −1.69422
\(153\) −2.48937e6 −0.0561914
\(154\) −1.02760e7 −0.226727
\(155\) −1.06067e7 −0.228782
\(156\) 3.71504e6 0.0783479
\(157\) 5.01985e7 1.03524 0.517621 0.855610i \(-0.326818\pi\)
0.517621 + 0.855610i \(0.326818\pi\)
\(158\) 4.92595e7 0.993551
\(159\) −1.05572e7 −0.208285
\(160\) −989226. −0.0190931
\(161\) 5.63057e7 1.06331
\(162\) −6.52922e7 −1.20659
\(163\) 3.13082e7 0.566242 0.283121 0.959084i \(-0.408630\pi\)
0.283121 + 0.959084i \(0.408630\pi\)
\(164\) 2.63958e6 0.0467285
\(165\) 4.77536e6 0.0827584
\(166\) 3.03369e7 0.514747
\(167\) 3.30269e6 0.0548731 0.0274366 0.999624i \(-0.491266\pi\)
0.0274366 + 0.999624i \(0.491266\pi\)
\(168\) −6.15338e7 −1.00122
\(169\) 5.75969e7 0.917901
\(170\) 1.21138e6 0.0189108
\(171\) 6.78567e7 1.03778
\(172\) −4.75547e6 −0.0712598
\(173\) 1.76609e7 0.259329 0.129664 0.991558i \(-0.458610\pi\)
0.129664 + 0.991558i \(0.458610\pi\)
\(174\) 5.84801e7 0.841561
\(175\) −5.20088e7 −0.733573
\(176\) 2.07965e7 0.287538
\(177\) −1.51632e8 −2.05535
\(178\) 1.22632e8 1.62979
\(179\) 2.48730e7 0.324148 0.162074 0.986779i \(-0.448182\pi\)
0.162074 + 0.986779i \(0.448182\pi\)
\(180\) 467478. 0.00597458
\(181\) −1.60151e6 −0.0200749 −0.0100374 0.999950i \(-0.503195\pi\)
−0.0100374 + 0.999950i \(0.503195\pi\)
\(182\) −8.46958e7 −1.04139
\(183\) −1.39633e6 −0.0168427
\(184\) −1.19253e8 −1.41126
\(185\) −6.39497e6 −0.0742570
\(186\) 1.16226e8 1.32437
\(187\) 2.42261e6 0.0270918
\(188\) 3.86225e6 0.0423924
\(189\) −3.40998e7 −0.367397
\(190\) −3.30206e7 −0.349259
\(191\) −1.34327e8 −1.39491 −0.697454 0.716630i \(-0.745684\pi\)
−0.697454 + 0.716630i \(0.745684\pi\)
\(192\) 1.30080e8 1.32634
\(193\) −1.67372e8 −1.67584 −0.837919 0.545795i \(-0.816228\pi\)
−0.837919 + 0.545795i \(0.816228\pi\)
\(194\) −4.37529e7 −0.430230
\(195\) 3.93589e7 0.380121
\(196\) 1.90986e6 0.0181178
\(197\) −8.17612e7 −0.761930 −0.380965 0.924589i \(-0.624408\pi\)
−0.380965 + 0.924589i \(0.624408\pi\)
\(198\) −2.01331e7 −0.184325
\(199\) 2.04375e8 1.83841 0.919206 0.393778i \(-0.128832\pi\)
0.919206 + 0.393778i \(0.128832\pi\)
\(200\) 1.10152e8 0.973618
\(201\) −1.12492e8 −0.977088
\(202\) −9.04707e6 −0.0772286
\(203\) 6.19095e7 0.519423
\(204\) 616387. 0.00508333
\(205\) 2.79650e7 0.226713
\(206\) 8.30271e6 0.0661735
\(207\) 1.10316e8 0.864455
\(208\) 1.71406e8 1.32070
\(209\) −6.60368e7 −0.500350
\(210\) −2.76997e7 −0.206399
\(211\) −1.14120e8 −0.836319 −0.418159 0.908374i \(-0.637325\pi\)
−0.418159 + 0.908374i \(0.637325\pi\)
\(212\) 1.00576e6 0.00724970
\(213\) −2.67860e8 −1.89924
\(214\) −1.07346e8 −0.748754
\(215\) −5.03817e7 −0.345731
\(216\) 7.22219e7 0.487619
\(217\) 1.23042e8 0.817417
\(218\) 721363. 0.00471581
\(219\) 1.88072e8 1.20995
\(220\) −454940. −0.00288055
\(221\) 1.99673e7 0.124436
\(222\) 7.00744e7 0.429857
\(223\) 2.10742e8 1.27258 0.636288 0.771452i \(-0.280469\pi\)
0.636288 + 0.771452i \(0.280469\pi\)
\(224\) 1.14754e7 0.0682178
\(225\) −1.01897e8 −0.596381
\(226\) −1.74922e8 −1.00801
\(227\) 2.75513e8 1.56334 0.781668 0.623695i \(-0.214369\pi\)
0.781668 + 0.623695i \(0.214369\pi\)
\(228\) −1.68018e7 −0.0938826
\(229\) 2.46934e8 1.35880 0.679402 0.733767i \(-0.262239\pi\)
0.679402 + 0.733767i \(0.262239\pi\)
\(230\) −5.36822e7 −0.290926
\(231\) −5.53958e7 −0.295689
\(232\) −1.31122e8 −0.689392
\(233\) −1.43817e8 −0.744841 −0.372421 0.928064i \(-0.621472\pi\)
−0.372421 + 0.928064i \(0.621472\pi\)
\(234\) −1.65939e8 −0.846628
\(235\) 4.09185e7 0.205675
\(236\) 1.44458e7 0.0715399
\(237\) 2.65547e8 1.29575
\(238\) −1.40525e7 −0.0675667
\(239\) −1.04920e8 −0.497123 −0.248561 0.968616i \(-0.579958\pi\)
−0.248561 + 0.968616i \(0.579958\pi\)
\(240\) 5.60583e7 0.261758
\(241\) −7.87388e7 −0.362351 −0.181175 0.983451i \(-0.557990\pi\)
−0.181175 + 0.983451i \(0.557990\pi\)
\(242\) 1.95932e7 0.0888692
\(243\) −2.45143e8 −1.09597
\(244\) 133026. 0.000586237 0
\(245\) 2.02339e7 0.0879021
\(246\) −3.06433e8 −1.31239
\(247\) −5.44281e8 −2.29818
\(248\) −2.60597e8 −1.08490
\(249\) 1.63540e8 0.671314
\(250\) 1.01581e8 0.411171
\(251\) −1.47720e8 −0.589634 −0.294817 0.955554i \(-0.595259\pi\)
−0.294817 + 0.955554i \(0.595259\pi\)
\(252\) −5.42290e6 −0.0213466
\(253\) −1.07357e8 −0.416783
\(254\) 2.36845e8 0.906873
\(255\) 6.53030e6 0.0246628
\(256\) −3.56641e7 −0.132859
\(257\) 1.68032e8 0.617484 0.308742 0.951146i \(-0.400092\pi\)
0.308742 + 0.951146i \(0.400092\pi\)
\(258\) 5.52070e8 2.00136
\(259\) 7.41838e7 0.265314
\(260\) −3.74965e6 −0.0132307
\(261\) 1.21295e8 0.422281
\(262\) −5.98554e7 −0.205612
\(263\) 2.11675e8 0.717503 0.358751 0.933433i \(-0.383203\pi\)
0.358751 + 0.933433i \(0.383203\pi\)
\(264\) 1.17326e8 0.392446
\(265\) 1.06555e7 0.0351734
\(266\) 3.83050e8 1.24787
\(267\) 6.61081e8 2.12552
\(268\) 1.07169e7 0.0340092
\(269\) 9.94546e7 0.311524 0.155762 0.987795i \(-0.450217\pi\)
0.155762 + 0.987795i \(0.450217\pi\)
\(270\) 3.25110e7 0.100521
\(271\) −5.89823e8 −1.80023 −0.900117 0.435648i \(-0.856519\pi\)
−0.900117 + 0.435648i \(0.856519\pi\)
\(272\) 2.84392e7 0.0856891
\(273\) −4.56576e8 −1.35814
\(274\) −4.62960e8 −1.35962
\(275\) 9.91645e7 0.287536
\(276\) −2.73151e7 −0.0782025
\(277\) 5.73183e8 1.62037 0.810185 0.586174i \(-0.199367\pi\)
0.810185 + 0.586174i \(0.199367\pi\)
\(278\) −3.16458e8 −0.883403
\(279\) 2.41068e8 0.664545
\(280\) 6.21071e7 0.169078
\(281\) 2.95626e8 0.794824 0.397412 0.917640i \(-0.369908\pi\)
0.397412 + 0.917640i \(0.369908\pi\)
\(282\) −4.48375e8 −1.19061
\(283\) −3.02985e8 −0.794636 −0.397318 0.917681i \(-0.630059\pi\)
−0.397318 + 0.917681i \(0.630059\pi\)
\(284\) 2.55185e7 0.0661061
\(285\) −1.78007e8 −0.455490
\(286\) 1.61488e8 0.408188
\(287\) −3.24403e8 −0.810026
\(288\) 2.24829e7 0.0554598
\(289\) −4.07026e8 −0.991926
\(290\) −5.90249e7 −0.142116
\(291\) −2.35862e8 −0.561090
\(292\) −1.79173e7 −0.0421145
\(293\) 7.64795e8 1.77627 0.888133 0.459586i \(-0.152002\pi\)
0.888133 + 0.459586i \(0.152002\pi\)
\(294\) −2.21718e8 −0.508846
\(295\) 1.53045e8 0.347090
\(296\) −1.57118e8 −0.352131
\(297\) 6.50177e7 0.144007
\(298\) 5.03843e7 0.110291
\(299\) −8.84848e8 −1.91434
\(300\) 2.52306e7 0.0539514
\(301\) 5.84445e8 1.23527
\(302\) 5.73748e8 1.19866
\(303\) −4.87708e7 −0.100719
\(304\) −7.75211e8 −1.58257
\(305\) 1.40934e6 0.00284425
\(306\) −2.75320e7 −0.0549305
\(307\) 2.50216e8 0.493550 0.246775 0.969073i \(-0.420629\pi\)
0.246775 + 0.969073i \(0.420629\pi\)
\(308\) 5.27746e6 0.0102919
\(309\) 4.47581e7 0.0863011
\(310\) −1.17309e8 −0.223648
\(311\) −1.10731e8 −0.208741 −0.104370 0.994538i \(-0.533283\pi\)
−0.104370 + 0.994538i \(0.533283\pi\)
\(312\) 9.67008e8 1.80256
\(313\) −5.21969e8 −0.962143 −0.481071 0.876681i \(-0.659752\pi\)
−0.481071 + 0.876681i \(0.659752\pi\)
\(314\) 5.55187e8 1.01201
\(315\) −5.74527e7 −0.103568
\(316\) −2.52982e7 −0.0451008
\(317\) −6.18490e8 −1.09050 −0.545250 0.838274i \(-0.683565\pi\)
−0.545250 + 0.838274i \(0.683565\pi\)
\(318\) −1.16761e8 −0.203611
\(319\) −1.18042e8 −0.203596
\(320\) −1.31292e8 −0.223981
\(321\) −5.78681e8 −0.976498
\(322\) 6.22732e8 1.03945
\(323\) −9.03053e7 −0.149109
\(324\) 3.35321e7 0.0547713
\(325\) 8.17322e8 1.32069
\(326\) 3.46264e8 0.553535
\(327\) 3.88871e6 0.00615019
\(328\) 6.87072e8 1.07509
\(329\) −4.74668e8 −0.734860
\(330\) 5.28147e7 0.0809014
\(331\) 9.84142e8 1.49163 0.745813 0.666156i \(-0.232061\pi\)
0.745813 + 0.666156i \(0.232061\pi\)
\(332\) −1.55801e7 −0.0233662
\(333\) 1.45343e8 0.215695
\(334\) 3.65272e7 0.0536418
\(335\) 1.13540e8 0.165002
\(336\) −6.50295e8 −0.935239
\(337\) 8.42573e6 0.0119923 0.00599616 0.999982i \(-0.498091\pi\)
0.00599616 + 0.999982i \(0.498091\pi\)
\(338\) 6.37012e8 0.897303
\(339\) −9.42966e8 −1.31461
\(340\) −622130. −0.000858430 0
\(341\) −2.34602e8 −0.320400
\(342\) 7.50484e8 1.01450
\(343\) −8.09610e8 −1.08329
\(344\) −1.23783e9 −1.63948
\(345\) −2.89389e8 −0.379415
\(346\) 1.95326e8 0.253509
\(347\) 3.48322e8 0.447536 0.223768 0.974642i \(-0.428164\pi\)
0.223768 + 0.974642i \(0.428164\pi\)
\(348\) −3.00336e7 −0.0382015
\(349\) 7.40547e8 0.932532 0.466266 0.884645i \(-0.345599\pi\)
0.466266 + 0.884645i \(0.345599\pi\)
\(350\) −5.75209e8 −0.717112
\(351\) 5.35881e8 0.661445
\(352\) −2.18799e7 −0.0267391
\(353\) 2.96936e8 0.359295 0.179647 0.983731i \(-0.442504\pi\)
0.179647 + 0.983731i \(0.442504\pi\)
\(354\) −1.67703e9 −2.00923
\(355\) 2.70355e8 0.320727
\(356\) −6.29800e7 −0.0739823
\(357\) −7.57537e7 −0.0881181
\(358\) 2.75092e8 0.316874
\(359\) −4.98228e8 −0.568326 −0.284163 0.958776i \(-0.591716\pi\)
−0.284163 + 0.958776i \(0.591716\pi\)
\(360\) 1.21682e8 0.137458
\(361\) 1.56772e9 1.75386
\(362\) −1.77124e7 −0.0196244
\(363\) 1.05622e8 0.115900
\(364\) 4.34972e7 0.0472723
\(365\) −1.89824e8 −0.204327
\(366\) −1.54432e7 −0.0164647
\(367\) −1.05029e9 −1.10911 −0.554557 0.832146i \(-0.687112\pi\)
−0.554557 + 0.832146i \(0.687112\pi\)
\(368\) −1.26028e9 −1.31825
\(369\) −6.35582e8 −0.658536
\(370\) −7.07273e7 −0.0725907
\(371\) −1.23608e8 −0.125672
\(372\) −5.96902e7 −0.0601177
\(373\) −2.53790e8 −0.253217 −0.126609 0.991953i \(-0.540409\pi\)
−0.126609 + 0.991953i \(0.540409\pi\)
\(374\) 2.67936e7 0.0264839
\(375\) 5.47601e8 0.536235
\(376\) 1.00533e9 0.975326
\(377\) −9.72912e8 −0.935145
\(378\) −3.77138e8 −0.359153
\(379\) 9.42700e8 0.889480 0.444740 0.895660i \(-0.353296\pi\)
0.444740 + 0.895660i \(0.353296\pi\)
\(380\) 1.69584e7 0.0158541
\(381\) 1.27678e9 1.18271
\(382\) −1.48563e9 −1.36361
\(383\) 9.93096e8 0.903224 0.451612 0.892214i \(-0.350849\pi\)
0.451612 + 0.892214i \(0.350849\pi\)
\(384\) 1.31321e9 1.18352
\(385\) 5.59119e7 0.0499335
\(386\) −1.85111e9 −1.63823
\(387\) 1.14506e9 1.00425
\(388\) 2.24702e7 0.0195297
\(389\) 1.85245e9 1.59559 0.797797 0.602926i \(-0.205998\pi\)
0.797797 + 0.602926i \(0.205998\pi\)
\(390\) 4.35303e8 0.371591
\(391\) −1.46811e8 −0.124205
\(392\) 4.97128e8 0.416838
\(393\) −3.22667e8 −0.268152
\(394\) −9.04265e8 −0.744833
\(395\) −2.68021e8 −0.218816
\(396\) 1.03398e7 0.00836716
\(397\) −9.21943e8 −0.739499 −0.369749 0.929132i \(-0.620556\pi\)
−0.369749 + 0.929132i \(0.620556\pi\)
\(398\) 2.26036e9 1.79716
\(399\) 2.06494e9 1.62743
\(400\) 1.16410e9 0.909452
\(401\) 8.72543e8 0.675743 0.337872 0.941192i \(-0.390293\pi\)
0.337872 + 0.941192i \(0.390293\pi\)
\(402\) −1.24414e9 −0.955163
\(403\) −1.93361e9 −1.47164
\(404\) 4.64631e6 0.00350569
\(405\) 3.55255e8 0.265734
\(406\) 6.84709e8 0.507767
\(407\) −1.41445e8 −0.103994
\(408\) 1.60443e8 0.116953
\(409\) 3.83123e8 0.276890 0.138445 0.990370i \(-0.455790\pi\)
0.138445 + 0.990370i \(0.455790\pi\)
\(410\) 3.09288e8 0.221626
\(411\) −2.49572e9 −1.77316
\(412\) −4.26402e6 −0.00300386
\(413\) −1.77538e9 −1.24012
\(414\) 1.22008e9 0.845057
\(415\) −1.65063e8 −0.113366
\(416\) −1.80336e8 −0.122816
\(417\) −1.70595e9 −1.15210
\(418\) −7.30357e8 −0.489123
\(419\) −1.25662e9 −0.834552 −0.417276 0.908780i \(-0.637015\pi\)
−0.417276 + 0.908780i \(0.637015\pi\)
\(420\) 1.42257e7 0.00936920
\(421\) −1.19966e9 −0.783560 −0.391780 0.920059i \(-0.628141\pi\)
−0.391780 + 0.920059i \(0.628141\pi\)
\(422\) −1.26214e9 −0.817552
\(423\) −9.29986e8 −0.597427
\(424\) 2.61796e8 0.166795
\(425\) 1.35607e8 0.0856884
\(426\) −2.96249e9 −1.85662
\(427\) −1.63489e7 −0.0101622
\(428\) 5.51299e7 0.0339887
\(429\) 8.70549e8 0.532344
\(430\) −5.57214e8 −0.337973
\(431\) 3.22074e9 1.93770 0.968848 0.247655i \(-0.0796600\pi\)
0.968848 + 0.247655i \(0.0796600\pi\)
\(432\) 7.63247e8 0.455483
\(433\) −2.53616e9 −1.50130 −0.750652 0.660697i \(-0.770261\pi\)
−0.750652 + 0.660697i \(0.770261\pi\)
\(434\) 1.36082e9 0.799074
\(435\) −3.18190e8 −0.185342
\(436\) −370470. −0.000214068 0
\(437\) 4.00186e9 2.29391
\(438\) 2.08004e9 1.18280
\(439\) 1.18782e9 0.670079 0.335039 0.942204i \(-0.391250\pi\)
0.335039 + 0.942204i \(0.391250\pi\)
\(440\) −1.18419e8 −0.0662730
\(441\) −4.59873e8 −0.255330
\(442\) 2.20835e8 0.121644
\(443\) −9.76489e8 −0.533647 −0.266824 0.963745i \(-0.585974\pi\)
−0.266824 + 0.963745i \(0.585974\pi\)
\(444\) −3.59881e7 −0.0195128
\(445\) −6.67240e8 −0.358940
\(446\) 2.33077e9 1.24402
\(447\) 2.71611e8 0.143837
\(448\) 1.52303e9 0.800266
\(449\) −2.52186e9 −1.31480 −0.657398 0.753543i \(-0.728343\pi\)
−0.657398 + 0.753543i \(0.728343\pi\)
\(450\) −1.12697e9 −0.582999
\(451\) 6.18536e8 0.317503
\(452\) 8.98347e7 0.0457572
\(453\) 3.09295e9 1.56325
\(454\) 3.04713e9 1.52826
\(455\) 4.60830e8 0.229351
\(456\) −4.37344e9 −2.15996
\(457\) −2.36676e9 −1.15997 −0.579987 0.814626i \(-0.696942\pi\)
−0.579987 + 0.814626i \(0.696942\pi\)
\(458\) 2.73105e9 1.32831
\(459\) 8.89117e7 0.0429155
\(460\) 2.75696e7 0.0132062
\(461\) −4.52148e8 −0.214945 −0.107472 0.994208i \(-0.534276\pi\)
−0.107472 + 0.994208i \(0.534276\pi\)
\(462\) −6.12668e8 −0.289054
\(463\) −1.36961e9 −0.641302 −0.320651 0.947197i \(-0.603902\pi\)
−0.320651 + 0.947197i \(0.603902\pi\)
\(464\) −1.38570e9 −0.643958
\(465\) −6.32386e8 −0.291673
\(466\) −1.59059e9 −0.728128
\(467\) −1.76054e7 −0.00799902 −0.00399951 0.999992i \(-0.501273\pi\)
−0.00399951 + 0.999992i \(0.501273\pi\)
\(468\) 8.52212e7 0.0384315
\(469\) −1.31710e9 −0.589539
\(470\) 4.52552e8 0.201060
\(471\) 2.99289e9 1.31983
\(472\) 3.76017e9 1.64592
\(473\) −1.11435e9 −0.484183
\(474\) 2.93691e9 1.26668
\(475\) −3.69646e9 −1.58255
\(476\) 7.21692e6 0.00306710
\(477\) −2.42176e8 −0.102169
\(478\) −1.16039e9 −0.485968
\(479\) 1.20785e9 0.502154 0.251077 0.967967i \(-0.419215\pi\)
0.251077 + 0.967967i \(0.419215\pi\)
\(480\) −5.89788e7 −0.0243417
\(481\) −1.16580e9 −0.477659
\(482\) −8.70838e8 −0.354220
\(483\) 3.35701e9 1.35562
\(484\) −1.00625e7 −0.00403409
\(485\) 2.38059e8 0.0947522
\(486\) −2.71124e9 −1.07138
\(487\) 1.01854e7 0.00399600 0.00199800 0.999998i \(-0.499364\pi\)
0.00199800 + 0.999998i \(0.499364\pi\)
\(488\) 3.46262e7 0.0134876
\(489\) 1.86663e9 0.721901
\(490\) 2.23784e8 0.0859297
\(491\) 2.93964e9 1.12075 0.560375 0.828239i \(-0.310657\pi\)
0.560375 + 0.828239i \(0.310657\pi\)
\(492\) 1.57375e8 0.0595742
\(493\) −1.61422e8 −0.0606736
\(494\) −6.01966e9 −2.24661
\(495\) 1.09544e8 0.0405950
\(496\) −2.75401e9 −1.01340
\(497\) −3.13621e9 −1.14593
\(498\) 1.80872e9 0.656250
\(499\) 3.42779e9 1.23499 0.617493 0.786576i \(-0.288148\pi\)
0.617493 + 0.786576i \(0.288148\pi\)
\(500\) −5.21690e7 −0.0186646
\(501\) 1.96910e8 0.0699577
\(502\) −1.63376e9 −0.576403
\(503\) −1.81978e9 −0.637573 −0.318786 0.947827i \(-0.603275\pi\)
−0.318786 + 0.947827i \(0.603275\pi\)
\(504\) −1.41156e9 −0.491124
\(505\) 4.92252e7 0.0170085
\(506\) −1.18736e9 −0.407431
\(507\) 3.43399e9 1.17023
\(508\) −1.21637e8 −0.0411663
\(509\) −2.42087e9 −0.813691 −0.406846 0.913497i \(-0.633371\pi\)
−0.406846 + 0.913497i \(0.633371\pi\)
\(510\) 7.22241e7 0.0241094
\(511\) 2.20202e9 0.730043
\(512\) −3.21375e9 −1.05820
\(513\) −2.42361e9 −0.792595
\(514\) 1.85841e9 0.603628
\(515\) −4.51751e7 −0.0145738
\(516\) −2.83527e8 −0.0908490
\(517\) 9.05045e8 0.288040
\(518\) 8.20460e8 0.259360
\(519\) 1.05296e9 0.330618
\(520\) −9.76018e8 −0.304401
\(521\) 2.08008e9 0.644390 0.322195 0.946673i \(-0.395579\pi\)
0.322195 + 0.946673i \(0.395579\pi\)
\(522\) 1.34150e9 0.412806
\(523\) 3.00947e8 0.0919887 0.0459944 0.998942i \(-0.485354\pi\)
0.0459944 + 0.998942i \(0.485354\pi\)
\(524\) 3.07399e7 0.00933347
\(525\) −3.10082e9 −0.935232
\(526\) 2.34109e9 0.701403
\(527\) −3.20818e8 −0.0954821
\(528\) 1.23991e9 0.366582
\(529\) 3.10108e9 0.910789
\(530\) 1.17848e8 0.0343841
\(531\) −3.47837e9 −1.00820
\(532\) −1.96723e8 −0.0566453
\(533\) 5.09802e9 1.45833
\(534\) 7.31144e9 2.07782
\(535\) 5.84072e8 0.164903
\(536\) 2.78955e9 0.782452
\(537\) 1.48296e9 0.413256
\(538\) 1.09995e9 0.304534
\(539\) 4.47539e8 0.123103
\(540\) −1.66967e7 −0.00456301
\(541\) −5.12243e8 −0.139087 −0.0695433 0.997579i \(-0.522154\pi\)
−0.0695433 + 0.997579i \(0.522154\pi\)
\(542\) −6.52334e9 −1.75984
\(543\) −9.54836e7 −0.0255935
\(544\) −2.99208e7 −0.00796850
\(545\) −3.92494e6 −0.00103859
\(546\) −5.04966e9 −1.32766
\(547\) −4.24814e9 −1.10979 −0.554897 0.831919i \(-0.687243\pi\)
−0.554897 + 0.831919i \(0.687243\pi\)
\(548\) 2.37762e8 0.0617179
\(549\) −3.20312e7 −0.00826172
\(550\) 1.09674e9 0.281084
\(551\) 4.40015e9 1.12056
\(552\) −7.10999e9 −1.79921
\(553\) 3.10913e9 0.781810
\(554\) 6.33931e9 1.58401
\(555\) −3.81275e8 −0.0946702
\(556\) 1.62523e8 0.0401009
\(557\) −4.61753e9 −1.13218 −0.566091 0.824343i \(-0.691545\pi\)
−0.566091 + 0.824343i \(0.691545\pi\)
\(558\) 2.66617e9 0.649633
\(559\) −9.18460e9 −2.22392
\(560\) 6.56353e8 0.157935
\(561\) 1.44439e8 0.0345393
\(562\) 3.26958e9 0.776988
\(563\) 7.29234e9 1.72222 0.861108 0.508422i \(-0.169771\pi\)
0.861108 + 0.508422i \(0.169771\pi\)
\(564\) 2.30272e8 0.0540460
\(565\) 9.51751e8 0.222000
\(566\) −3.35096e9 −0.776805
\(567\) −4.12108e9 −0.949445
\(568\) 6.64236e9 1.52091
\(569\) −8.21738e8 −0.186999 −0.0934997 0.995619i \(-0.529805\pi\)
−0.0934997 + 0.995619i \(0.529805\pi\)
\(570\) −1.96872e9 −0.445270
\(571\) −1.38125e9 −0.310490 −0.155245 0.987876i \(-0.549617\pi\)
−0.155245 + 0.987876i \(0.549617\pi\)
\(572\) −8.29357e7 −0.0185291
\(573\) −8.00871e9 −1.77837
\(574\) −3.58785e9 −0.791849
\(575\) −6.00941e9 −1.31824
\(576\) 2.98396e9 0.650601
\(577\) 4.15413e9 0.900254 0.450127 0.892965i \(-0.351379\pi\)
0.450127 + 0.892965i \(0.351379\pi\)
\(578\) −4.50164e9 −0.969668
\(579\) −9.97890e9 −2.13652
\(580\) 3.03134e7 0.00645115
\(581\) 1.91479e9 0.405046
\(582\) −2.60860e9 −0.548500
\(583\) 2.35681e8 0.0492590
\(584\) −4.66378e9 −0.968932
\(585\) 9.02874e8 0.186458
\(586\) 8.45850e9 1.73641
\(587\) 7.46108e9 1.52254 0.761269 0.648436i \(-0.224577\pi\)
0.761269 + 0.648436i \(0.224577\pi\)
\(588\) 1.13868e8 0.0230983
\(589\) 8.74505e9 1.76343
\(590\) 1.69265e9 0.339302
\(591\) −4.87469e9 −0.971385
\(592\) −1.66044e9 −0.328924
\(593\) −5.81111e9 −1.14437 −0.572187 0.820123i \(-0.693905\pi\)
−0.572187 + 0.820123i \(0.693905\pi\)
\(594\) 7.19085e8 0.140776
\(595\) 7.64595e7 0.0148806
\(596\) −2.58759e7 −0.00500649
\(597\) 1.21851e10 2.34379
\(598\) −9.78627e9 −1.87139
\(599\) −6.11327e9 −1.16220 −0.581099 0.813833i \(-0.697377\pi\)
−0.581099 + 0.813833i \(0.697377\pi\)
\(600\) 6.56740e9 1.24126
\(601\) 5.94867e9 1.11779 0.558893 0.829240i \(-0.311226\pi\)
0.558893 + 0.829240i \(0.311226\pi\)
\(602\) 6.46387e9 1.20755
\(603\) −2.58050e9 −0.479285
\(604\) −2.94660e8 −0.0544116
\(605\) −1.06607e8 −0.0195722
\(606\) −5.39397e8 −0.0984587
\(607\) −1.95313e9 −0.354463 −0.177232 0.984169i \(-0.556714\pi\)
−0.177232 + 0.984169i \(0.556714\pi\)
\(608\) 8.15597e8 0.147168
\(609\) 3.69111e9 0.662212
\(610\) 1.55871e7 0.00278042
\(611\) 7.45945e9 1.32301
\(612\) 1.41396e7 0.00249349
\(613\) −3.31869e9 −0.581908 −0.290954 0.956737i \(-0.593973\pi\)
−0.290954 + 0.956737i \(0.593973\pi\)
\(614\) 2.76735e9 0.482475
\(615\) 1.66731e9 0.289036
\(616\) 1.37370e9 0.236788
\(617\) 2.71103e9 0.464661 0.232330 0.972637i \(-0.425365\pi\)
0.232330 + 0.972637i \(0.425365\pi\)
\(618\) 4.95017e8 0.0843646
\(619\) 1.20094e9 0.203519 0.101759 0.994809i \(-0.467553\pi\)
0.101759 + 0.994809i \(0.467553\pi\)
\(620\) 6.02463e7 0.0101522
\(621\) −3.94010e9 −0.660217
\(622\) −1.22467e9 −0.204057
\(623\) 7.74020e9 1.28246
\(624\) 1.02194e10 1.68376
\(625\) 5.26790e9 0.863093
\(626\) −5.77289e9 −0.940553
\(627\) −3.93719e9 −0.637896
\(628\) −2.85127e8 −0.0459388
\(629\) −1.93426e8 −0.0309912
\(630\) −6.35418e8 −0.101244
\(631\) −6.09708e9 −0.966093 −0.483047 0.875595i \(-0.660470\pi\)
−0.483047 + 0.875595i \(0.660470\pi\)
\(632\) −6.58501e9 −1.03764
\(633\) −6.80394e9 −1.06622
\(634\) −6.84040e9 −1.06603
\(635\) −1.28868e9 −0.199726
\(636\) 5.99647e7 0.00924264
\(637\) 3.68865e9 0.565431
\(638\) −1.30553e9 −0.199028
\(639\) −6.14458e9 −0.931620
\(640\) −1.32544e9 −0.199862
\(641\) −7.99109e9 −1.19840 −0.599201 0.800598i \(-0.704515\pi\)
−0.599201 + 0.800598i \(0.704515\pi\)
\(642\) −6.40012e9 −0.954587
\(643\) −7.57666e7 −0.0112393 −0.00561966 0.999984i \(-0.501789\pi\)
−0.00561966 + 0.999984i \(0.501789\pi\)
\(644\) −3.19816e8 −0.0471846
\(645\) −3.00382e9 −0.440773
\(646\) −9.98762e8 −0.145763
\(647\) −1.01975e10 −1.48023 −0.740116 0.672479i \(-0.765229\pi\)
−0.740116 + 0.672479i \(0.765229\pi\)
\(648\) 8.72825e9 1.26013
\(649\) 3.38509e9 0.486086
\(650\) 9.03945e9 1.29106
\(651\) 7.33589e9 1.04212
\(652\) −1.77831e8 −0.0251270
\(653\) −1.53376e9 −0.215556 −0.107778 0.994175i \(-0.534374\pi\)
−0.107778 + 0.994175i \(0.534374\pi\)
\(654\) 4.30085e7 0.00601218
\(655\) 3.25673e8 0.0452832
\(656\) 7.26104e9 1.00423
\(657\) 4.31427e9 0.593511
\(658\) −5.24975e9 −0.718370
\(659\) −7.32323e9 −0.996790 −0.498395 0.866950i \(-0.666077\pi\)
−0.498395 + 0.866950i \(0.666077\pi\)
\(660\) −2.71241e7 −0.00367241
\(661\) −7.01205e9 −0.944365 −0.472183 0.881501i \(-0.656534\pi\)
−0.472183 + 0.881501i \(0.656534\pi\)
\(662\) 1.08844e10 1.45815
\(663\) 1.19047e9 0.158644
\(664\) −4.05544e9 −0.537588
\(665\) −2.08418e9 −0.274826
\(666\) 1.60747e9 0.210855
\(667\) 7.15340e9 0.933410
\(668\) −1.87593e7 −0.00243500
\(669\) 1.25647e10 1.62241
\(670\) 1.25573e9 0.161300
\(671\) 3.11722e7 0.00398326
\(672\) 6.84174e8 0.0869709
\(673\) −4.37758e9 −0.553582 −0.276791 0.960930i \(-0.589271\pi\)
−0.276791 + 0.960930i \(0.589271\pi\)
\(674\) 9.31872e7 0.0117232
\(675\) 3.63942e9 0.455479
\(676\) −3.27150e8 −0.0407318
\(677\) −1.42594e10 −1.76620 −0.883099 0.469186i \(-0.844547\pi\)
−0.883099 + 0.469186i \(0.844547\pi\)
\(678\) −1.04290e10 −1.28511
\(679\) −2.76157e9 −0.338541
\(680\) −1.61938e8 −0.0197500
\(681\) 1.64264e10 1.99309
\(682\) −2.59466e9 −0.313210
\(683\) −4.51198e9 −0.541870 −0.270935 0.962598i \(-0.587333\pi\)
−0.270935 + 0.962598i \(0.587333\pi\)
\(684\) −3.85426e8 −0.0460516
\(685\) 2.51897e9 0.299437
\(686\) −8.95416e9 −1.05899
\(687\) 1.47225e10 1.73234
\(688\) −1.30815e10 −1.53143
\(689\) 1.94250e9 0.226253
\(690\) −3.20059e9 −0.370902
\(691\) 9.24446e9 1.06588 0.532940 0.846153i \(-0.321087\pi\)
0.532940 + 0.846153i \(0.321087\pi\)
\(692\) −1.00314e8 −0.0115077
\(693\) −1.27075e9 −0.145042
\(694\) 3.85238e9 0.437493
\(695\) 1.72185e9 0.194557
\(696\) −7.81762e9 −0.878905
\(697\) 8.45848e8 0.0946188
\(698\) 8.19033e9 0.911606
\(699\) −8.57452e9 −0.949598
\(700\) 2.95410e8 0.0325523
\(701\) 1.80992e9 0.198448 0.0992238 0.995065i \(-0.468364\pi\)
0.0992238 + 0.995065i \(0.468364\pi\)
\(702\) 5.92676e9 0.646602
\(703\) 5.27253e9 0.572368
\(704\) −2.90394e9 −0.313677
\(705\) 2.43961e9 0.262215
\(706\) 3.28406e9 0.351233
\(707\) −5.71028e8 −0.0607701
\(708\) 8.61272e8 0.0912061
\(709\) 5.14612e9 0.542273 0.271137 0.962541i \(-0.412600\pi\)
0.271137 + 0.962541i \(0.412600\pi\)
\(710\) 2.99009e9 0.313530
\(711\) 6.09152e9 0.635597
\(712\) −1.63934e10 −1.70212
\(713\) 1.42170e10 1.46891
\(714\) −8.37823e8 −0.0861408
\(715\) −8.78660e8 −0.0898979
\(716\) −1.41279e8 −0.0143841
\(717\) −6.25542e9 −0.633782
\(718\) −5.51032e9 −0.555573
\(719\) 6.56632e9 0.658827 0.329413 0.944186i \(-0.393149\pi\)
0.329413 + 0.944186i \(0.393149\pi\)
\(720\) 1.28595e9 0.128399
\(721\) 5.24046e8 0.0520710
\(722\) 1.73387e10 1.71450
\(723\) −4.69450e9 −0.461961
\(724\) 9.09655e6 0.000890824 0
\(725\) −6.60750e9 −0.643953
\(726\) 1.16817e9 0.113299
\(727\) 4.82284e9 0.465514 0.232757 0.972535i \(-0.425225\pi\)
0.232757 + 0.972535i \(0.425225\pi\)
\(728\) 1.13221e10 1.08760
\(729\) −1.70469e9 −0.162967
\(730\) −2.09942e9 −0.199742
\(731\) −1.52388e9 −0.144291
\(732\) 7.93118e6 0.000747393 0
\(733\) −6.22780e9 −0.584078 −0.292039 0.956406i \(-0.594334\pi\)
−0.292039 + 0.956406i \(0.594334\pi\)
\(734\) −1.16160e10 −1.08423
\(735\) 1.20637e9 0.112066
\(736\) 1.32593e9 0.122588
\(737\) 2.51129e9 0.231079
\(738\) −7.02944e9 −0.643759
\(739\) −2.50070e9 −0.227932 −0.113966 0.993485i \(-0.536355\pi\)
−0.113966 + 0.993485i \(0.536355\pi\)
\(740\) 3.63234e7 0.00329515
\(741\) −3.24506e10 −2.92995
\(742\) −1.36708e9 −0.122852
\(743\) 3.39408e9 0.303571 0.151786 0.988413i \(-0.451498\pi\)
0.151786 + 0.988413i \(0.451498\pi\)
\(744\) −1.55371e10 −1.38313
\(745\) −2.74141e8 −0.0242900
\(746\) −2.80687e9 −0.247535
\(747\) 3.75152e9 0.329295
\(748\) −1.37604e7 −0.00120220
\(749\) −6.77544e9 −0.589184
\(750\) 6.05638e9 0.524202
\(751\) −1.15314e10 −0.993438 −0.496719 0.867911i \(-0.665462\pi\)
−0.496719 + 0.867911i \(0.665462\pi\)
\(752\) 1.06244e10 0.911048
\(753\) −8.80726e9 −0.751724
\(754\) −1.07603e10 −0.914161
\(755\) −3.12177e9 −0.263989
\(756\) 1.93687e8 0.0163032
\(757\) −3.22313e9 −0.270049 −0.135024 0.990842i \(-0.543111\pi\)
−0.135024 + 0.990842i \(0.543111\pi\)
\(758\) 1.04261e10 0.869521
\(759\) −6.40077e9 −0.531356
\(760\) 4.41419e9 0.364757
\(761\) −6.00476e9 −0.493911 −0.246956 0.969027i \(-0.579430\pi\)
−0.246956 + 0.969027i \(0.579430\pi\)
\(762\) 1.41210e10 1.15617
\(763\) 4.55306e7 0.00371080
\(764\) 7.62975e8 0.0618990
\(765\) 1.49802e8 0.0120977
\(766\) 1.09835e10 0.882956
\(767\) 2.79002e10 2.23266
\(768\) −2.12633e9 −0.169382
\(769\) −2.67592e9 −0.212193 −0.106097 0.994356i \(-0.533835\pi\)
−0.106097 + 0.994356i \(0.533835\pi\)
\(770\) 6.18376e8 0.0488130
\(771\) 1.00183e10 0.787230
\(772\) 9.50672e8 0.0743653
\(773\) 8.00647e9 0.623466 0.311733 0.950170i \(-0.399091\pi\)
0.311733 + 0.950170i \(0.399091\pi\)
\(774\) 1.26642e10 0.981715
\(775\) −1.31320e10 −1.01339
\(776\) 5.84888e9 0.449321
\(777\) 4.42292e9 0.338248
\(778\) 2.04878e10 1.55979
\(779\) −2.30566e10 −1.74749
\(780\) −2.23559e8 −0.0168679
\(781\) 5.97978e9 0.449166
\(782\) −1.62371e9 −0.121418
\(783\) −4.33224e9 −0.322512
\(784\) 5.25369e9 0.389366
\(785\) −3.02077e9 −0.222882
\(786\) −3.56864e9 −0.262135
\(787\) 1.09870e9 0.0803465 0.0401733 0.999193i \(-0.487209\pi\)
0.0401733 + 0.999193i \(0.487209\pi\)
\(788\) 4.64404e8 0.0338107
\(789\) 1.26203e10 0.914744
\(790\) −2.96427e9 −0.213906
\(791\) −1.10406e10 −0.793188
\(792\) 2.69140e9 0.192504
\(793\) 2.56923e8 0.0182956
\(794\) −1.01965e10 −0.722905
\(795\) 6.35295e8 0.0448425
\(796\) −1.16085e9 −0.0815795
\(797\) 4.45517e8 0.0311717 0.0155858 0.999879i \(-0.495039\pi\)
0.0155858 + 0.999879i \(0.495039\pi\)
\(798\) 2.28379e10 1.59091
\(799\) 1.23765e9 0.0858387
\(800\) −1.22475e9 −0.0845729
\(801\) 1.51649e10 1.04262
\(802\) 9.65019e9 0.660580
\(803\) −4.19857e9 −0.286152
\(804\) 6.38952e8 0.0433583
\(805\) −3.38829e9 −0.228926
\(806\) −2.13854e10 −1.43862
\(807\) 5.92960e9 0.397162
\(808\) 1.20941e9 0.0806556
\(809\) 1.72932e8 0.0114830 0.00574150 0.999984i \(-0.498172\pi\)
0.00574150 + 0.999984i \(0.498172\pi\)
\(810\) 3.92906e9 0.259771
\(811\) −1.88310e9 −0.123965 −0.0619826 0.998077i \(-0.519742\pi\)
−0.0619826 + 0.998077i \(0.519742\pi\)
\(812\) −3.51646e8 −0.0230494
\(813\) −3.51659e10 −2.29512
\(814\) −1.56436e9 −0.101660
\(815\) −1.88402e9 −0.121909
\(816\) 1.69557e9 0.109245
\(817\) 4.15388e10 2.66487
\(818\) 4.23728e9 0.270677
\(819\) −1.04736e10 −0.666199
\(820\) −1.58841e8 −0.0100604
\(821\) −1.81880e10 −1.14706 −0.573529 0.819186i \(-0.694426\pi\)
−0.573529 + 0.819186i \(0.694426\pi\)
\(822\) −2.76022e10 −1.73338
\(823\) −1.31757e10 −0.823899 −0.411949 0.911207i \(-0.635152\pi\)
−0.411949 + 0.911207i \(0.635152\pi\)
\(824\) −1.10991e9 −0.0691100
\(825\) 5.91230e9 0.366579
\(826\) −1.96354e10 −1.21230
\(827\) 1.60104e10 0.984313 0.492157 0.870507i \(-0.336209\pi\)
0.492157 + 0.870507i \(0.336209\pi\)
\(828\) −6.26595e8 −0.0383602
\(829\) 8.99595e9 0.548411 0.274206 0.961671i \(-0.411585\pi\)
0.274206 + 0.961671i \(0.411585\pi\)
\(830\) −1.82557e9 −0.110822
\(831\) 3.41738e10 2.06581
\(832\) −2.39345e10 −1.44076
\(833\) 6.12009e8 0.0366860
\(834\) −1.88676e10 −1.12625
\(835\) −1.98744e8 −0.0118139
\(836\) 3.75089e8 0.0222031
\(837\) −8.61009e9 −0.507538
\(838\) −1.38980e10 −0.815825
\(839\) 7.43957e9 0.434892 0.217446 0.976072i \(-0.430227\pi\)
0.217446 + 0.976072i \(0.430227\pi\)
\(840\) 3.70290e9 0.215558
\(841\) −9.38453e9 −0.544035
\(842\) −1.32681e10 −0.765977
\(843\) 1.76256e10 1.01332
\(844\) 6.48200e8 0.0371117
\(845\) −3.46599e9 −0.197619
\(846\) −1.02855e10 −0.584022
\(847\) 1.23667e9 0.0699298
\(848\) 2.76668e9 0.155802
\(849\) −1.80643e10 −1.01308
\(850\) 1.49980e9 0.0837656
\(851\) 8.57165e9 0.476772
\(852\) 1.52144e9 0.0842786
\(853\) 2.81819e10 1.55471 0.777353 0.629064i \(-0.216562\pi\)
0.777353 + 0.629064i \(0.216562\pi\)
\(854\) −1.80816e8 −0.00993422
\(855\) −4.08339e9 −0.223429
\(856\) 1.43501e10 0.781980
\(857\) −1.63183e10 −0.885608 −0.442804 0.896618i \(-0.646016\pi\)
−0.442804 + 0.896618i \(0.646016\pi\)
\(858\) 9.62813e9 0.520399
\(859\) 1.52511e10 0.820964 0.410482 0.911869i \(-0.365360\pi\)
0.410482 + 0.911869i \(0.365360\pi\)
\(860\) 2.86168e8 0.0153418
\(861\) −1.93413e10 −1.03270
\(862\) 3.56209e10 1.89422
\(863\) 3.50608e9 0.185688 0.0928440 0.995681i \(-0.470404\pi\)
0.0928440 + 0.995681i \(0.470404\pi\)
\(864\) −8.03011e8 −0.0423568
\(865\) −1.06277e9 −0.0558320
\(866\) −2.80495e10 −1.46762
\(867\) −2.42673e10 −1.26461
\(868\) −6.98877e8 −0.0362729
\(869\) −5.92815e9 −0.306443
\(870\) −3.51913e9 −0.181183
\(871\) 2.06983e10 1.06138
\(872\) −9.64318e7 −0.00492507
\(873\) −5.41056e9 −0.275228
\(874\) 4.42599e10 2.24244
\(875\) 6.41154e9 0.323545
\(876\) −1.06825e9 −0.0536917
\(877\) 1.83413e10 0.918190 0.459095 0.888387i \(-0.348174\pi\)
0.459095 + 0.888387i \(0.348174\pi\)
\(878\) 1.31371e10 0.655043
\(879\) 4.55979e10 2.26456
\(880\) −1.25146e9 −0.0619053
\(881\) 2.35342e10 1.15953 0.579766 0.814783i \(-0.303144\pi\)
0.579766 + 0.814783i \(0.303144\pi\)
\(882\) −5.08612e9 −0.249601
\(883\) −3.39126e10 −1.65767 −0.828837 0.559490i \(-0.810997\pi\)
−0.828837 + 0.559490i \(0.810997\pi\)
\(884\) −1.13414e8 −0.00552186
\(885\) 9.12473e9 0.442505
\(886\) −1.07998e10 −0.521673
\(887\) −1.88887e10 −0.908800 −0.454400 0.890798i \(-0.650146\pi\)
−0.454400 + 0.890798i \(0.650146\pi\)
\(888\) −9.36755e9 −0.448932
\(889\) 1.49491e10 0.713605
\(890\) −7.37956e9 −0.350886
\(891\) 7.85761e9 0.372150
\(892\) −1.19701e9 −0.0564706
\(893\) −3.37365e10 −1.58533
\(894\) 3.00397e9 0.140609
\(895\) −1.49677e9 −0.0697872
\(896\) 1.53756e10 0.714091
\(897\) −5.27556e10 −2.44059
\(898\) −2.78913e10 −1.28529
\(899\) 1.56319e10 0.717553
\(900\) 5.78777e8 0.0264644
\(901\) 3.22294e8 0.0146796
\(902\) 6.84091e9 0.310378
\(903\) 3.48453e10 1.57484
\(904\) 2.33836e10 1.05274
\(905\) 9.63732e7 0.00432201
\(906\) 3.42075e10 1.52817
\(907\) −2.28453e10 −1.01665 −0.508324 0.861166i \(-0.669735\pi\)
−0.508324 + 0.861166i \(0.669735\pi\)
\(908\) −1.56492e9 −0.0693730
\(909\) −1.11878e9 −0.0494049
\(910\) 5.09671e9 0.224205
\(911\) −2.64329e10 −1.15832 −0.579162 0.815212i \(-0.696620\pi\)
−0.579162 + 0.815212i \(0.696620\pi\)
\(912\) −4.62189e10 −2.01761
\(913\) −3.65091e9 −0.158764
\(914\) −2.61760e10 −1.13394
\(915\) 8.40267e7 0.00362613
\(916\) −1.40259e9 −0.0602969
\(917\) −3.77792e9 −0.161793
\(918\) 9.83349e8 0.0419525
\(919\) 1.26026e10 0.535620 0.267810 0.963472i \(-0.413700\pi\)
0.267810 + 0.963472i \(0.413700\pi\)
\(920\) 7.17624e9 0.303836
\(921\) 1.49182e10 0.629227
\(922\) −5.00068e9 −0.210122
\(923\) 4.92858e10 2.06308
\(924\) 3.14648e8 0.0131212
\(925\) −7.91751e9 −0.328922
\(926\) −1.51476e10 −0.626912
\(927\) 1.02673e9 0.0423327
\(928\) 1.45790e9 0.0598837
\(929\) 3.04525e10 1.24614 0.623072 0.782164i \(-0.285884\pi\)
0.623072 + 0.782164i \(0.285884\pi\)
\(930\) −6.99409e9 −0.285129
\(931\) −1.66825e10 −0.677543
\(932\) 8.16879e8 0.0330523
\(933\) −6.60190e9 −0.266124
\(934\) −1.94713e8 −0.00781952
\(935\) −1.45784e8 −0.00583271
\(936\) 2.21827e10 0.884197
\(937\) −9.24061e9 −0.366954 −0.183477 0.983024i \(-0.558735\pi\)
−0.183477 + 0.983024i \(0.558735\pi\)
\(938\) −1.45669e10 −0.576311
\(939\) −3.11204e10 −1.22664
\(940\) −2.32417e8 −0.00912684
\(941\) 3.02061e10 1.18177 0.590883 0.806757i \(-0.298780\pi\)
0.590883 + 0.806757i \(0.298780\pi\)
\(942\) 3.31009e10 1.29021
\(943\) −3.74836e10 −1.45563
\(944\) 3.97378e10 1.53745
\(945\) 2.05201e9 0.0790985
\(946\) −1.23246e10 −0.473318
\(947\) 1.81462e9 0.0694322 0.0347161 0.999397i \(-0.488947\pi\)
0.0347161 + 0.999397i \(0.488947\pi\)
\(948\) −1.50831e9 −0.0574990
\(949\) −3.46049e10 −1.31433
\(950\) −4.08823e10 −1.54704
\(951\) −3.68751e10 −1.39028
\(952\) 1.87853e9 0.0705650
\(953\) 2.33932e10 0.875517 0.437758 0.899093i \(-0.355773\pi\)
0.437758 + 0.899093i \(0.355773\pi\)
\(954\) −2.67843e9 −0.0998760
\(955\) 8.08332e9 0.300316
\(956\) 5.95943e8 0.0220598
\(957\) −7.03781e9 −0.259565
\(958\) 1.33586e10 0.490886
\(959\) −2.92209e10 −1.06986
\(960\) −7.82775e9 −0.285554
\(961\) 3.55504e9 0.129215
\(962\) −1.28936e10 −0.466940
\(963\) −1.32747e10 −0.478996
\(964\) 4.47236e8 0.0160793
\(965\) 1.00719e10 0.360798
\(966\) 3.71280e10 1.32520
\(967\) −3.73590e10 −1.32863 −0.664314 0.747454i \(-0.731276\pi\)
−0.664314 + 0.747454i \(0.731276\pi\)
\(968\) −2.61922e9 −0.0928127
\(969\) −5.38410e9 −0.190099
\(970\) 2.63290e9 0.0926261
\(971\) 2.54149e10 0.890883 0.445442 0.895311i \(-0.353047\pi\)
0.445442 + 0.895311i \(0.353047\pi\)
\(972\) 1.39241e9 0.0486336
\(973\) −1.99740e10 −0.695137
\(974\) 1.12649e8 0.00390633
\(975\) 4.87297e10 1.68375
\(976\) 3.65932e8 0.0125987
\(977\) −1.70188e10 −0.583844 −0.291922 0.956442i \(-0.594295\pi\)
−0.291922 + 0.956442i \(0.594295\pi\)
\(978\) 2.06446e10 0.705702
\(979\) −1.47582e10 −0.502681
\(980\) −1.14929e8 −0.00390066
\(981\) 8.92051e7 0.00301681
\(982\) 3.25119e10 1.09560
\(983\) 2.17173e10 0.729237 0.364619 0.931157i \(-0.381199\pi\)
0.364619 + 0.931157i \(0.381199\pi\)
\(984\) 4.09640e10 1.37063
\(985\) 4.92011e9 0.164039
\(986\) −1.78531e9 −0.0593121
\(987\) −2.83003e10 −0.936872
\(988\) 3.09152e9 0.101982
\(989\) 6.75304e10 2.21979
\(990\) 1.21154e9 0.0396840
\(991\) −4.06405e9 −0.132648 −0.0663240 0.997798i \(-0.521127\pi\)
−0.0663240 + 0.997798i \(0.521127\pi\)
\(992\) 2.89749e9 0.0942391
\(993\) 5.86757e10 1.90167
\(994\) −3.46860e10 −1.12022
\(995\) −1.22986e10 −0.395800
\(996\) −9.28906e8 −0.0297896
\(997\) −4.73391e9 −0.151282 −0.0756410 0.997135i \(-0.524100\pi\)
−0.0756410 + 0.997135i \(0.524100\pi\)
\(998\) 3.79108e10 1.20727
\(999\) −5.19116e9 −0.164735
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 11.8.a.b.1.3 4
3.2 odd 2 99.8.a.g.1.2 4
4.3 odd 2 176.8.a.j.1.1 4
5.4 even 2 275.8.a.b.1.2 4
7.6 odd 2 539.8.a.b.1.3 4
11.10 odd 2 121.8.a.c.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.8.a.b.1.3 4 1.1 even 1 trivial
99.8.a.g.1.2 4 3.2 odd 2
121.8.a.c.1.2 4 11.10 odd 2
176.8.a.j.1.1 4 4.3 odd 2
275.8.a.b.1.2 4 5.4 even 2
539.8.a.b.1.3 4 7.6 odd 2