Properties

Label 11.8.a
Level $11$
Weight $8$
Character orbit 11.a
Rep. character $\chi_{11}(1,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $2$
Sturm bound $8$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 11 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 11.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(8\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(11))\).

Total New Old
Modular forms 8 6 2
Cusp forms 6 6 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(11\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(5\)\(4\)\(1\)\(4\)\(4\)\(0\)\(1\)\(0\)\(1\)
\(-\)\(3\)\(2\)\(1\)\(2\)\(2\)\(0\)\(1\)\(0\)\(1\)

Trace form

\( 6 q - 8 q^{2} - 41 q^{3} + 500 q^{4} + 67 q^{5} + 862 q^{6} - 1058 q^{7} + 60 q^{8} + 1787 q^{9} + 5750 q^{10} - 2662 q^{11} - 28288 q^{12} + 4594 q^{13} - 15236 q^{14} - 6149 q^{15} + 46376 q^{16} + 45832 q^{17}+ \cdots - 2474329 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(11))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 11
11.8.a.a 11.a 1.a $2$ $3.436$ \(\Q(\sqrt{15}) \) None 11.8.a.a \(-8\) \(-6\) \(-470\) \(-1228\) $-$ $\mathrm{SU}(2)$ \(q+(-4+\beta )q^{2}+(-3-6\beta )q^{3}+(-52+\cdots)q^{4}+\cdots\)
11.8.a.b 11.a 1.a $4$ $3.436$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 11.8.a.b \(0\) \(-35\) \(537\) \(170\) $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}+(-9-\beta _{1}-\beta _{2}-\beta _{3})q^{3}+\cdots\)