Defining parameters
| Level: | \( N \) | \(=\) | \( 11 \) |
| Weight: | \( k \) | \(=\) | \( 8 \) |
| Character orbit: | \([\chi]\) | \(=\) | 11.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(8\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(11))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 8 | 6 | 2 |
| Cusp forms | 6 | 6 | 0 |
| Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(11\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(5\) | \(4\) | \(1\) | \(4\) | \(4\) | \(0\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(3\) | \(2\) | \(1\) | \(2\) | \(2\) | \(0\) | \(1\) | \(0\) | \(1\) | |||
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(11))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 11 | |||||||
| 11.8.a.a | $2$ | $3.436$ | \(\Q(\sqrt{15}) \) | None | \(-8\) | \(-6\) | \(-470\) | \(-1228\) | $-$ | \(q+(-4+\beta )q^{2}+(-3-6\beta )q^{3}+(-52+\cdots)q^{4}+\cdots\) | |
| 11.8.a.b | $4$ | $3.436$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(0\) | \(-35\) | \(537\) | \(170\) | $+$ | \(q-\beta _{2}q^{2}+(-9-\beta _{1}-\beta _{2}-\beta _{3})q^{3}+\cdots\) | |