[N,k,chi] = [11,8,Mod(1,11)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(11, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("11.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(11\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} - 558T_{2}^{2} + 140T_{2} + 51744 \)
T2^4 - 558*T2^2 + 140*T2 + 51744
acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(11))\).
$p$
$F_p(T)$
$2$
\( T^{4} - 558 T^{2} + 140 T + 51744 \)
T^4 - 558*T^2 + 140*T + 51744
$3$
\( T^{4} + 35 T^{3} - 4673 T^{2} + \cdots + 1673964 \)
T^4 + 35*T^3 - 4673*T^2 - 85815*T + 1673964
$5$
\( T^{4} - 537 T^{3} + \cdots + 953818350 \)
T^4 - 537*T^3 - 23331*T^2 + 16608845*T + 953818350
$7$
\( T^{4} - 170 T^{3} + \cdots + 87571440704 \)
T^4 - 170*T^3 - 1702596*T^2 + 805753160*T + 87571440704
$11$
\( (T + 1331)^{4} \)
(T + 1331)^4
$13$
\( T^{4} + \cdots - 518474088880000 \)
T^4 - 4250*T^3 - 104641800*T^2 + 636477836000*T - 518474088880000
$17$
\( T^{4} - 54300 T^{3} + \cdots - 58\!\cdots\!56 \)
T^4 - 54300*T^3 + 698589408*T^2 - 1772971365520*T - 5879827097747856
$19$
\( T^{4} - 67844 T^{3} + \cdots - 31\!\cdots\!84 \)
T^4 - 67844*T^3 + 413172576*T^2 + 30781610741376*T - 317889451438377984
$23$
\( T^{4} + 9015 T^{3} + \cdots + 10\!\cdots\!44 \)
T^4 + 9015*T^3 - 7759317813*T^2 - 90969330843035*T + 10761383314658092944
$29$
\( T^{4} - 234078 T^{3} + \cdots - 41\!\cdots\!64 \)
T^4 - 234078*T^3 - 23056317792*T^2 + 7916160291570432*T - 419294927566580465664
$31$
\( T^{4} - 189857 T^{3} + \cdots - 61\!\cdots\!36 \)
T^4 - 189857*T^3 - 963903885*T^2 + 626963624696381*T - 6106433255407770136
$37$
\( T^{4} - 127895 T^{3} + \cdots + 41\!\cdots\!94 \)
T^4 - 127895*T^3 - 244889000967*T^2 - 12335279871678165*T + 4102429081307632130394
$41$
\( T^{4} - 289842 T^{3} + \cdots - 66\!\cdots\!84 \)
T^4 - 289842*T^3 - 166344642192*T^2 + 71235636464687168*T - 6699351297501673181184
$43$
\( T^{4} - 704930 T^{3} + \cdots + 28\!\cdots\!64 \)
T^4 - 704930*T^3 - 242375464716*T^2 + 106782439941219240*T + 2850351339234962448864
$47$
\( T^{4} + 1729080 T^{3} + \cdots - 74\!\cdots\!04 \)
T^4 + 1729080*T^3 + 916748560128*T^2 + 127380976255544320*T - 7421719301300281442304
$53$
\( T^{4} - 1098660 T^{3} + \cdots + 18\!\cdots\!84 \)
T^4 - 1098660*T^3 - 1013868969408*T^2 + 913369177327758480*T + 186437308687455219423984
$59$
\( T^{4} + 4665777 T^{3} + \cdots + 29\!\cdots\!64 \)
T^4 + 4665777*T^3 + 3856725321735*T^2 - 3804638314615815941*T + 293780567541901066316364
$61$
\( T^{4} - 310610 T^{3} + \cdots + 10\!\cdots\!84 \)
T^4 - 310610*T^3 - 2169833492856*T^2 - 6684801231028320*T + 1029307913215079059584
$67$
\( T^{4} + 3368245 T^{3} + \cdots - 84\!\cdots\!64 \)
T^4 + 3368245*T^3 + 1961932676487*T^2 - 2018121250133252705*T - 841372895664191080894364
$71$
\( T^{4} + 3416541 T^{3} + \cdots + 59\!\cdots\!44 \)
T^4 + 3416541*T^3 - 17233021481085*T^2 - 42381209374681164417*T + 59842846007129168321562144
$73$
\( T^{4} - 11466230 T^{3} + \cdots - 60\!\cdots\!76 \)
T^4 - 11466230*T^3 + 39060188842536*T^2 - 21480056586718678240*T - 60018210129095505174760576
$79$
\( T^{4} - 566282 T^{3} + \cdots + 25\!\cdots\!16 \)
T^4 - 566282*T^3 - 22128866924052*T^2 + 15662085774697901128*T + 25734353202870401722585216
$83$
\( T^{4} + 4220790 T^{3} + \cdots + 70\!\cdots\!96 \)
T^4 + 4220790*T^3 - 55496901827772*T^2 - 156150693882894592440*T + 702155789655742391057025696
$89$
\( T^{4} - 18265191 T^{3} + \cdots - 24\!\cdots\!34 \)
T^4 - 18265191*T^3 + 86017581553797*T^2 - 49556488314754857789*T - 241905959662481292757205034
$97$
\( T^{4} - 11425325 T^{3} + \cdots + 46\!\cdots\!46 \)
T^4 - 11425325*T^3 - 118218313347159*T^2 + 945610745170836511345*T + 4638684087239396087570364946
show more
show less