Properties

Label 11.8.a.b
Level $11$
Weight $8$
Character orbit 11.a
Self dual yes
Analytic conductor $3.436$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [11,8,Mod(1,11)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(11, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("11.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 11 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 11.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.43623528033\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 341x^{2} + 1417x - 1412 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + ( - \beta_{3} - \beta_{2} - \beta_1 - 9) q^{3} + (3 \beta_{3} - \beta_{2} + 4 \beta_1 + 152) q^{4} + (3 \beta_{3} - \beta_{2} - 5 \beta_1 + 133) q^{5} + ( - 10 \beta_{3} + 35 \beta_{2} + 10 \beta_1 + 392) q^{6} + ( - 18 \beta_{3} + 34 \beta_{2} - 18 \beta_1 + 38) q^{7} + (42 \beta_{3} - 120 \beta_{2} - 28 \beta_1 - 112) q^{8} + ( - 23 \beta_{3} + 61 \beta_{2} + 41 \beta_1 + 466) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{2} q^{2} + ( - \beta_{3} - \beta_{2} - \beta_1 - 9) q^{3} + (3 \beta_{3} - \beta_{2} + 4 \beta_1 + 152) q^{4} + (3 \beta_{3} - \beta_{2} - 5 \beta_1 + 133) q^{5} + ( - 10 \beta_{3} + 35 \beta_{2} + 10 \beta_1 + 392) q^{6} + ( - 18 \beta_{3} + 34 \beta_{2} - 18 \beta_1 + 38) q^{7} + (42 \beta_{3} - 120 \beta_{2} - 28 \beta_1 - 112) q^{8} + ( - 23 \beta_{3} + 61 \beta_{2} + 41 \beta_1 + 466) q^{9} + (42 \beta_{3} - 103 \beta_{2} + 98 \beta_1 + 392) q^{10} - 1331 q^{11} + ( - 107 \beta_{3} - 239 \beta_{2} - 232 \beta_1 - 8648) q^{12} + (150 \beta_{3} + 250 \beta_{2} - 10 \beta_1 + 1060) q^{13} + ( - 336 \beta_{3} + 482 \beta_{2} - 28 \beta_1 - 7504) q^{14} + (11 \beta_{3} + 419 \beta_{2} + 3 \beta_1 + 1711) q^{15} + (522 \beta_{3} - 34 \beta_{2} + 696 \beta_1 + 13360) q^{16} + (348 \beta_{3} - 472 \beta_{2} + 188 \beta_1 + 13622) q^{17} + ( - 482 \beta_{3} - 680 \beta_{2} - 1002 \beta_1 - 18088) q^{18} + ( - 660 \beta_{3} + 680 \beta_{2} - 100 \beta_1 + 16936) q^{19} + (471 \beta_{3} - 2285 \beta_{2} + 16 \beta_1 + 3976) q^{20} + ( - 94 \beta_{3} - 922 \beta_{2} + 18 \beta_1 + 25570) q^{21} + 1331 \beta_{2} q^{22} + ( - 789 \beta_{3} - 3029 \beta_{2} + 211 \beta_1 - 2201) q^{23} + (606 \beta_{3} + 8568 \beta_{2} + 2068 \beta_1 + 35728) q^{24} + (765 \beta_{3} + 2153 \beta_{2} - 2211 \beta_1 + 5080) q^{25} + (1200 \beta_{3} - 2620 \beta_{2} + 340 \beta_1 - 77840) q^{26} + (1121 \beta_{3} - 4567 \beta_{2} + 81 \beta_1 - 30731) q^{27} + ( - 3510 \beta_{3} + 8394 \beta_{2} - 1920 \beta_1 - 119440) q^{28} + (66 \beta_{3} - 1662 \beta_{2} + 3778 \beta_1 + 59464) q^{29} + ( - 1114 \beta_{3} - 1477 \beta_{2} - 1630 \beta_1 - 118104) q^{30} + ( - 1533 \beta_{3} - 3389 \beta_{2} - 709 \beta_1 + 47287) q^{31} + (1512 \beta_{3} - 14564 \beta_{2} - 1848 \beta_1 - 44352) q^{32} + (1331 \beta_{3} + 1331 \beta_{2} + 1331 \beta_1 + 11979) q^{33} + (5940 \beta_{3} - 21250 \beta_{2} + 2040 \beta_1 + 102144) q^{34} + ( - 1386 \beta_{3} + 12698 \beta_{2} - 6042 \beta_1 + 37014) q^{35} + ( - 1282 \beta_{3} + 29894 \beta_{2} + 7644 \beta_1 + 213856) q^{36} + ( - 3555 \beta_{3} + 14753 \beta_{2} + 4485 \beta_1 + 33095) q^{37} + ( - 10620 \beta_{3} - 6276 \beta_{2} - 6600 \beta_1 - 147840) q^{38} + (6500 \beta_{3} - 1000 \beta_{2} - 3020 \beta_1 - 253420) q^{39} + (7602 \beta_{3} + 576 \beta_{2} + 140 \beta_1 + 562352) q^{40} + (7374 \beta_{3} + 8162 \beta_{2} + 1582 \beta_1 + 72856) q^{41} + (1544 \beta_{3} - 25522 \beta_{2} + 2684 \beta_1 + 262416) q^{42} + ( - 12282 \beta_{3} + 8126 \beta_{2} - 1082 \beta_1 + 175962) q^{43} + ( - 3993 \beta_{3} + 1331 \beta_{2} - 5324 \beta_1 - 202312) q^{44} + ( - 3752 \beta_{3} - 13808 \beta_{2} + 4984 \beta_1 - 485442) q^{45} + ( - 1170 \beta_{3} + 6475 \beta_{2} + 2850 \beta_1 + 880488) q^{46} + (6312 \beta_{3} - 10160 \beta_{2} + 6712 \beta_1 - 430592) q^{47} + ( - 4130 \beta_{3} - 33398 \beta_{2} - 28680 \beta_1 - 1441840) q^{48} + (12180 \beta_{3} - 34860 \beta_{2} - 1820 \beta_1 + 34525) q^{49} + (3486 \beta_{3} + 18082 \beta_{2} + 28462 \beta_1 - 521864) q^{50} + ( - 8926 \beta_{3} + 8342 \beta_{2} - 12718 \beta_1 - 515094) q^{51} + (4260 \beta_{3} + 22860 \beta_{2} + 16600 \beta_1 + 511680) q^{52} + ( - 2220 \beta_{3} + 50316 \beta_{2} - 7580 \beta_1 + 272770) q^{53} + (28274 \beta_{3} + 10457 \beta_{2} + 26102 \beta_1 + 1211448) q^{54} + ( - 3993 \beta_{3} + 1331 \beta_{2} + 6655 \beta_1 - 177023) q^{55} + ( - 27804 \beta_{3} + 138648 \beta_{2} - 31192 \beta_1 - 1085728) q^{56} + ( - 30816 \beta_{3} - 69276 \beta_{2} - 22656 \beta_1 + 385896) q^{57} + (5844 \beta_{3} - 114876 \beta_{2} - 45716 \beta_1 + 250096) q^{58} + (25797 \beta_{3} - 4979 \beta_{2} + 36901 \beta_1 - 1157219) q^{59} + ( - 11459 \beta_{3} + 100297 \beta_{2} + 19432 \beta_1 + 348216) q^{60} + (11646 \beta_{3} - 56962 \beta_{2} - 3522 \beta_1 + 76772) q^{61} + ( - 9762 \beta_{3} - 20821 \beta_{2} + 11218 \beta_1 + 1074472) q^{62} + (1276 \beta_{3} - 74012 \beta_{2} + 22396 \beta_1 + 126324) q^{63} + ( - 3468 \beta_{3} + 40356 \beta_{2} + 7136 \beta_1 + 2386656) q^{64} + ( - 480 \beta_{3} + 26300 \beta_{2} - 50080 \beta_1 + 1119020) q^{65} + (13310 \beta_{3} - 46585 \beta_{2} - 13310 \beta_1 - 521752) q^{66} + (23241 \beta_{3} - 36015 \beta_{2} - 3239 \beta_1 - 842871) q^{67} + (96426 \beta_{3} - 168758 \beta_{2} + 79896 \beta_1 + 3759504) q^{68} + ( - 56447 \beta_{3} + 50629 \beta_{2} + 25849 \beta_1 + 1795197) q^{69} + ( - 56112 \beta_{3} + 78290 \beta_{2} + 22708 \beta_1 - 3139472) q^{70} + (27849 \beta_{3} + 178977 \beta_{2} + 12817 \beta_1 - 850931) q^{71} + ( - 44652 \beta_{3} - 187272 \beta_{2} - 108592 \beta_1 - 6411328) q^{72} + ( - 28806 \beta_{3} + 128398 \beta_{2} - 15206 \beta_1 + 2862756) q^{73} + ( - 90474 \beta_{3} - 34917 \beta_{2} - 150242 \beta_1 - 4182920) q^{74} + (66016 \beta_{3} + 117856 \beta_{2} + 27984 \beta_1 + 811436) q^{75} + ( - 34752 \beta_{3} + 284984 \beta_{2} + 45344 \beta_1 + 553792) q^{76} + (23958 \beta_{3} - 45254 \beta_{2} + 23958 \beta_1 - 50578) q^{77} + (87500 \beta_{3} + 210200 \beta_{2} + 98280 \beta_1 + 85120) q^{78} + ( - 44706 \beta_{3} - 153738 \beta_{2} - 32818 \beta_1 + 133366) q^{79} + (36810 \beta_{3} - 370082 \beta_{2} + 54504 \beta_1 - 1103760) q^{80} + (71464 \beta_{3} + 111952 \beta_{2} - 12968 \beta_1 - 218799) q^{81} + (71376 \beta_{3} - 182704 \beta_{2} + 4196 \beta_1 - 2786896) q^{82} + ( - 84258 \beta_{3} + 153630 \beta_{2} + 75102 \beta_1 - 1036422) q^{83} + (108670 \beta_{3} - 227570 \beta_{2} + 74560 \beta_1 + 3636432) q^{84} + (68322 \beta_{3} - 162202 \beta_{2} - 14414 \beta_1 + 2574622) q^{85} + ( - 184044 \beta_{3} + 6978 \beta_{2} - 115612 \beta_1 - 1526896) q^{86} + ( - 115464 \beta_{3} - 265968 \beta_{2} - 133384 \beta_1 - 4229536) q^{87} + ( - 55902 \beta_{3} + 159720 \beta_{2} + 37268 \beta_1 + 149072) q^{88} + ( - 78267 \beta_{3} - 141351 \beta_{2} + 34469 \beta_1 + 4574915) q^{89} + ( - 7352 \beta_{3} + 450634 \beta_{2} - 44560 \beta_1 + 3797248) q^{90} + (84600 \beta_{3} + 168240 \beta_{2} - 74040 \beta_1 - 301880) q^{91} + (66357 \beta_{3} - 510991 \beta_{2} - 102168 \beta_1 - 1625352) q^{92} + ( - 123967 \beta_{3} + 38885 \beta_{2} + 553 \beta_1 + 3312077) q^{93} + (112536 \beta_{3} + 244408 \beta_{2} - 2832 \beta_1 + 2115456) q^{94} + ( - 2232 \beta_{3} + 116724 \beta_{2} - 99240 \beta_1 - 1440552) q^{95} + ( - 31064 \beta_{3} + 766948 \beta_{2} + 237368 \beta_1 + 6615616) q^{96} + (149319 \beta_{3} - 125589 \beta_{2} + 234279 \beta_1 + 2914901) q^{97} + (262920 \beta_{3} - 202245 \beta_{2} + 262360 \beta_1 + 9180640) q^{98} + (30613 \beta_{3} - 81191 \beta_{2} - 54571 \beta_1 - 620246) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 35 q^{3} + 604 q^{4} + 537 q^{5} + 1558 q^{6} + 170 q^{7} - 420 q^{8} + 1823 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 35 q^{3} + 604 q^{4} + 537 q^{5} + 1558 q^{6} + 170 q^{7} - 420 q^{8} + 1823 q^{9} + 1470 q^{10} - 5324 q^{11} - 34360 q^{12} + 4250 q^{13} - 29988 q^{14} + 6841 q^{15} + 52744 q^{16} + 54300 q^{17} - 71350 q^{18} + 67844 q^{19} + 15888 q^{20} + 102262 q^{21} - 9015 q^{23} + 140844 q^{24} + 22531 q^{25} - 311700 q^{26} - 123005 q^{27} - 475840 q^{28} + 234078 q^{29} - 470786 q^{30} + 189857 q^{31} - 175560 q^{32} + 46585 q^{33} + 406536 q^{34} + 154098 q^{35} + 847780 q^{36} + 127895 q^{37} - 584760 q^{38} - 1010660 q^{39} + 2249268 q^{40} + 289842 q^{41} + 1046980 q^{42} + 704930 q^{43} - 803924 q^{44} - 1946752 q^{45} + 3519102 q^{46} - 1729080 q^{47} - 5738680 q^{48} + 139920 q^{49} - 2115918 q^{50} - 2047658 q^{51} + 2030120 q^{52} + 1098660 q^{53} + 4819690 q^{54} - 714747 q^{55} - 4311720 q^{56} + 1566240 q^{57} + 1046100 q^{58} - 4665777 q^{59} + 1373432 q^{60} + 310610 q^{61} + 4286670 q^{62} + 482900 q^{63} + 9539488 q^{64} + 4526160 q^{65} - 2073698 q^{66} - 3368245 q^{67} + 14958120 q^{68} + 7154939 q^{69} - 12580596 q^{70} - 3416541 q^{71} - 25536720 q^{72} + 11466230 q^{73} - 16581438 q^{74} + 3217760 q^{75} + 2169824 q^{76} - 226270 q^{77} + 242200 q^{78} + 566282 q^{79} - 4469544 q^{80} - 862228 q^{81} - 11151780 q^{82} - 4220790 q^{83} + 14471168 q^{84} + 10312902 q^{85} - 5991972 q^{86} - 16784760 q^{87} + 559020 q^{88} + 18265191 q^{89} + 15233552 q^{90} - 1133480 q^{91} - 6399240 q^{92} + 13247755 q^{93} + 8464656 q^{94} - 5662968 q^{95} + 26225096 q^{96} + 11425325 q^{97} + 36460200 q^{98} - 2426413 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 341x^{2} + 1417x - 1412 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 3\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 4\nu^{2} - 321\nu + 204 ) / 28 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -9\nu^{3} - 8\nu^{2} + 3029\nu - 6652 ) / 28 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{3} + 27\beta_{2} - 5\beta _1 + 511 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -12\beta_{3} - 24\beta_{2} + 341\beta _1 - 2335 ) / 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
16.6649
−19.8969
1.64802
2.58394
−21.2011 −77.4315 321.485 −138.468 1641.63 −91.3115 −4102.09 3808.63 2935.68
1.2 −10.6261 12.2971 −15.0863 512.130 −130.670 973.904 1520.45 −2035.78 −5441.94
1.3 11.0598 59.6211 −5.68000 −60.1766 659.400 698.069 −1478.48 1367.68 −665.544
1.4 20.7673 −29.4867 303.281 223.515 −612.360 −1410.66 3640.12 −1317.53 4641.80
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 11.8.a.b 4
3.b odd 2 1 99.8.a.g 4
4.b odd 2 1 176.8.a.j 4
5.b even 2 1 275.8.a.b 4
7.b odd 2 1 539.8.a.b 4
11.b odd 2 1 121.8.a.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.8.a.b 4 1.a even 1 1 trivial
99.8.a.g 4 3.b odd 2 1
121.8.a.c 4 11.b odd 2 1
176.8.a.j 4 4.b odd 2 1
275.8.a.b 4 5.b even 2 1
539.8.a.b 4 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 558T_{2}^{2} + 140T_{2} + 51744 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(11))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 558 T^{2} + 140 T + 51744 \) Copy content Toggle raw display
$3$ \( T^{4} + 35 T^{3} - 4673 T^{2} + \cdots + 1673964 \) Copy content Toggle raw display
$5$ \( T^{4} - 537 T^{3} + \cdots + 953818350 \) Copy content Toggle raw display
$7$ \( T^{4} - 170 T^{3} + \cdots + 87571440704 \) Copy content Toggle raw display
$11$ \( (T + 1331)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 518474088880000 \) Copy content Toggle raw display
$17$ \( T^{4} - 54300 T^{3} + \cdots - 58\!\cdots\!56 \) Copy content Toggle raw display
$19$ \( T^{4} - 67844 T^{3} + \cdots - 31\!\cdots\!84 \) Copy content Toggle raw display
$23$ \( T^{4} + 9015 T^{3} + \cdots + 10\!\cdots\!44 \) Copy content Toggle raw display
$29$ \( T^{4} - 234078 T^{3} + \cdots - 41\!\cdots\!64 \) Copy content Toggle raw display
$31$ \( T^{4} - 189857 T^{3} + \cdots - 61\!\cdots\!36 \) Copy content Toggle raw display
$37$ \( T^{4} - 127895 T^{3} + \cdots + 41\!\cdots\!94 \) Copy content Toggle raw display
$41$ \( T^{4} - 289842 T^{3} + \cdots - 66\!\cdots\!84 \) Copy content Toggle raw display
$43$ \( T^{4} - 704930 T^{3} + \cdots + 28\!\cdots\!64 \) Copy content Toggle raw display
$47$ \( T^{4} + 1729080 T^{3} + \cdots - 74\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{4} - 1098660 T^{3} + \cdots + 18\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{4} + 4665777 T^{3} + \cdots + 29\!\cdots\!64 \) Copy content Toggle raw display
$61$ \( T^{4} - 310610 T^{3} + \cdots + 10\!\cdots\!84 \) Copy content Toggle raw display
$67$ \( T^{4} + 3368245 T^{3} + \cdots - 84\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{4} + 3416541 T^{3} + \cdots + 59\!\cdots\!44 \) Copy content Toggle raw display
$73$ \( T^{4} - 11466230 T^{3} + \cdots - 60\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( T^{4} - 566282 T^{3} + \cdots + 25\!\cdots\!16 \) Copy content Toggle raw display
$83$ \( T^{4} + 4220790 T^{3} + \cdots + 70\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{4} - 18265191 T^{3} + \cdots - 24\!\cdots\!34 \) Copy content Toggle raw display
$97$ \( T^{4} - 11425325 T^{3} + \cdots + 46\!\cdots\!46 \) Copy content Toggle raw display
show more
show less