Properties

Label 1089.2.e.o.727.7
Level $1089$
Weight $2$
Character 1089.727
Analytic conductor $8.696$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1089,2,Mod(364,1089)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1089.364"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1089, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1089.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,-2,9,-12,1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.69570878012\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 727.7
Character \(\chi\) \(=\) 1089.727
Dual form 1089.2.e.o.364.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.584430 + 1.01226i) q^{2} +(-1.73005 + 0.0832210i) q^{3} +(0.316882 + 0.548856i) q^{4} +(1.58346 + 2.74264i) q^{5} +(0.926852 - 1.79990i) q^{6} +(0.124437 - 0.215531i) q^{7} -3.07850 q^{8} +(2.98615 - 0.287953i) q^{9} -3.70170 q^{10} +(-0.593899 - 0.923178i) q^{12} +(2.56539 + 4.44339i) q^{13} +(0.145449 + 0.251925i) q^{14} +(-2.96772 - 4.61313i) q^{15} +(1.16541 - 2.01854i) q^{16} -4.60302 q^{17} +(-1.45371 + 3.19106i) q^{18} -0.797165 q^{19} +(-1.00354 + 1.73819i) q^{20} +(-0.197345 + 0.383234i) q^{21} +(2.46653 + 4.27215i) q^{23} +(5.32597 - 0.256196i) q^{24} +(-2.51472 + 4.35562i) q^{25} -5.99717 q^{26} +(-5.14222 + 0.746684i) q^{27} +0.157727 q^{28} +(-0.785949 + 1.36130i) q^{29} +(6.40413 - 0.308059i) q^{30} +(4.20351 + 7.28069i) q^{31} +(-1.71631 - 2.97273i) q^{32} +(2.69014 - 4.65947i) q^{34} +0.788164 q^{35} +(1.10430 + 1.54772i) q^{36} -0.473896 q^{37} +(0.465887 - 0.806941i) q^{38} +(-4.80804 - 7.47379i) q^{39} +(-4.87470 - 8.44323i) q^{40} +(0.0469859 + 0.0813819i) q^{41} +(-0.272600 - 0.423739i) q^{42} +(5.01977 - 8.69450i) q^{43} +(5.51821 + 7.73397i) q^{45} -5.76606 q^{46} +(1.56389 - 2.70873i) q^{47} +(-1.84823 + 3.58917i) q^{48} +(3.46903 + 6.00854i) q^{49} +(-2.93936 - 5.09112i) q^{50} +(7.96345 - 0.383068i) q^{51} +(-1.62585 + 2.81606i) q^{52} -11.6119 q^{53} +(2.24943 - 5.64167i) q^{54} +(-0.383079 + 0.663512i) q^{56} +(1.37914 - 0.0663409i) q^{57} +(-0.918665 - 1.59117i) q^{58} +(-1.24991 - 2.16491i) q^{59} +(1.59153 - 3.09067i) q^{60} +(-2.00563 + 3.47385i) q^{61} -9.82663 q^{62} +(0.309523 - 0.679438i) q^{63} +8.67387 q^{64} +(-8.12442 + 14.0719i) q^{65} +(-2.07692 - 3.59733i) q^{67} +(-1.45861 - 2.52639i) q^{68} +(-4.62275 - 7.18577i) q^{69} +(-0.460627 + 0.797829i) q^{70} +0.369763 q^{71} +(-9.19287 + 0.886465i) q^{72} -10.1834 q^{73} +(0.276959 - 0.479707i) q^{74} +(3.98811 - 7.74473i) q^{75} +(-0.252607 - 0.437529i) q^{76} +(10.3754 - 0.499091i) q^{78} +(5.85175 - 10.1355i) q^{79} +7.38152 q^{80} +(8.83417 - 1.71974i) q^{81} -0.109840 q^{82} +(-0.532585 + 0.922464i) q^{83} +(-0.272876 + 0.0131262i) q^{84} +(-7.28872 - 12.6244i) q^{85} +(5.86742 + 10.1627i) q^{86} +(1.24644 - 2.42053i) q^{87} -8.39173 q^{89} +(-11.0538 + 1.06592i) q^{90} +1.27691 q^{91} +(-1.56320 + 2.70754i) q^{92} +(-7.87819 - 12.2461i) q^{93} +(1.82796 + 3.16613i) q^{94} +(-1.26228 - 2.18634i) q^{95} +(3.21669 + 5.00014i) q^{96} +(5.54336 - 9.60139i) q^{97} -8.10963 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 2 q^{2} + 9 q^{3} - 12 q^{4} + q^{5} + q^{6} + q^{7} + 12 q^{8} - q^{9} + 4 q^{10} - 8 q^{12} + 3 q^{13} - 5 q^{15} + 8 q^{16} + 40 q^{17} - 17 q^{18} + 6 q^{19} + 5 q^{20} + 8 q^{21} + 10 q^{23}+ \cdots + 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1089\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(848\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.584430 + 1.01226i −0.413255 + 0.715778i −0.995243 0.0974187i \(-0.968941\pi\)
0.581989 + 0.813197i \(0.302275\pi\)
\(3\) −1.73005 + 0.0832210i −0.998845 + 0.0480477i
\(4\) 0.316882 + 0.548856i 0.158441 + 0.274428i
\(5\) 1.58346 + 2.74264i 0.708147 + 1.22655i 0.965544 + 0.260241i \(0.0838019\pi\)
−0.257397 + 0.966306i \(0.582865\pi\)
\(6\) 0.926852 1.79990i 0.378386 0.734807i
\(7\) 0.124437 0.215531i 0.0470326 0.0814629i −0.841551 0.540178i \(-0.818357\pi\)
0.888583 + 0.458715i \(0.151690\pi\)
\(8\) −3.07850 −1.08842
\(9\) 2.98615 0.287953i 0.995383 0.0959844i
\(10\) −3.70170 −1.17058
\(11\) 0 0
\(12\) −0.593899 0.923178i −0.171444 0.266498i
\(13\) 2.56539 + 4.44339i 0.711512 + 1.23237i 0.964290 + 0.264850i \(0.0853225\pi\)
−0.252778 + 0.967524i \(0.581344\pi\)
\(14\) 0.145449 + 0.251925i 0.0388729 + 0.0673298i
\(15\) −2.96772 4.61313i −0.766262 1.19111i
\(16\) 1.16541 2.01854i 0.291352 0.504636i
\(17\) −4.60302 −1.11640 −0.558198 0.829708i \(-0.688507\pi\)
−0.558198 + 0.829708i \(0.688507\pi\)
\(18\) −1.45371 + 3.19106i −0.342643 + 0.752139i
\(19\) −0.797165 −0.182882 −0.0914411 0.995810i \(-0.529147\pi\)
−0.0914411 + 0.995810i \(0.529147\pi\)
\(20\) −1.00354 + 1.73819i −0.224399 + 0.388671i
\(21\) −0.197345 + 0.383234i −0.0430642 + 0.0836286i
\(22\) 0 0
\(23\) 2.46653 + 4.27215i 0.514307 + 0.890805i 0.999862 + 0.0165995i \(0.00528403\pi\)
−0.485556 + 0.874206i \(0.661383\pi\)
\(24\) 5.32597 0.256196i 1.08716 0.0522958i
\(25\) −2.51472 + 4.35562i −0.502944 + 0.871125i
\(26\) −5.99717 −1.17614
\(27\) −5.14222 + 0.746684i −0.989621 + 0.143699i
\(28\) 0.157727 0.0298076
\(29\) −0.785949 + 1.36130i −0.145947 + 0.252788i −0.929726 0.368252i \(-0.879956\pi\)
0.783779 + 0.621040i \(0.213290\pi\)
\(30\) 6.40413 0.308059i 1.16923 0.0562437i
\(31\) 4.20351 + 7.28069i 0.754973 + 1.30765i 0.945388 + 0.325947i \(0.105683\pi\)
−0.190415 + 0.981704i \(0.560984\pi\)
\(32\) −1.71631 2.97273i −0.303403 0.525509i
\(33\) 0 0
\(34\) 2.69014 4.65947i 0.461356 0.799092i
\(35\) 0.788164 0.133224
\(36\) 1.10430 + 1.54772i 0.184050 + 0.257953i
\(37\) −0.473896 −0.0779080 −0.0389540 0.999241i \(-0.512403\pi\)
−0.0389540 + 0.999241i \(0.512403\pi\)
\(38\) 0.465887 0.806941i 0.0755769 0.130903i
\(39\) −4.80804 7.47379i −0.769903 1.19676i
\(40\) −4.87470 8.44323i −0.770758 1.33499i
\(41\) 0.0469859 + 0.0813819i 0.00733796 + 0.0127097i 0.869671 0.493632i \(-0.164331\pi\)
−0.862333 + 0.506341i \(0.830998\pi\)
\(42\) −0.272600 0.423739i −0.0420630 0.0653843i
\(43\) 5.01977 8.69450i 0.765508 1.32590i −0.174469 0.984663i \(-0.555821\pi\)
0.939977 0.341237i \(-0.110846\pi\)
\(44\) 0 0
\(45\) 5.51821 + 7.73397i 0.822607 + 1.15291i
\(46\) −5.76606 −0.850159
\(47\) 1.56389 2.70873i 0.228116 0.395109i −0.729134 0.684371i \(-0.760077\pi\)
0.957250 + 0.289263i \(0.0934101\pi\)
\(48\) −1.84823 + 3.58917i −0.266769 + 0.518052i
\(49\) 3.46903 + 6.00854i 0.495576 + 0.858363i
\(50\) −2.93936 5.09112i −0.415688 0.719993i
\(51\) 7.96345 0.383068i 1.11511 0.0536402i
\(52\) −1.62585 + 2.81606i −0.225465 + 0.390518i
\(53\) −11.6119 −1.59502 −0.797508 0.603309i \(-0.793849\pi\)
−0.797508 + 0.603309i \(0.793849\pi\)
\(54\) 2.24943 5.64167i 0.306109 0.767734i
\(55\) 0 0
\(56\) −0.383079 + 0.663512i −0.0511910 + 0.0886655i
\(57\) 1.37914 0.0663409i 0.182671 0.00878707i
\(58\) −0.918665 1.59117i −0.120627 0.208931i
\(59\) −1.24991 2.16491i −0.162724 0.281847i 0.773121 0.634259i \(-0.218695\pi\)
−0.935845 + 0.352412i \(0.885361\pi\)
\(60\) 1.59153 3.09067i 0.205465 0.399004i
\(61\) −2.00563 + 3.47385i −0.256794 + 0.444781i −0.965381 0.260842i \(-0.916000\pi\)
0.708587 + 0.705624i \(0.249333\pi\)
\(62\) −9.82663 −1.24798
\(63\) 0.309523 0.679438i 0.0389963 0.0856011i
\(64\) 8.67387 1.08423
\(65\) −8.12442 + 14.0719i −1.00771 + 1.74540i
\(66\) 0 0
\(67\) −2.07692 3.59733i −0.253736 0.439483i 0.710816 0.703378i \(-0.248326\pi\)
−0.964551 + 0.263895i \(0.914993\pi\)
\(68\) −1.45861 2.52639i −0.176883 0.306370i
\(69\) −4.62275 7.18577i −0.556514 0.865065i
\(70\) −0.460627 + 0.797829i −0.0550554 + 0.0953588i
\(71\) 0.369763 0.0438828 0.0219414 0.999759i \(-0.493015\pi\)
0.0219414 + 0.999759i \(0.493015\pi\)
\(72\) −9.19287 + 0.886465i −1.08339 + 0.104471i
\(73\) −10.1834 −1.19188 −0.595940 0.803029i \(-0.703220\pi\)
−0.595940 + 0.803029i \(0.703220\pi\)
\(74\) 0.276959 0.479707i 0.0321958 0.0557648i
\(75\) 3.98811 7.74473i 0.460508 0.894284i
\(76\) −0.252607 0.437529i −0.0289761 0.0501880i
\(77\) 0 0
\(78\) 10.3754 0.499091i 1.17478 0.0565109i
\(79\) 5.85175 10.1355i 0.658374 1.14034i −0.322663 0.946514i \(-0.604578\pi\)
0.981037 0.193823i \(-0.0620887\pi\)
\(80\) 7.38152 0.825279
\(81\) 8.83417 1.71974i 0.981574 0.191082i
\(82\) −0.109840 −0.0121298
\(83\) −0.532585 + 0.922464i −0.0584588 + 0.101254i −0.893774 0.448518i \(-0.851952\pi\)
0.835315 + 0.549772i \(0.185285\pi\)
\(84\) −0.272876 + 0.0131262i −0.0297732 + 0.00143219i
\(85\) −7.28872 12.6244i −0.790572 1.36931i
\(86\) 5.86742 + 10.1627i 0.632700 + 1.09587i
\(87\) 1.24644 2.42053i 0.133633 0.259508i
\(88\) 0 0
\(89\) −8.39173 −0.889521 −0.444761 0.895650i \(-0.646711\pi\)
−0.444761 + 0.895650i \(0.646711\pi\)
\(90\) −11.0538 + 1.06592i −1.16518 + 0.112357i
\(91\) 1.27691 0.133857
\(92\) −1.56320 + 2.70754i −0.162975 + 0.282280i
\(93\) −7.87819 12.2461i −0.816930 1.26987i
\(94\) 1.82796 + 3.16613i 0.188540 + 0.326561i
\(95\) −1.26228 2.18634i −0.129507 0.224314i
\(96\) 3.21669 + 5.00014i 0.328302 + 0.510324i
\(97\) 5.54336 9.60139i 0.562843 0.974873i −0.434403 0.900718i \(-0.643041\pi\)
0.997247 0.0741548i \(-0.0236259\pi\)
\(98\) −8.10963 −0.819196
\(99\) 0 0
\(100\) −3.18748 −0.318748
\(101\) −3.30574 + 5.72571i −0.328933 + 0.569729i −0.982300 0.187312i \(-0.940022\pi\)
0.653367 + 0.757041i \(0.273356\pi\)
\(102\) −4.26632 + 8.28499i −0.422428 + 0.820336i
\(103\) −4.26163 7.38137i −0.419911 0.727308i 0.576019 0.817436i \(-0.304605\pi\)
−0.995930 + 0.0901287i \(0.971272\pi\)
\(104\) −7.89757 13.6790i −0.774421 1.34134i
\(105\) −1.36356 + 0.0655918i −0.133070 + 0.00640110i
\(106\) 6.78634 11.7543i 0.659148 1.14168i
\(107\) 3.92040 0.378999 0.189500 0.981881i \(-0.439313\pi\)
0.189500 + 0.981881i \(0.439313\pi\)
\(108\) −2.03930 2.58573i −0.196232 0.248812i
\(109\) −3.83554 −0.367379 −0.183689 0.982984i \(-0.558804\pi\)
−0.183689 + 0.982984i \(0.558804\pi\)
\(110\) 0 0
\(111\) 0.819863 0.0394381i 0.0778180 0.00374330i
\(112\) −0.290038 0.502361i −0.0274061 0.0474687i
\(113\) −4.53726 7.85876i −0.426829 0.739290i 0.569760 0.821811i \(-0.307036\pi\)
−0.996589 + 0.0825212i \(0.973703\pi\)
\(114\) −0.738854 + 1.43482i −0.0692001 + 0.134383i
\(115\) −7.81132 + 13.5296i −0.728409 + 1.26164i
\(116\) −0.996214 −0.0924961
\(117\) 8.94013 + 12.5299i 0.826515 + 1.15839i
\(118\) 2.92194 0.268986
\(119\) −0.572784 + 0.992091i −0.0525070 + 0.0909448i
\(120\) 9.13613 + 14.2015i 0.834011 + 1.29642i
\(121\) 0 0
\(122\) −2.34430 4.06045i −0.212243 0.367616i
\(123\) −0.0880606 0.136885i −0.00794015 0.0123425i
\(124\) −2.66404 + 4.61424i −0.239237 + 0.414371i
\(125\) −0.0932375 −0.00833941
\(126\) 0.506875 + 0.710403i 0.0451560 + 0.0632878i
\(127\) −1.77330 −0.157355 −0.0786777 0.996900i \(-0.525070\pi\)
−0.0786777 + 0.996900i \(0.525070\pi\)
\(128\) −1.63666 + 2.83478i −0.144662 + 0.250562i
\(129\) −7.96090 + 15.4597i −0.700918 + 1.36115i
\(130\) −9.49631 16.4481i −0.832882 1.44259i
\(131\) −0.162082 0.280734i −0.0141611 0.0245278i 0.858858 0.512214i \(-0.171174\pi\)
−0.873019 + 0.487686i \(0.837841\pi\)
\(132\) 0 0
\(133\) −0.0991965 + 0.171813i −0.00860143 + 0.0148981i
\(134\) 4.85526 0.419430
\(135\) −10.1904 12.9209i −0.877051 1.11206i
\(136\) 14.1704 1.21510
\(137\) −2.58835 + 4.48316i −0.221138 + 0.383022i −0.955154 0.296110i \(-0.904310\pi\)
0.734016 + 0.679132i \(0.237644\pi\)
\(138\) 9.97557 0.479857i 0.849177 0.0408481i
\(139\) −6.16090 10.6710i −0.522561 0.905102i −0.999655 0.0262500i \(-0.991643\pi\)
0.477095 0.878852i \(-0.341690\pi\)
\(140\) 0.249755 + 0.432589i 0.0211082 + 0.0365604i
\(141\) −2.48018 + 4.81639i −0.208869 + 0.405613i
\(142\) −0.216101 + 0.374297i −0.0181348 + 0.0314103i
\(143\) 0 0
\(144\) 2.89883 6.36325i 0.241569 0.530271i
\(145\) −4.97809 −0.413408
\(146\) 5.95150 10.3083i 0.492550 0.853121i
\(147\) −6.50164 10.1064i −0.536246 0.833560i
\(148\) −0.150169 0.260101i −0.0123438 0.0213801i
\(149\) 10.1028 + 17.4986i 0.827655 + 1.43354i 0.899873 + 0.436152i \(0.143659\pi\)
−0.0722175 + 0.997389i \(0.523008\pi\)
\(150\) 5.50893 + 8.56327i 0.449802 + 0.699188i
\(151\) 6.04314 10.4670i 0.491784 0.851794i −0.508172 0.861256i \(-0.669678\pi\)
0.999955 + 0.00946167i \(0.00301179\pi\)
\(152\) 2.45408 0.199052
\(153\) −13.7453 + 1.32545i −1.11124 + 0.107157i
\(154\) 0 0
\(155\) −13.3122 + 23.0574i −1.06926 + 1.85202i
\(156\) 2.57845 5.00724i 0.206442 0.400900i
\(157\) 5.52618 + 9.57162i 0.441037 + 0.763898i 0.997767 0.0667952i \(-0.0212774\pi\)
−0.556730 + 0.830694i \(0.687944\pi\)
\(158\) 6.83989 + 11.8470i 0.544152 + 0.942499i
\(159\) 20.0892 0.966353i 1.59317 0.0766368i
\(160\) 5.43542 9.41442i 0.429708 0.744275i
\(161\) 1.22771 0.0967568
\(162\) −3.42212 + 9.94757i −0.268867 + 0.781555i
\(163\) −15.3517 −1.20244 −0.601219 0.799084i \(-0.705318\pi\)
−0.601219 + 0.799084i \(0.705318\pi\)
\(164\) −0.0297780 + 0.0515770i −0.00232527 + 0.00402748i
\(165\) 0 0
\(166\) −0.622518 1.07823i −0.0483168 0.0836871i
\(167\) 1.30290 + 2.25668i 0.100821 + 0.174627i 0.912023 0.410139i \(-0.134520\pi\)
−0.811202 + 0.584766i \(0.801186\pi\)
\(168\) 0.607527 1.17979i 0.0468717 0.0910227i
\(169\) −6.66248 + 11.5397i −0.512498 + 0.887673i
\(170\) 17.0390 1.30683
\(171\) −2.38045 + 0.229546i −0.182038 + 0.0175538i
\(172\) 6.36271 0.485152
\(173\) −9.63816 + 16.6938i −0.732776 + 1.26920i 0.222917 + 0.974838i \(0.428442\pi\)
−0.955692 + 0.294367i \(0.904891\pi\)
\(174\) 1.72176 + 2.67636i 0.130526 + 0.202894i
\(175\) 0.625847 + 1.08400i 0.0473096 + 0.0819425i
\(176\) 0 0
\(177\) 2.34257 + 3.64138i 0.176078 + 0.273703i
\(178\) 4.90438 8.49463i 0.367599 0.636700i
\(179\) 18.0866 1.35186 0.675928 0.736967i \(-0.263743\pi\)
0.675928 + 0.736967i \(0.263743\pi\)
\(180\) −2.49621 + 5.47946i −0.186057 + 0.408415i
\(181\) 22.5500 1.67613 0.838064 0.545573i \(-0.183688\pi\)
0.838064 + 0.545573i \(0.183688\pi\)
\(182\) −0.746268 + 1.29257i −0.0553170 + 0.0958119i
\(183\) 3.18074 6.17685i 0.235127 0.456606i
\(184\) −7.59322 13.1518i −0.559779 0.969566i
\(185\) −0.750397 1.29973i −0.0551703 0.0955577i
\(186\) 17.0006 0.817782i 1.24654 0.0599627i
\(187\) 0 0
\(188\) 1.98227 0.144572
\(189\) −0.478948 + 1.20122i −0.0348383 + 0.0873760i
\(190\) 2.95087 0.214078
\(191\) 4.76976 8.26147i 0.345128 0.597779i −0.640249 0.768167i \(-0.721169\pi\)
0.985377 + 0.170388i \(0.0545021\pi\)
\(192\) −15.0062 + 0.721848i −1.08298 + 0.0520949i
\(193\) 9.55458 + 16.5490i 0.687754 + 1.19122i 0.972563 + 0.232640i \(0.0747365\pi\)
−0.284809 + 0.958584i \(0.591930\pi\)
\(194\) 6.47942 + 11.2227i 0.465195 + 0.805742i
\(195\) 12.8846 25.0212i 0.922683 1.79181i
\(196\) −2.19855 + 3.80800i −0.157039 + 0.272000i
\(197\) 17.7425 1.26410 0.632049 0.774928i \(-0.282214\pi\)
0.632049 + 0.774928i \(0.282214\pi\)
\(198\) 0 0
\(199\) 10.2632 0.727539 0.363770 0.931489i \(-0.381490\pi\)
0.363770 + 0.931489i \(0.381490\pi\)
\(200\) 7.74158 13.4088i 0.547412 0.948146i
\(201\) 3.89255 + 6.05071i 0.274559 + 0.426784i
\(202\) −3.86395 6.69255i −0.271866 0.470886i
\(203\) 0.195602 + 0.338792i 0.0137285 + 0.0237785i
\(204\) 2.73373 + 4.24940i 0.191399 + 0.297518i
\(205\) −0.148801 + 0.257731i −0.0103927 + 0.0180007i
\(206\) 9.96251 0.694121
\(207\) 8.59560 + 12.0470i 0.597435 + 0.837327i
\(208\) 11.9589 0.829201
\(209\) 0 0
\(210\) 0.730512 1.41862i 0.0504101 0.0978940i
\(211\) 7.51248 + 13.0120i 0.517181 + 0.895783i 0.999801 + 0.0199534i \(0.00635179\pi\)
−0.482620 + 0.875830i \(0.660315\pi\)
\(212\) −3.67960 6.37326i −0.252716 0.437717i
\(213\) −0.639709 + 0.0307721i −0.0438321 + 0.00210847i
\(214\) −2.29120 + 3.96847i −0.156623 + 0.271279i
\(215\) 31.7945 2.16837
\(216\) 15.8304 2.29867i 1.07712 0.156405i
\(217\) 2.09228 0.142033
\(218\) 2.24161 3.88258i 0.151821 0.262962i
\(219\) 17.6178 0.847475i 1.19050 0.0572670i
\(220\) 0 0
\(221\) −11.8085 20.4530i −0.794329 1.37582i
\(222\) −0.439231 + 0.852966i −0.0294793 + 0.0572473i
\(223\) −1.10758 + 1.91839i −0.0741694 + 0.128465i −0.900725 0.434390i \(-0.856964\pi\)
0.826555 + 0.562855i \(0.190297\pi\)
\(224\) −0.854285 −0.0570793
\(225\) −6.25511 + 13.7307i −0.417008 + 0.915377i
\(226\) 10.6068 0.705557
\(227\) −13.0265 + 22.5625i −0.864597 + 1.49753i 0.00284954 + 0.999996i \(0.499093\pi\)
−0.867447 + 0.497530i \(0.834240\pi\)
\(228\) 0.473435 + 0.735925i 0.0313540 + 0.0487378i
\(229\) 3.17552 + 5.50017i 0.209845 + 0.363461i 0.951665 0.307137i \(-0.0993709\pi\)
−0.741821 + 0.670598i \(0.766038\pi\)
\(230\) −9.13035 15.8142i −0.602037 1.04276i
\(231\) 0 0
\(232\) 2.41955 4.19078i 0.158851 0.275138i
\(233\) −5.29654 −0.346988 −0.173494 0.984835i \(-0.555506\pi\)
−0.173494 + 0.984835i \(0.555506\pi\)
\(234\) −17.9084 + 1.72690i −1.17071 + 0.112891i
\(235\) 9.90543 0.646159
\(236\) 0.792148 1.37204i 0.0515644 0.0893122i
\(237\) −9.28034 + 18.0220i −0.602823 + 1.17065i
\(238\) −0.669505 1.15962i −0.0433975 0.0751667i
\(239\) −5.80550 10.0554i −0.375527 0.650431i 0.614879 0.788621i \(-0.289205\pi\)
−0.990406 + 0.138190i \(0.955872\pi\)
\(240\) −12.7704 + 0.614298i −0.824326 + 0.0396527i
\(241\) 3.66269 6.34397i 0.235935 0.408651i −0.723609 0.690210i \(-0.757518\pi\)
0.959544 + 0.281559i \(0.0908515\pi\)
\(242\) 0 0
\(243\) −15.1404 + 3.71043i −0.971259 + 0.238024i
\(244\) −2.54219 −0.162747
\(245\) −10.9862 + 19.0286i −0.701881 + 1.21569i
\(246\) 0.190028 0.00914098i 0.0121158 0.000582808i
\(247\) −2.04504 3.54212i −0.130123 0.225379i
\(248\) −12.9405 22.4136i −0.821724 1.42327i
\(249\) 0.844631 1.64023i 0.0535263 0.103945i
\(250\) 0.0544908 0.0943809i 0.00344630 0.00596917i
\(251\) −19.0874 −1.20479 −0.602394 0.798199i \(-0.705786\pi\)
−0.602394 + 0.798199i \(0.705786\pi\)
\(252\) 0.470996 0.0454180i 0.0296700 0.00286106i
\(253\) 0 0
\(254\) 1.03637 1.79505i 0.0650278 0.112632i
\(255\) 13.6605 + 21.2343i 0.855451 + 1.32974i
\(256\) 6.76084 + 11.7101i 0.422553 + 0.731883i
\(257\) 5.01499 + 8.68622i 0.312827 + 0.541831i 0.978973 0.203989i \(-0.0653908\pi\)
−0.666147 + 0.745821i \(0.732057\pi\)
\(258\) −10.9967 17.0936i −0.684623 1.06420i
\(259\) −0.0589700 + 0.102139i −0.00366421 + 0.00634661i
\(260\) −10.2979 −0.638651
\(261\) −1.95497 + 4.29137i −0.121010 + 0.265629i
\(262\) 0.378902 0.0234086
\(263\) −7.00714 + 12.1367i −0.432079 + 0.748383i −0.997052 0.0767265i \(-0.975553\pi\)
0.564973 + 0.825109i \(0.308886\pi\)
\(264\) 0 0
\(265\) −18.3870 31.8472i −1.12951 1.95636i
\(266\) −0.115947 0.200826i −0.00710916 0.0123134i
\(267\) 14.5181 0.698368i 0.888494 0.0427394i
\(268\) 1.31628 2.27986i 0.0804044 0.139265i
\(269\) 1.15556 0.0704555 0.0352278 0.999379i \(-0.488784\pi\)
0.0352278 + 0.999379i \(0.488784\pi\)
\(270\) 19.0350 2.76400i 1.15843 0.168212i
\(271\) 29.2424 1.77635 0.888174 0.459507i \(-0.151974\pi\)
0.888174 + 0.459507i \(0.151974\pi\)
\(272\) −5.36439 + 9.29139i −0.325264 + 0.563373i
\(273\) −2.20913 + 0.106266i −0.133702 + 0.00643152i
\(274\) −3.02542 5.24019i −0.182773 0.316571i
\(275\) 0 0
\(276\) 2.47909 4.81427i 0.149224 0.289785i
\(277\) −11.3658 + 19.6862i −0.682907 + 1.18283i 0.291183 + 0.956667i \(0.405951\pi\)
−0.974090 + 0.226162i \(0.927382\pi\)
\(278\) 14.4025 0.863803
\(279\) 14.6488 + 20.5308i 0.877001 + 1.22915i
\(280\) −2.42637 −0.145003
\(281\) 8.45940 14.6521i 0.504645 0.874071i −0.495340 0.868699i \(-0.664957\pi\)
0.999986 0.00537218i \(-0.00171003\pi\)
\(282\) −3.42596 5.32544i −0.204013 0.317125i
\(283\) 14.2782 + 24.7306i 0.848752 + 1.47008i 0.882323 + 0.470645i \(0.155979\pi\)
−0.0335710 + 0.999436i \(0.510688\pi\)
\(284\) 0.117171 + 0.202947i 0.00695284 + 0.0120427i
\(285\) 2.36576 + 3.67743i 0.140136 + 0.217832i
\(286\) 0 0
\(287\) 0.0233870 0.00138049
\(288\) −5.98115 8.38279i −0.352443 0.493961i
\(289\) 4.18777 0.246340
\(290\) 2.90935 5.03914i 0.170843 0.295908i
\(291\) −8.79126 + 17.0722i −0.515353 + 1.00079i
\(292\) −3.22695 5.58923i −0.188843 0.327085i
\(293\) 8.08895 + 14.0105i 0.472561 + 0.818500i 0.999507 0.0313988i \(-0.00999619\pi\)
−0.526946 + 0.849899i \(0.676663\pi\)
\(294\) 14.0301 0.674892i 0.818250 0.0393605i
\(295\) 3.95837 6.85610i 0.230465 0.399178i
\(296\) 1.45889 0.0847962
\(297\) 0 0
\(298\) −23.6176 −1.36813
\(299\) −12.6552 + 21.9195i −0.731871 + 1.26764i
\(300\) 5.51450 0.265265i 0.318380 0.0153151i
\(301\) −1.24929 2.16383i −0.0720077 0.124721i
\(302\) 7.06359 + 12.2345i 0.406464 + 0.704016i
\(303\) 5.24259 10.1809i 0.301179 0.584876i
\(304\) −0.929022 + 1.60911i −0.0532830 + 0.0922889i
\(305\) −12.7034 −0.727393
\(306\) 6.69146 14.6885i 0.382525 0.839685i
\(307\) −14.3499 −0.818989 −0.409495 0.912312i \(-0.634295\pi\)
−0.409495 + 0.912312i \(0.634295\pi\)
\(308\) 0 0
\(309\) 7.98713 + 12.4155i 0.454372 + 0.706292i
\(310\) −15.5601 26.9509i −0.883756 1.53071i
\(311\) −1.78864 3.09801i −0.101424 0.175672i 0.810847 0.585258i \(-0.199007\pi\)
−0.912272 + 0.409586i \(0.865673\pi\)
\(312\) 14.8016 + 23.0081i 0.837974 + 1.30258i
\(313\) −5.54353 + 9.60167i −0.313339 + 0.542719i −0.979083 0.203461i \(-0.934781\pi\)
0.665744 + 0.746180i \(0.268114\pi\)
\(314\) −12.9187 −0.729042
\(315\) 2.35357 0.226954i 0.132609 0.0127874i
\(316\) 7.41727 0.417254
\(317\) 6.03393 10.4511i 0.338899 0.586991i −0.645327 0.763907i \(-0.723279\pi\)
0.984226 + 0.176916i \(0.0566121\pi\)
\(318\) −10.7625 + 20.9003i −0.603531 + 1.17203i
\(319\) 0 0
\(320\) 13.7348 + 23.7893i 0.767797 + 1.32986i
\(321\) −6.78249 + 0.326260i −0.378562 + 0.0182100i
\(322\) −0.717508 + 1.24276i −0.0399852 + 0.0692564i
\(323\) 3.66937 0.204169
\(324\) 3.74328 + 4.30373i 0.207960 + 0.239096i
\(325\) −25.8050 −1.43140
\(326\) 8.97201 15.5400i 0.496913 0.860679i
\(327\) 6.63569 0.319198i 0.366954 0.0176517i
\(328\) −0.144646 0.250534i −0.00798675 0.0138335i
\(329\) −0.389209 0.674130i −0.0214578 0.0371660i
\(330\) 0 0
\(331\) 1.03329 1.78971i 0.0567948 0.0983716i −0.836230 0.548379i \(-0.815245\pi\)
0.893025 + 0.450007i \(0.148579\pi\)
\(332\) −0.675067 −0.0370491
\(333\) −1.41512 + 0.136460i −0.0775482 + 0.00747795i
\(334\) −3.04581 −0.166659
\(335\) 6.57745 11.3925i 0.359365 0.622438i
\(336\) 0.543588 + 0.844973i 0.0296552 + 0.0460971i
\(337\) 0.274688 + 0.475774i 0.0149632 + 0.0259170i 0.873410 0.486985i \(-0.161904\pi\)
−0.858447 + 0.512903i \(0.828570\pi\)
\(338\) −7.78751 13.4884i −0.423584 0.733670i
\(339\) 8.50370 + 13.2185i 0.461857 + 0.717928i
\(340\) 4.61933 8.00091i 0.250518 0.433910i
\(341\) 0 0
\(342\) 1.15885 2.54380i 0.0626633 0.137553i
\(343\) 3.46881 0.187298
\(344\) −15.4534 + 26.7661i −0.833191 + 1.44313i
\(345\) 12.3880 24.0570i 0.666949 1.29518i
\(346\) −11.2657 19.5127i −0.605646 1.04901i
\(347\) 7.12154 + 12.3349i 0.382304 + 0.662171i 0.991391 0.130933i \(-0.0417972\pi\)
−0.609087 + 0.793104i \(0.708464\pi\)
\(348\) 1.72350 0.0829059i 0.0923893 0.00444422i
\(349\) −10.4148 + 18.0390i −0.557493 + 0.965606i 0.440212 + 0.897894i \(0.354903\pi\)
−0.997705 + 0.0677122i \(0.978430\pi\)
\(350\) −1.46305 −0.0782036
\(351\) −16.5096 20.9334i −0.881219 1.11734i
\(352\) 0 0
\(353\) 10.2296 17.7181i 0.544465 0.943042i −0.454175 0.890912i \(-0.650066\pi\)
0.998640 0.0521291i \(-0.0166007\pi\)
\(354\) −5.05510 + 0.243167i −0.268676 + 0.0129242i
\(355\) 0.585507 + 1.01413i 0.0310755 + 0.0538243i
\(356\) −2.65919 4.60585i −0.140937 0.244110i
\(357\) 0.908382 1.76403i 0.0480767 0.0933626i
\(358\) −10.5704 + 18.3084i −0.558661 + 0.967629i
\(359\) −18.9964 −1.00259 −0.501297 0.865275i \(-0.667144\pi\)
−0.501297 + 0.865275i \(0.667144\pi\)
\(360\) −16.9878 23.8091i −0.895338 1.25485i
\(361\) −18.3645 −0.966554
\(362\) −13.1789 + 22.8265i −0.692667 + 1.19974i
\(363\) 0 0
\(364\) 0.404632 + 0.700843i 0.0212085 + 0.0367341i
\(365\) −16.1251 27.9295i −0.844026 1.46190i
\(366\) 4.39367 + 6.82969i 0.229661 + 0.356993i
\(367\) −1.92400 + 3.33247i −0.100432 + 0.173953i −0.911863 0.410495i \(-0.865356\pi\)
0.811431 + 0.584449i \(0.198689\pi\)
\(368\) 11.4980 0.599376
\(369\) 0.163741 + 0.229489i 0.00852401 + 0.0119467i
\(370\) 1.75422 0.0911975
\(371\) −1.44494 + 2.50272i −0.0750177 + 0.129935i
\(372\) 4.22491 8.20458i 0.219052 0.425388i
\(373\) −4.55186 7.88405i −0.235686 0.408221i 0.723786 0.690025i \(-0.242400\pi\)
−0.959472 + 0.281804i \(0.909067\pi\)
\(374\) 0 0
\(375\) 0.161306 0.00775932i 0.00832978 0.000400689i
\(376\) −4.81443 + 8.33884i −0.248285 + 0.430043i
\(377\) −8.06507 −0.415372
\(378\) −0.936040 1.18685i −0.0481447 0.0610450i
\(379\) −26.6856 −1.37075 −0.685375 0.728190i \(-0.740362\pi\)
−0.685375 + 0.728190i \(0.740362\pi\)
\(380\) 0.799990 1.38562i 0.0410386 0.0710810i
\(381\) 3.06791 0.147576i 0.157174 0.00756056i
\(382\) 5.57519 + 9.65651i 0.285252 + 0.494070i
\(383\) 2.22159 + 3.84790i 0.113518 + 0.196618i 0.917186 0.398459i \(-0.130455\pi\)
−0.803669 + 0.595077i \(0.797121\pi\)
\(384\) 2.59559 5.04052i 0.132456 0.257223i
\(385\) 0 0
\(386\) −22.3360 −1.13687
\(387\) 12.4862 27.4085i 0.634708 1.39325i
\(388\) 7.02637 0.356710
\(389\) 5.83331 10.1036i 0.295761 0.512272i −0.679401 0.733767i \(-0.737760\pi\)
0.975162 + 0.221495i \(0.0710936\pi\)
\(390\) 17.7979 + 27.6657i 0.901233 + 1.40091i
\(391\) −11.3535 19.6648i −0.574170 0.994491i
\(392\) −10.6794 18.4973i −0.539392 0.934255i
\(393\) 0.303772 + 0.472195i 0.0153233 + 0.0238191i
\(394\) −10.3692 + 17.9601i −0.522395 + 0.904814i
\(395\) 37.0642 1.86490
\(396\) 0 0
\(397\) 30.3159 1.52151 0.760756 0.649038i \(-0.224828\pi\)
0.760756 + 0.649038i \(0.224828\pi\)
\(398\) −5.99813 + 10.3891i −0.300659 + 0.520757i
\(399\) 0.157316 0.305501i 0.00787567 0.0152942i
\(400\) 5.86134 + 10.1521i 0.293067 + 0.507607i
\(401\) −7.98042 13.8225i −0.398523 0.690262i 0.595021 0.803710i \(-0.297144\pi\)
−0.993544 + 0.113448i \(0.963810\pi\)
\(402\) −8.39984 + 0.404059i −0.418946 + 0.0201526i
\(403\) −21.5673 + 37.3557i −1.07434 + 1.86082i
\(404\) −4.19012 −0.208466
\(405\) 18.7052 + 21.5058i 0.929470 + 1.06863i
\(406\) −0.457262 −0.0226935
\(407\) 0 0
\(408\) −24.5155 + 1.17928i −1.21370 + 0.0583829i
\(409\) 5.65111 + 9.78800i 0.279429 + 0.483986i 0.971243 0.238090i \(-0.0765214\pi\)
−0.691814 + 0.722076i \(0.743188\pi\)
\(410\) −0.173927 0.301251i −0.00858967 0.0148777i
\(411\) 4.10489 7.97149i 0.202479 0.393205i
\(412\) 2.70087 4.67805i 0.133062 0.230471i
\(413\) −0.622138 −0.0306134
\(414\) −17.2183 + 1.66035i −0.846233 + 0.0816019i
\(415\) −3.37332 −0.165590
\(416\) 8.80600 15.2524i 0.431749 0.747812i
\(417\) 11.5467 + 17.9486i 0.565445 + 0.878949i
\(418\) 0 0
\(419\) 0.927962 + 1.60728i 0.0453339 + 0.0785207i 0.887802 0.460226i \(-0.152231\pi\)
−0.842468 + 0.538746i \(0.818898\pi\)
\(420\) −0.468089 0.727615i −0.0228404 0.0355040i
\(421\) −6.12175 + 10.6032i −0.298356 + 0.516767i −0.975760 0.218844i \(-0.929771\pi\)
0.677404 + 0.735611i \(0.263105\pi\)
\(422\) −17.5621 −0.854909
\(423\) 3.89001 8.53900i 0.189139 0.415180i
\(424\) 35.7472 1.73604
\(425\) 11.5753 20.0490i 0.561485 0.972520i
\(426\) 0.342716 0.665538i 0.0166046 0.0322454i
\(427\) 0.499147 + 0.864549i 0.0241554 + 0.0418384i
\(428\) 1.24230 + 2.15174i 0.0600491 + 0.104008i
\(429\) 0 0
\(430\) −18.5817 + 32.1844i −0.896089 + 1.55207i
\(431\) 14.1977 0.683880 0.341940 0.939722i \(-0.388916\pi\)
0.341940 + 0.939722i \(0.388916\pi\)
\(432\) −4.48557 + 11.2500i −0.215812 + 0.541266i
\(433\) −34.7050 −1.66782 −0.833908 0.551903i \(-0.813902\pi\)
−0.833908 + 0.551903i \(0.813902\pi\)
\(434\) −1.22279 + 2.11794i −0.0586959 + 0.101664i
\(435\) 8.61235 0.414282i 0.412931 0.0198633i
\(436\) −1.21542 2.10516i −0.0582079 0.100819i
\(437\) −1.96623 3.40561i −0.0940575 0.162912i
\(438\) −9.43853 + 18.3292i −0.450990 + 0.875802i
\(439\) −6.29079 + 10.8960i −0.300243 + 0.520037i −0.976191 0.216913i \(-0.930401\pi\)
0.675948 + 0.736950i \(0.263735\pi\)
\(440\) 0 0
\(441\) 12.0892 + 16.9435i 0.575677 + 0.806832i
\(442\) 27.6051 1.31304
\(443\) 19.0379 32.9746i 0.904518 1.56667i 0.0829561 0.996553i \(-0.473564\pi\)
0.821562 0.570119i \(-0.193103\pi\)
\(444\) 0.281446 + 0.437490i 0.0133568 + 0.0207623i
\(445\) −13.2880 23.0155i −0.629912 1.09104i
\(446\) −1.29461 2.24233i −0.0613017 0.106178i
\(447\) −18.9346 29.4327i −0.895578 1.39212i
\(448\) 1.07935 1.86948i 0.0509944 0.0883248i
\(449\) 19.5509 0.922662 0.461331 0.887228i \(-0.347372\pi\)
0.461331 + 0.887228i \(0.347372\pi\)
\(450\) −10.2434 14.3564i −0.482877 0.676769i
\(451\) 0 0
\(452\) 2.87555 4.98060i 0.135255 0.234268i
\(453\) −9.58386 + 18.6114i −0.450289 + 0.874439i
\(454\) −15.2261 26.3724i −0.714598 1.23772i
\(455\) 2.02195 + 3.50212i 0.0947904 + 0.164182i
\(456\) −4.24567 + 0.204231i −0.198822 + 0.00956398i
\(457\) −5.67157 + 9.82344i −0.265305 + 0.459521i −0.967643 0.252322i \(-0.918806\pi\)
0.702339 + 0.711843i \(0.252139\pi\)
\(458\) −7.42349 −0.346877
\(459\) 23.6697 3.43700i 1.10481 0.160425i
\(460\) −9.90108 −0.461640
\(461\) 12.8991 22.3419i 0.600772 1.04057i −0.391933 0.919994i \(-0.628193\pi\)
0.992704 0.120573i \(-0.0384733\pi\)
\(462\) 0 0
\(463\) 10.2149 + 17.6926i 0.474725 + 0.822247i 0.999581 0.0289436i \(-0.00921432\pi\)
−0.524856 + 0.851191i \(0.675881\pi\)
\(464\) 1.83190 + 3.17295i 0.0850439 + 0.147300i
\(465\) 21.1119 40.9984i 0.979043 1.90125i
\(466\) 3.09546 5.36149i 0.143394 0.248366i
\(467\) 0.863420 0.0399543 0.0199772 0.999800i \(-0.493641\pi\)
0.0199772 + 0.999800i \(0.493641\pi\)
\(468\) −4.04415 + 8.87735i −0.186941 + 0.410356i
\(469\) −1.03378 −0.0477354
\(470\) −5.78904 + 10.0269i −0.267028 + 0.462507i
\(471\) −10.3571 16.0995i −0.477231 0.741825i
\(472\) 3.84785 + 6.66467i 0.177112 + 0.306766i
\(473\) 0 0
\(474\) −12.8193 19.9267i −0.588809 0.915265i
\(475\) 2.00465 3.47215i 0.0919795 0.159313i
\(476\) −0.726020 −0.0332771
\(477\) −34.6748 + 3.34368i −1.58765 + 0.153097i
\(478\) 13.5716 0.620753
\(479\) −6.58209 + 11.4005i −0.300743 + 0.520903i −0.976305 0.216401i \(-0.930568\pi\)
0.675561 + 0.737304i \(0.263901\pi\)
\(480\) −8.62007 + 16.7398i −0.393451 + 0.764062i
\(481\) −1.21573 2.10570i −0.0554324 0.0960118i
\(482\) 4.28117 + 7.41521i 0.195002 + 0.337754i
\(483\) −2.12399 + 0.102171i −0.0966450 + 0.00464894i
\(484\) 0 0
\(485\) 35.1109 1.59430
\(486\) 5.09260 17.4946i 0.231005 0.793571i
\(487\) −14.1969 −0.643324 −0.321662 0.946855i \(-0.604241\pi\)
−0.321662 + 0.946855i \(0.604241\pi\)
\(488\) 6.17434 10.6943i 0.279499 0.484107i
\(489\) 26.5592 1.27758i 1.20105 0.0577744i
\(490\) −12.8413 22.2418i −0.580111 1.00478i
\(491\) 4.80586 + 8.32400i 0.216886 + 0.375657i 0.953854 0.300270i \(-0.0970768\pi\)
−0.736969 + 0.675927i \(0.763743\pi\)
\(492\) 0.0472251 0.0917089i 0.00212907 0.00413456i
\(493\) 3.61774 6.26611i 0.162935 0.282211i
\(494\) 4.78074 0.215096
\(495\) 0 0
\(496\) 19.5952 0.879850
\(497\) 0.0460121 0.0796952i 0.00206392 0.00357482i
\(498\) 1.16672 + 1.81359i 0.0522819 + 0.0812689i
\(499\) 11.3625 + 19.6804i 0.508653 + 0.881014i 0.999950 + 0.0100212i \(0.00318989\pi\)
−0.491296 + 0.870993i \(0.663477\pi\)
\(500\) −0.0295453 0.0511740i −0.00132131 0.00228857i
\(501\) −2.44188 3.79574i −0.109095 0.169581i
\(502\) 11.1553 19.3215i 0.497884 0.862361i
\(503\) 33.5451 1.49570 0.747851 0.663867i \(-0.231086\pi\)
0.747851 + 0.663867i \(0.231086\pi\)
\(504\) −0.952869 + 2.09165i −0.0424442 + 0.0931696i
\(505\) −20.9381 −0.931732
\(506\) 0 0
\(507\) 10.5661 20.5188i 0.469256 0.911272i
\(508\) −0.561929 0.973289i −0.0249316 0.0431827i
\(509\) −8.97375 15.5430i −0.397754 0.688931i 0.595694 0.803211i \(-0.296877\pi\)
−0.993449 + 0.114281i \(0.963544\pi\)
\(510\) −29.4783 + 1.41800i −1.30532 + 0.0627902i
\(511\) −1.26719 + 2.19484i −0.0560572 + 0.0970939i
\(512\) −22.3516 −0.987811
\(513\) 4.09920 0.595230i 0.180984 0.0262801i
\(514\) −11.7237 −0.517108
\(515\) 13.4963 23.3763i 0.594718 1.03008i
\(516\) −11.0078 + 0.529511i −0.484592 + 0.0233104i
\(517\) 0 0
\(518\) −0.0689277 0.119386i −0.00302851 0.00524553i
\(519\) 15.2852 29.6832i 0.670947 1.30295i
\(520\) 25.0110 43.3204i 1.09681 1.89973i
\(521\) 2.95071 0.129273 0.0646364 0.997909i \(-0.479411\pi\)
0.0646364 + 0.997909i \(0.479411\pi\)
\(522\) −3.20145 4.48695i −0.140124 0.196389i
\(523\) −20.8217 −0.910470 −0.455235 0.890371i \(-0.650445\pi\)
−0.455235 + 0.890371i \(0.650445\pi\)
\(524\) 0.102722 0.177919i 0.00448741 0.00777243i
\(525\) −1.17296 1.82329i −0.0511921 0.0795748i
\(526\) −8.19037 14.1861i −0.357117 0.618545i
\(527\) −19.3488 33.5132i −0.842848 1.45986i
\(528\) 0 0
\(529\) −0.667523 + 1.15618i −0.0290228 + 0.0502689i
\(530\) 42.9837 1.86709
\(531\) −4.35580 6.10481i −0.189026 0.264926i
\(532\) −0.125734 −0.00545128
\(533\) −0.241074 + 0.417553i −0.0104421 + 0.0180862i
\(534\) −7.77789 + 15.1043i −0.336582 + 0.653627i
\(535\) 6.20781 + 10.7522i 0.268387 + 0.464860i
\(536\) 6.39380 + 11.0744i 0.276170 + 0.478341i
\(537\) −31.2907 + 1.50519i −1.35030 + 0.0649536i
\(538\) −0.675342 + 1.16973i −0.0291161 + 0.0504305i
\(539\) 0 0
\(540\) 3.86257 9.68749i 0.166219 0.416883i
\(541\) 0.958892 0.0412260 0.0206130 0.999788i \(-0.493438\pi\)
0.0206130 + 0.999788i \(0.493438\pi\)
\(542\) −17.0901 + 29.6010i −0.734084 + 1.27147i
\(543\) −39.0126 + 1.87663i −1.67419 + 0.0805340i
\(544\) 7.90019 + 13.6835i 0.338718 + 0.586676i
\(545\) −6.07345 10.5195i −0.260158 0.450607i
\(546\) 1.18351 2.29832i 0.0506496 0.0983591i
\(547\) 19.5031 33.7804i 0.833893 1.44435i −0.0610353 0.998136i \(-0.519440\pi\)
0.894928 0.446210i \(-0.147226\pi\)
\(548\) −3.28081 −0.140149
\(549\) −4.98880 + 10.9510i −0.212917 + 0.467376i
\(550\) 0 0
\(551\) 0.626531 1.08518i 0.0266911 0.0462304i
\(552\) 14.2312 + 22.1214i 0.605718 + 0.941550i
\(553\) −1.45634 2.52246i −0.0619301 0.107266i
\(554\) −13.2851 23.0104i −0.564429 0.977619i
\(555\) 1.40639 + 2.18614i 0.0596979 + 0.0927966i
\(556\) 3.90456 6.76290i 0.165590 0.286811i
\(557\) 46.6661 1.97731 0.988653 0.150217i \(-0.0479972\pi\)
0.988653 + 0.150217i \(0.0479972\pi\)
\(558\) −29.3438 + 2.82961i −1.24222 + 0.119787i
\(559\) 51.5108 2.17867
\(560\) 0.918531 1.59094i 0.0388150 0.0672296i
\(561\) 0 0
\(562\) 9.88786 + 17.1263i 0.417094 + 0.722428i
\(563\) −1.28627 2.22789i −0.0542099 0.0938942i 0.837647 0.546212i \(-0.183931\pi\)
−0.891857 + 0.452318i \(0.850597\pi\)
\(564\) −3.42943 + 0.164967i −0.144405 + 0.00694635i
\(565\) 14.3692 24.8881i 0.604516 1.04705i
\(566\) −33.3785 −1.40300
\(567\) 0.728637 2.11803i 0.0305999 0.0889489i
\(568\) −1.13832 −0.0477627
\(569\) 9.19439 15.9252i 0.385449 0.667617i −0.606382 0.795173i \(-0.707380\pi\)
0.991831 + 0.127556i \(0.0407133\pi\)
\(570\) −5.10515 + 0.245574i −0.213831 + 0.0102860i
\(571\) 17.7347 + 30.7173i 0.742173 + 1.28548i 0.951504 + 0.307636i \(0.0995378\pi\)
−0.209332 + 0.977845i \(0.567129\pi\)
\(572\) 0 0
\(573\) −7.56440 + 14.6897i −0.316008 + 0.613672i
\(574\) −0.0136681 + 0.0236738i −0.000570495 + 0.000988127i
\(575\) −24.8105 −1.03467
\(576\) 25.9015 2.49767i 1.07923 0.104070i
\(577\) 34.4382 1.43368 0.716840 0.697238i \(-0.245588\pi\)
0.716840 + 0.697238i \(0.245588\pi\)
\(578\) −2.44746 + 4.23913i −0.101801 + 0.176324i
\(579\) −17.9071 27.8355i −0.744195 1.15680i
\(580\) −1.57747 2.73226i −0.0655008 0.113451i
\(581\) 0.132546 + 0.229577i 0.00549894 + 0.00952445i
\(582\) −12.1437 18.8766i −0.503372 0.782460i
\(583\) 0 0
\(584\) 31.3497 1.29726
\(585\) −20.2087 + 44.3602i −0.835525 + 1.83407i
\(586\) −18.9097 −0.781153
\(587\) −1.01312 + 1.75477i −0.0418159 + 0.0724273i −0.886176 0.463349i \(-0.846648\pi\)
0.844360 + 0.535776i \(0.179981\pi\)
\(588\) 3.48669 6.77099i 0.143789 0.279231i
\(589\) −3.35089 5.80391i −0.138071 0.239146i
\(590\) 4.62679 + 8.01383i 0.190482 + 0.329924i
\(591\) −30.6954 + 1.47655i −1.26264 + 0.0607370i
\(592\) −0.552281 + 0.956579i −0.0226986 + 0.0393152i
\(593\) 7.39127 0.303523 0.151761 0.988417i \(-0.451505\pi\)
0.151761 + 0.988417i \(0.451505\pi\)
\(594\) 0 0
\(595\) −3.62793 −0.148731
\(596\) −6.40281 + 11.0900i −0.262269 + 0.454264i
\(597\) −17.7559 + 0.854114i −0.726699 + 0.0349566i
\(598\) −14.7922 25.6208i −0.604898 1.04771i
\(599\) 4.65791 + 8.06773i 0.190317 + 0.329639i 0.945355 0.326042i \(-0.105715\pi\)
−0.755038 + 0.655681i \(0.772382\pi\)
\(600\) −12.2774 + 23.8422i −0.501224 + 0.973352i
\(601\) −9.77860 + 16.9370i −0.398877 + 0.690876i −0.993588 0.113064i \(-0.963933\pi\)
0.594710 + 0.803940i \(0.297267\pi\)
\(602\) 2.92049 0.119030
\(603\) −7.23785 10.1441i −0.294748 0.413100i
\(604\) 7.65985 0.311675
\(605\) 0 0
\(606\) 7.24179 + 11.2569i 0.294177 + 0.457280i
\(607\) −13.8019 23.9057i −0.560204 0.970301i −0.997478 0.0709732i \(-0.977390\pi\)
0.437274 0.899328i \(-0.355944\pi\)
\(608\) 1.36818 + 2.36976i 0.0554870 + 0.0961063i
\(609\) −0.366595 0.569849i −0.0148552 0.0230915i
\(610\) 7.42424 12.8592i 0.300599 0.520652i
\(611\) 16.0479 0.649230
\(612\) −5.08312 7.12418i −0.205473 0.287978i
\(613\) −17.8256 −0.719969 −0.359985 0.932958i \(-0.617218\pi\)
−0.359985 + 0.932958i \(0.617218\pi\)
\(614\) 8.38649 14.5258i 0.338451 0.586215i
\(615\) 0.235984 0.458270i 0.00951581 0.0184792i
\(616\) 0 0
\(617\) 2.55221 + 4.42056i 0.102748 + 0.177965i 0.912816 0.408371i \(-0.133903\pi\)
−0.810068 + 0.586336i \(0.800570\pi\)
\(618\) −17.2357 + 0.829091i −0.693320 + 0.0333509i
\(619\) −1.27452 + 2.20754i −0.0512273 + 0.0887284i −0.890502 0.454979i \(-0.849647\pi\)
0.839275 + 0.543708i \(0.182980\pi\)
\(620\) −16.8736 −0.677661
\(621\) −15.8734 20.1266i −0.636977 0.807654i
\(622\) 4.18133 0.167656
\(623\) −1.04424 + 1.80867i −0.0418365 + 0.0724629i
\(624\) −20.6895 + 0.995232i −0.828243 + 0.0398412i
\(625\) 12.4260 + 21.5224i 0.497039 + 0.860896i
\(626\) −6.47961 11.2230i −0.258977 0.448562i
\(627\) 0 0
\(628\) −3.50230 + 6.06615i −0.139757 + 0.242066i
\(629\) 2.18135 0.0869761
\(630\) −1.14576 + 2.51508i −0.0456483 + 0.100203i
\(631\) −30.8940 −1.22987 −0.614935 0.788578i \(-0.710818\pi\)
−0.614935 + 0.788578i \(0.710818\pi\)
\(632\) −18.0146 + 31.2023i −0.716584 + 1.24116i
\(633\) −14.0798 21.8862i −0.559624 0.869899i
\(634\) 7.05283 + 12.2159i 0.280103 + 0.485153i
\(635\) −2.80797 4.86354i −0.111431 0.193004i
\(636\) 6.89628 + 10.7198i 0.273455 + 0.425069i
\(637\) −17.7989 + 30.8285i −0.705216 + 1.22147i
\(638\) 0 0
\(639\) 1.10417 0.106474i 0.0436802 0.00421206i
\(640\) −10.3664 −0.409767
\(641\) −16.4823 + 28.5482i −0.651012 + 1.12759i 0.331866 + 0.943327i \(0.392322\pi\)
−0.982878 + 0.184259i \(0.941011\pi\)
\(642\) 3.63363 7.05634i 0.143408 0.278491i
\(643\) 2.60079 + 4.50471i 0.102565 + 0.177648i 0.912741 0.408539i \(-0.133962\pi\)
−0.810176 + 0.586187i \(0.800628\pi\)
\(644\) 0.389038 + 0.673834i 0.0153302 + 0.0265528i
\(645\) −55.0062 + 2.64597i −2.16587 + 0.104185i
\(646\) −2.14449 + 3.71436i −0.0843738 + 0.146140i
\(647\) −2.20260 −0.0865931 −0.0432965 0.999062i \(-0.513786\pi\)
−0.0432965 + 0.999062i \(0.513786\pi\)
\(648\) −27.1960 + 5.29423i −1.06836 + 0.207977i
\(649\) 0 0
\(650\) 15.0812 26.1214i 0.591534 1.02457i
\(651\) −3.61975 + 0.174122i −0.141869 + 0.00682437i
\(652\) −4.86468 8.42588i −0.190516 0.329983i
\(653\) 20.2632 + 35.0970i 0.792962 + 1.37345i 0.924125 + 0.382090i \(0.124796\pi\)
−0.131163 + 0.991361i \(0.541871\pi\)
\(654\) −3.55498 + 6.90361i −0.139011 + 0.269952i
\(655\) 0.513301 0.889063i 0.0200563 0.0347386i
\(656\) 0.219030 0.00855170
\(657\) −30.4092 + 2.93235i −1.18638 + 0.114402i
\(658\) 0.909863 0.0354702
\(659\) −19.7539 + 34.2147i −0.769501 + 1.33282i 0.168332 + 0.985730i \(0.446162\pi\)
−0.937834 + 0.347085i \(0.887171\pi\)
\(660\) 0 0
\(661\) 18.3547 + 31.7912i 0.713914 + 1.23653i 0.963377 + 0.268150i \(0.0864124\pi\)
−0.249464 + 0.968384i \(0.580254\pi\)
\(662\) 1.20777 + 2.09193i 0.0469415 + 0.0813050i
\(663\) 22.1315 + 34.4020i 0.859516 + 1.33606i
\(664\) 1.63957 2.83981i 0.0636275 0.110206i
\(665\) −0.628297 −0.0243643
\(666\) 0.688908 1.51223i 0.0266946 0.0585976i
\(667\) −7.75426 −0.300246
\(668\) −0.825729 + 1.43020i −0.0319484 + 0.0553363i
\(669\) 1.75653 3.41109i 0.0679112 0.131880i
\(670\) 7.68813 + 13.3162i 0.297018 + 0.514451i
\(671\) 0 0
\(672\) 1.47796 0.0710945i 0.0570134 0.00274253i
\(673\) 5.27804 9.14183i 0.203453 0.352392i −0.746185 0.665738i \(-0.768117\pi\)
0.949639 + 0.313346i \(0.101450\pi\)
\(674\) −0.642144 −0.0247345
\(675\) 9.67898 24.2753i 0.372544 0.934356i
\(676\) −8.44488 −0.324803
\(677\) −3.50815 + 6.07630i −0.134829 + 0.233531i −0.925532 0.378669i \(-0.876382\pi\)
0.790703 + 0.612200i \(0.209715\pi\)
\(678\) −18.3504 + 0.882712i −0.704742 + 0.0339004i
\(679\) −1.37959 2.38953i −0.0529440 0.0917017i
\(680\) 22.4383 + 38.8643i 0.860471 + 1.49038i
\(681\) 20.6588 40.1183i 0.791646 1.53734i
\(682\) 0 0
\(683\) −40.0949 −1.53419 −0.767094 0.641535i \(-0.778298\pi\)
−0.767094 + 0.641535i \(0.778298\pi\)
\(684\) −0.880311 1.23379i −0.0336595 0.0471750i
\(685\) −16.3943 −0.626392
\(686\) −2.02728 + 3.51135i −0.0774018 + 0.134064i
\(687\) −5.95155 9.25130i −0.227066 0.352959i
\(688\) −11.7002 20.2653i −0.446064 0.772606i
\(689\) −29.7890 51.5961i −1.13487 1.96566i
\(690\) 17.1120 + 26.5996i 0.651444 + 1.01263i
\(691\) 9.27744 16.0690i 0.352931 0.611294i −0.633831 0.773472i \(-0.718519\pi\)
0.986762 + 0.162178i \(0.0518518\pi\)
\(692\) −12.2166 −0.464407
\(693\) 0 0
\(694\) −16.6482 −0.631956
\(695\) 19.5111 33.7943i 0.740100 1.28189i
\(696\) −3.83718 + 7.45162i −0.145448 + 0.282453i
\(697\) −0.216277 0.374602i −0.00819206 0.0141891i
\(698\) −12.1735 21.0851i −0.460773 0.798082i
\(699\) 9.16328 0.440784i 0.346587 0.0166720i
\(700\) −0.396639 + 0.686999i −0.0149916 + 0.0259661i
\(701\) 46.6487 1.76190 0.880949 0.473211i \(-0.156905\pi\)
0.880949 + 0.473211i \(0.156905\pi\)
\(702\) 30.8388 4.47799i 1.16394 0.169011i
\(703\) 0.377773 0.0142480
\(704\) 0 0
\(705\) −17.1369 + 0.824340i −0.645413 + 0.0310464i
\(706\) 11.9569 + 20.7100i 0.450006 + 0.779433i
\(707\) 0.822710 + 1.42497i 0.0309412 + 0.0535917i
\(708\) −1.25627 + 2.43962i −0.0472136 + 0.0916866i
\(709\) −3.30999 + 5.73306i −0.124309 + 0.215310i −0.921463 0.388467i \(-0.873005\pi\)
0.797154 + 0.603777i \(0.206338\pi\)
\(710\) −1.36875 −0.0513683
\(711\) 14.5556 31.9512i 0.545879 1.19827i
\(712\) 25.8340 0.968169
\(713\) −20.7361 + 35.9161i −0.776575 + 1.34507i
\(714\) 1.25478 + 1.95048i 0.0469590 + 0.0729948i
\(715\) 0 0
\(716\) 5.73133 + 9.92695i 0.214190 + 0.370987i
\(717\) 10.8806 + 16.9133i 0.406345 + 0.631637i
\(718\) 11.1021 19.2294i 0.414326 0.717635i
\(719\) 13.8341 0.515925 0.257963 0.966155i \(-0.416949\pi\)
0.257963 + 0.966155i \(0.416949\pi\)
\(720\) 22.0423 2.12553i 0.821469 0.0792139i
\(721\) −2.12121 −0.0789981
\(722\) 10.7328 18.5897i 0.399433 0.691838i
\(723\) −5.80869 + 11.2802i −0.216027 + 0.419515i
\(724\) 7.14569 + 12.3767i 0.265567 + 0.459976i
\(725\) −3.95289 6.84660i −0.146806 0.254276i
\(726\) 0 0
\(727\) 10.6621 18.4673i 0.395435 0.684913i −0.597722 0.801704i \(-0.703927\pi\)
0.993157 + 0.116791i \(0.0372606\pi\)
\(728\) −3.93099 −0.145692
\(729\) 25.8849 7.67923i 0.958701 0.284416i
\(730\) 37.6960 1.39519
\(731\) −23.1061 + 40.0210i −0.854610 + 1.48023i
\(732\) 4.39812 0.211564i 0.162559 0.00781963i
\(733\) 3.83730 + 6.64641i 0.141734 + 0.245491i 0.928150 0.372207i \(-0.121399\pi\)
−0.786416 + 0.617698i \(0.788066\pi\)
\(734\) −2.24889 3.89519i −0.0830081 0.143774i
\(735\) 17.4231 33.8347i 0.642659 1.24801i
\(736\) 8.46663 14.6646i 0.312084 0.540546i
\(737\) 0 0
\(738\) −0.327998 + 0.0316287i −0.0120738 + 0.00116427i
\(739\) −18.6267 −0.685193 −0.342597 0.939483i \(-0.611306\pi\)
−0.342597 + 0.939483i \(0.611306\pi\)
\(740\) 0.475575 0.823720i 0.0174825 0.0302805i
\(741\) 3.83280 + 5.95785i 0.140802 + 0.218867i
\(742\) −1.68894 2.92533i −0.0620029 0.107392i
\(743\) −1.63816 2.83738i −0.0600983 0.104093i 0.834411 0.551143i \(-0.185808\pi\)
−0.894509 + 0.447050i \(0.852475\pi\)
\(744\) 24.2530 + 37.6998i 0.889159 + 1.38214i
\(745\) −31.9949 + 55.4168i −1.17220 + 2.03032i
\(746\) 10.6410 0.389594
\(747\) −1.32475 + 2.90798i −0.0484701 + 0.106397i
\(748\) 0 0
\(749\) 0.487841 0.844965i 0.0178253 0.0308744i
\(750\) −0.0864174 + 0.167818i −0.00315552 + 0.00612786i
\(751\) 0.0732705 + 0.126908i 0.00267368 + 0.00463095i 0.867359 0.497683i \(-0.165816\pi\)
−0.864685 + 0.502314i \(0.832482\pi\)
\(752\) −3.64513 6.31354i −0.132924 0.230231i
\(753\) 33.0222 1.58848i 1.20340 0.0578873i
\(754\) 4.71347 8.16398i 0.171655 0.297314i
\(755\) 38.2764 1.39302
\(756\) −0.811068 + 0.117772i −0.0294982 + 0.00428333i
\(757\) −13.1974 −0.479666 −0.239833 0.970814i \(-0.577093\pi\)
−0.239833 + 0.970814i \(0.577093\pi\)
\(758\) 15.5959 27.0129i 0.566469 0.981153i
\(759\) 0 0
\(760\) 3.88594 + 6.73065i 0.140958 + 0.244146i
\(761\) −3.03078 5.24946i −0.109866 0.190293i 0.805850 0.592120i \(-0.201709\pi\)
−0.915716 + 0.401827i \(0.868375\pi\)
\(762\) −1.64359 + 3.19178i −0.0595410 + 0.115626i
\(763\) −0.477282 + 0.826677i −0.0172788 + 0.0299277i
\(764\) 6.04582 0.218730
\(765\) −25.4004 35.5996i −0.918355 1.28711i
\(766\) −5.19345 −0.187647
\(767\) 6.41301 11.1077i 0.231560 0.401074i
\(768\) −12.6711 19.6965i −0.457230 0.710735i
\(769\) −13.0916 22.6754i −0.472097 0.817695i 0.527394 0.849621i \(-0.323169\pi\)
−0.999490 + 0.0319257i \(0.989836\pi\)
\(770\) 0 0
\(771\) −9.39906 14.6102i −0.338499 0.526175i
\(772\) −6.05536 + 10.4882i −0.217937 + 0.377478i
\(773\) 22.3999 0.805669 0.402834 0.915273i \(-0.368025\pi\)
0.402834 + 0.915273i \(0.368025\pi\)
\(774\) 20.4474 + 28.6577i 0.734965 + 1.03008i
\(775\) −42.2826 −1.51884
\(776\) −17.0653 + 29.5579i −0.612607 + 1.06107i
\(777\) 0.0935209 0.181613i 0.00335504 0.00651533i
\(778\) 6.81833 + 11.8097i 0.244449 + 0.423398i
\(779\) −0.0374555 0.0648748i −0.00134198 0.00232438i
\(780\) 17.8159 0.857005i 0.637913 0.0306857i
\(781\) 0 0
\(782\) 26.5413 0.949113
\(783\) 3.02506 7.58698i 0.108107 0.271137i
\(784\) 16.1713 0.577547
\(785\) −17.5010 + 30.3126i −0.624638 + 1.08190i
\(786\) −0.655519 + 0.0315326i −0.0233816 + 0.00112473i
\(787\) 12.0611 + 20.8904i 0.429931 + 0.744663i 0.996867 0.0790993i \(-0.0252044\pi\)
−0.566935 + 0.823762i \(0.691871\pi\)
\(788\) 5.62228 + 9.73807i 0.200285 + 0.346904i
\(789\) 11.1127 21.5803i 0.395622 0.768279i
\(790\) −21.6614 + 37.5187i −0.770679 + 1.33486i
\(791\) −2.25840 −0.0802996
\(792\) 0 0
\(793\) −20.5809 −0.730849
\(794\) −17.7175 + 30.6877i −0.628772 + 1.08907i
\(795\) 34.4608 + 53.5671i 1.22220 + 1.89983i
\(796\) 3.25223 + 5.63302i 0.115272 + 0.199657i
\(797\) −5.32340 9.22041i −0.188565 0.326604i 0.756207 0.654332i \(-0.227050\pi\)
−0.944772 + 0.327729i \(0.893717\pi\)
\(798\) 0.217307 + 0.337790i 0.00769258 + 0.0119576i
\(799\) −7.19859 + 12.4683i −0.254668 + 0.441098i
\(800\) 17.2641 0.610379
\(801\) −25.0589 + 2.41642i −0.885414 + 0.0853801i
\(802\) 18.6560 0.658766
\(803\) 0 0
\(804\) −2.08749 + 4.05381i −0.0736202 + 0.142967i
\(805\) 1.94403 + 3.36716i 0.0685180 + 0.118677i
\(806\) −25.2092 43.6636i −0.887955 1.53798i
\(807\) −1.99917 + 0.0961666i −0.0703741 + 0.00338522i
\(808\) 10.1767 17.6266i 0.358016 0.620102i
\(809\) −21.1939 −0.745136 −0.372568 0.928005i \(-0.621523\pi\)
−0.372568 + 0.928005i \(0.621523\pi\)
\(810\) −32.7014 + 6.36597i −1.14901 + 0.223677i
\(811\) 26.8201 0.941781 0.470890 0.882192i \(-0.343933\pi\)
0.470890 + 0.882192i \(0.343933\pi\)
\(812\) −0.123965 + 0.214714i −0.00435033 + 0.00753500i
\(813\) −50.5908 + 2.43358i −1.77430 + 0.0853494i
\(814\) 0 0
\(815\) −24.3089 42.1042i −0.851503 1.47485i
\(816\) 8.50742 16.5210i 0.297819 0.578351i
\(817\) −4.00159 + 6.93096i −0.139998 + 0.242483i
\(818\) −13.2107 −0.461902
\(819\) 3.81306 0.367692i 0.133239 0.0128482i
\(820\) −0.188609 −0.00658653
\(821\) 15.0278 26.0289i 0.524473 0.908415i −0.475121 0.879921i \(-0.657596\pi\)
0.999594 0.0284939i \(-0.00907111\pi\)
\(822\) 5.67023 + 8.81401i 0.197772 + 0.307424i
\(823\) −1.66234 2.87927i −0.0579457 0.100365i 0.835597 0.549342i \(-0.185122\pi\)
−0.893543 + 0.448977i \(0.851788\pi\)
\(824\) 13.1195 + 22.7236i 0.457038 + 0.791613i
\(825\) 0 0
\(826\) 0.363596 0.629767i 0.0126511 0.0219124i
\(827\) −32.5498 −1.13187 −0.565935 0.824450i \(-0.691485\pi\)
−0.565935 + 0.824450i \(0.691485\pi\)
\(828\) −3.88830 + 8.53524i −0.135128 + 0.296620i
\(829\) −4.91096 −0.170565 −0.0852824 0.996357i \(-0.527179\pi\)
−0.0852824 + 0.996357i \(0.527179\pi\)
\(830\) 1.97147 3.41469i 0.0684307 0.118525i
\(831\) 18.0252 35.0040i 0.625286 1.21428i
\(832\) 22.2519 + 38.5414i 0.771445 + 1.33618i
\(833\) −15.9680 27.6574i −0.553259 0.958272i
\(834\) −24.9170 + 1.19859i −0.862805 + 0.0415037i
\(835\) −4.12618 + 7.14675i −0.142792 + 0.247324i
\(836\) 0 0
\(837\) −27.0518 34.3003i −0.935046 1.18559i
\(838\) −2.16932 −0.0749378
\(839\) −10.3536 + 17.9329i −0.357445 + 0.619114i −0.987533 0.157410i \(-0.949686\pi\)
0.630088 + 0.776524i \(0.283019\pi\)
\(840\) 4.19773 0.201925i 0.144836 0.00696706i
\(841\) 13.2646 + 22.9749i 0.457399 + 0.792238i
\(842\) −7.15547 12.3936i −0.246594 0.427113i
\(843\) −13.4158 + 26.0529i −0.462065 + 0.897309i
\(844\) −4.76115 + 8.24655i −0.163885 + 0.283858i
\(845\) −42.1992 −1.45170
\(846\) 6.37027 + 8.92816i 0.219014 + 0.306956i
\(847\) 0 0
\(848\) −13.5326 + 23.4391i −0.464710 + 0.804902i
\(849\) −26.7601 41.5969i −0.918405 1.42760i
\(850\) 13.5299 + 23.4345i 0.464072 + 0.803797i
\(851\) −1.16888 2.02455i −0.0400686 0.0694008i
\(852\) −0.219602 0.341357i −0.00752343 0.0116947i
\(853\) 24.0608 41.6746i 0.823827 1.42691i −0.0789860 0.996876i \(-0.525168\pi\)
0.902813 0.430034i \(-0.141498\pi\)
\(854\) −1.16687 −0.0399294
\(855\) −4.39893 6.16525i −0.150440 0.210847i
\(856\) −12.0690 −0.412509
\(857\) 18.4177 31.9004i 0.629138 1.08970i −0.358588 0.933496i \(-0.616742\pi\)
0.987725 0.156202i \(-0.0499251\pi\)
\(858\) 0 0
\(859\) 12.3159 + 21.3318i 0.420214 + 0.727831i 0.995960 0.0897969i \(-0.0286218\pi\)
−0.575746 + 0.817628i \(0.695288\pi\)
\(860\) 10.0751 + 17.4506i 0.343559 + 0.595062i
\(861\) −0.0404608 + 0.00194629i −0.00137890 + 6.63295e-5i
\(862\) −8.29757 + 14.3718i −0.282617 + 0.489506i
\(863\) −12.5279 −0.426453 −0.213227 0.977003i \(-0.568397\pi\)
−0.213227 + 0.977003i \(0.568397\pi\)
\(864\) 11.0453 + 14.0049i 0.375769 + 0.476456i
\(865\) −61.0467 −2.07565
\(866\) 20.2827 35.1306i 0.689233 1.19379i
\(867\) −7.24506 + 0.348511i −0.246055 + 0.0118360i
\(868\) 0.663007 + 1.14836i 0.0225039 + 0.0389779i
\(869\) 0 0
\(870\) −4.61396 + 8.96008i −0.156428 + 0.303775i
\(871\) 10.6562 18.4571i 0.361072 0.625395i
\(872\) 11.8077 0.399861
\(873\) 13.7886 30.2674i 0.466672 1.02440i
\(874\) 4.59650 0.155479
\(875\) −0.0116022 + 0.0200955i −0.000392224 + 0.000679353i
\(876\) 6.04792 + 9.40111i 0.204340 + 0.317634i
\(877\) −12.8743 22.2989i −0.434733 0.752980i 0.562540 0.826770i \(-0.309824\pi\)
−0.997274 + 0.0737894i \(0.976491\pi\)
\(878\) −7.35306 12.7359i −0.248154 0.429815i
\(879\) −15.1603 23.5656i −0.511343 0.794849i
\(880\) 0 0
\(881\) 36.6362 1.23430 0.617152 0.786844i \(-0.288286\pi\)
0.617152 + 0.786844i \(0.288286\pi\)
\(882\) −24.2166 + 2.33519i −0.815414 + 0.0786300i
\(883\) 19.4248 0.653696 0.326848 0.945077i \(-0.394013\pi\)
0.326848 + 0.945077i \(0.394013\pi\)
\(884\) 7.48384 12.9624i 0.251709 0.435972i
\(885\) −6.27761 + 12.1908i −0.211020 + 0.409790i
\(886\) 22.2527 + 38.5427i 0.747593 + 1.29487i
\(887\) 26.0528 + 45.1247i 0.874767 + 1.51514i 0.857011 + 0.515298i \(0.172319\pi\)
0.0177557 + 0.999842i \(0.494348\pi\)
\(888\) −2.52395 + 0.121410i −0.0846983 + 0.00407426i
\(889\) −0.220664 + 0.382201i −0.00740083 + 0.0128186i
\(890\) 31.0636 1.04126
\(891\) 0 0
\(892\) −1.40390 −0.0470059
\(893\) −1.24668 + 2.15930i −0.0417184 + 0.0722584i
\(894\) 40.8596 1.96548i 1.36655 0.0657355i
\(895\) 28.6395 + 49.6051i 0.957313 + 1.65811i
\(896\) 0.407321 + 0.705501i 0.0136077 + 0.0235691i
\(897\) 20.0700 38.9750i 0.670118 1.30134i
\(898\) −11.4261 + 19.7906i −0.381295 + 0.660421i
\(899\) −13.2150 −0.440744
\(900\) −9.51829 + 0.917845i −0.317276 + 0.0305948i
\(901\) 53.4497 1.78067
\(902\) 0 0
\(903\) 2.34141 + 3.63957i 0.0779171 + 0.121117i
\(904\) 13.9680 + 24.1932i 0.464568 + 0.804655i
\(905\) 35.7071 + 61.8465i 1.18694 + 2.05585i
\(906\) −13.2385 20.5784i −0.439821 0.683673i
\(907\) 28.6704 49.6586i 0.951984 1.64889i 0.210861 0.977516i \(-0.432373\pi\)
0.741123 0.671369i \(-0.234293\pi\)
\(908\) −16.5114 −0.547951
\(909\) −8.22269 + 18.0497i −0.272729 + 0.598671i
\(910\) −4.72675 −0.156690
\(911\) −7.32080 + 12.6800i −0.242549 + 0.420107i −0.961440 0.275016i \(-0.911317\pi\)
0.718891 + 0.695123i \(0.244650\pi\)
\(912\) 1.47334 2.86116i 0.0487872 0.0947425i
\(913\) 0 0
\(914\) −6.62927 11.4822i −0.219277 0.379799i
\(915\) 21.9775 1.05719i 0.726553 0.0349495i
\(916\) −2.01253 + 3.48581i −0.0664960 + 0.115174i
\(917\) −0.0806755 −0.00266414
\(918\) −10.3542 + 25.9687i −0.341739 + 0.857095i
\(919\) −10.2505 −0.338133 −0.169067 0.985605i \(-0.554075\pi\)
−0.169067 + 0.985605i \(0.554075\pi\)
\(920\) 24.0472 41.6509i 0.792812 1.37319i
\(921\) 24.8260 1.19421i 0.818043 0.0393505i
\(922\) 15.0773 + 26.1146i 0.496544 + 0.860039i
\(923\) 0.948587 + 1.64300i 0.0312231 + 0.0540800i
\(924\) 0 0
\(925\) 1.19171 2.06411i 0.0391833 0.0678675i
\(926\) −23.8795 −0.784729
\(927\) −14.8514 20.8147i −0.487783 0.683645i
\(928\) 5.39572 0.177123
\(929\) 17.7511 30.7459i 0.582396 1.00874i −0.412798 0.910822i \(-0.635449\pi\)
0.995195 0.0979172i \(-0.0312180\pi\)
\(930\) 29.1627 + 45.3315i 0.956282 + 1.48648i
\(931\) −2.76539 4.78980i −0.0906320 0.156979i
\(932\) −1.67838 2.90704i −0.0549772 0.0952233i
\(933\) 3.35225 + 5.21086i 0.109748 + 0.170596i
\(934\) −0.504609 + 0.874008i −0.0165113 + 0.0285984i
\(935\) 0 0
\(936\) −27.5222 38.5734i −0.899592 1.26081i
\(937\) 42.9385 1.40274 0.701369 0.712798i \(-0.252573\pi\)
0.701369 + 0.712798i \(0.252573\pi\)
\(938\) 0.604171 1.04646i 0.0197269 0.0341680i
\(939\) 8.79152 17.0727i 0.286900 0.557147i
\(940\) 3.13886 + 5.43666i 0.102378 + 0.177324i
\(941\) 3.70673 + 6.42024i 0.120836 + 0.209294i 0.920098 0.391689i \(-0.128109\pi\)
−0.799262 + 0.600983i \(0.794776\pi\)
\(942\) 22.3499 1.07510i 0.728200 0.0350288i
\(943\) −0.231784 + 0.401461i −0.00754792 + 0.0130734i
\(944\) −5.82661 −0.189640
\(945\) −4.05291 + 0.588509i −0.131841 + 0.0191442i
\(946\) 0 0
\(947\) 6.74751 11.6870i 0.219265 0.379778i −0.735319 0.677722i \(-0.762968\pi\)
0.954583 + 0.297944i \(0.0963008\pi\)
\(948\) −12.8322 + 0.617273i −0.416772 + 0.0200481i
\(949\) −26.1245 45.2489i −0.848036 1.46884i
\(950\) 2.34315 + 4.05846i 0.0760219 + 0.131674i
\(951\) −9.56926 + 18.5830i −0.310304 + 0.602596i
\(952\) 1.76332 3.05416i 0.0571494 0.0989857i
\(953\) −8.77715 −0.284320 −0.142160 0.989844i \(-0.545405\pi\)
−0.142160 + 0.989844i \(0.545405\pi\)
\(954\) 16.8803 37.0542i 0.546521 1.19967i
\(955\) 30.2110 0.977605
\(956\) 3.67932 6.37277i 0.118998 0.206110i
\(957\) 0 0
\(958\) −7.69355 13.3256i −0.248567 0.430531i
\(959\) 0.644171 + 1.11574i 0.0208014 + 0.0360291i
\(960\) −25.7416 40.0137i −0.830807 1.29144i
\(961\) −19.8390 + 34.3621i −0.639967 + 1.10846i
\(962\) 2.84203 0.0916308
\(963\) 11.7069 1.12889i 0.377249 0.0363780i
\(964\) 4.64257 0.149527
\(965\) −30.2587 + 52.4096i −0.974062 + 1.68712i
\(966\) 1.13790 2.20975i 0.0366114 0.0710976i
\(967\) 7.08115 + 12.2649i 0.227714 + 0.394413i 0.957130 0.289658i \(-0.0935414\pi\)
−0.729416 + 0.684070i \(0.760208\pi\)
\(968\) 0 0
\(969\) −6.34819 + 0.305368i −0.203933 + 0.00980984i
\(970\) −20.5199 + 35.5414i −0.658853 + 1.14117i
\(971\) −10.3327 −0.331593 −0.165796 0.986160i \(-0.553019\pi\)
−0.165796 + 0.986160i \(0.553019\pi\)
\(972\) −6.83423 7.13415i −0.219208 0.228828i
\(973\) −3.06657 −0.0983096
\(974\) 8.29711 14.3710i 0.265857 0.460477i
\(975\) 44.6439 2.14752i 1.42975 0.0687756i
\(976\) 4.67475 + 8.09690i 0.149635 + 0.259175i
\(977\) −24.0742 41.6978i −0.770202 1.33403i −0.937452 0.348115i \(-0.886822\pi\)
0.167249 0.985915i \(-0.446511\pi\)
\(978\) −14.2288 + 27.6316i −0.454986 + 0.883561i
\(979\) 0 0
\(980\) −13.9253 −0.444827
\(981\) −11.4535 + 1.10446i −0.365682 + 0.0352626i
\(982\) −11.2348 −0.358516
\(983\) 13.4702 23.3311i 0.429633 0.744147i −0.567207 0.823575i \(-0.691976\pi\)
0.996841 + 0.0794285i \(0.0253095\pi\)
\(984\) 0.271095 + 0.421400i 0.00864219 + 0.0134337i
\(985\) 28.0946 + 48.6612i 0.895168 + 1.55048i
\(986\) 4.22863 + 7.32421i 0.134667 + 0.233250i
\(987\) 0.729453 + 1.13389i 0.0232188 + 0.0360921i
\(988\) 1.29607 2.24487i 0.0412336 0.0714187i
\(989\) 49.5257 1.57482
\(990\) 0 0
\(991\) −33.7506 −1.07212 −0.536062 0.844179i \(-0.680089\pi\)
−0.536062 + 0.844179i \(0.680089\pi\)
\(992\) 14.4290 24.9918i 0.458122 0.793490i
\(993\) −1.63870 + 3.18229i −0.0520027 + 0.100987i
\(994\) 0.0537817 + 0.0931526i 0.00170585 + 0.00295462i
\(995\) 16.2514 + 28.1483i 0.515205 + 0.892360i
\(996\) 1.16790 0.0561798i 0.0370063 0.00178012i
\(997\) 24.5282 42.4841i 0.776815 1.34548i −0.156953 0.987606i \(-0.550167\pi\)
0.933769 0.357878i \(-0.116499\pi\)
\(998\) −26.5623 −0.840814
\(999\) 2.43688 0.353850i 0.0770994 0.0111953i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.2.e.o.727.7 36
9.2 odd 6 9801.2.a.cn.1.7 18
9.4 even 3 inner 1089.2.e.o.364.7 36
9.7 even 3 9801.2.a.co.1.12 18
11.2 odd 10 99.2.m.b.70.3 yes 72
11.6 odd 10 99.2.m.b.25.7 yes 72
11.10 odd 2 1089.2.e.p.727.12 36
33.2 even 10 297.2.n.b.235.7 72
33.17 even 10 297.2.n.b.289.3 72
99.2 even 30 891.2.f.e.730.3 36
99.13 odd 30 99.2.m.b.4.7 72
99.43 odd 6 9801.2.a.cm.1.7 18
99.50 even 30 297.2.n.b.91.7 72
99.61 odd 30 891.2.f.f.487.7 36
99.65 even 6 9801.2.a.cp.1.12 18
99.68 even 30 297.2.n.b.37.3 72
99.76 odd 6 1089.2.e.p.364.12 36
99.79 odd 30 891.2.f.f.730.7 36
99.83 even 30 891.2.f.e.487.3 36
99.94 odd 30 99.2.m.b.58.3 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.4.7 72 99.13 odd 30
99.2.m.b.25.7 yes 72 11.6 odd 10
99.2.m.b.58.3 yes 72 99.94 odd 30
99.2.m.b.70.3 yes 72 11.2 odd 10
297.2.n.b.37.3 72 99.68 even 30
297.2.n.b.91.7 72 99.50 even 30
297.2.n.b.235.7 72 33.2 even 10
297.2.n.b.289.3 72 33.17 even 10
891.2.f.e.487.3 36 99.83 even 30
891.2.f.e.730.3 36 99.2 even 30
891.2.f.f.487.7 36 99.61 odd 30
891.2.f.f.730.7 36 99.79 odd 30
1089.2.e.o.364.7 36 9.4 even 3 inner
1089.2.e.o.727.7 36 1.1 even 1 trivial
1089.2.e.p.364.12 36 99.76 odd 6
1089.2.e.p.727.12 36 11.10 odd 2
9801.2.a.cm.1.7 18 99.43 odd 6
9801.2.a.cn.1.7 18 9.2 odd 6
9801.2.a.co.1.12 18 9.7 even 3
9801.2.a.cp.1.12 18 99.65 even 6