Properties

Label 1089.2.e
Level $1089$
Weight $2$
Character orbit 1089.e
Rep. character $\chi_{1089}(364,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $200$
Newform subspaces $16$
Sturm bound $264$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1089.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 16 \)
Sturm bound: \(264\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1089, [\chi])\).

Total New Old
Modular forms 288 236 52
Cusp forms 240 200 40
Eisenstein series 48 36 12

Trace form

\( 200 q - 90 q^{4} + 4 q^{5} - 2 q^{6} + 2 q^{7} + 12 q^{8} + 4 q^{9} - 22 q^{12} + 2 q^{13} - 6 q^{14} - 10 q^{15} - 70 q^{16} + 12 q^{17} - 4 q^{18} - 4 q^{19} - 2 q^{20} + 4 q^{21} - 6 q^{23} - 18 q^{24}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1089, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1089.2.e.a 1089.e 9.c $2$ $8.696$ \(\Q(\sqrt{-3}) \) None 99.2.e.c \(-2\) \(0\) \(2\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+2\zeta_{6})q^{2}+(1-2\zeta_{6})q^{3}-2\zeta_{6}q^{4}+\cdots\)
1089.2.e.b 1089.e 9.c $2$ $8.696$ \(\Q(\sqrt{-3}) \) None 99.2.e.b \(0\) \(-3\) \(3\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\zeta_{6})q^{3}+2\zeta_{6}q^{4}+3\zeta_{6}q^{5}+\cdots\)
1089.2.e.c 1089.e 9.c $2$ $8.696$ \(\Q(\sqrt{-3}) \) None 99.2.e.a \(1\) \(-3\) \(-1\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(-2+\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\)
1089.2.e.d 1089.e 9.c $4$ $8.696$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 99.2.m.a \(-3\) \(-6\) \(-2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{1}-\beta _{3})q^{2}+(-2-\beta _{3})q^{3}+\cdots\)
1089.2.e.e 1089.e 9.c $4$ $8.696$ \(\Q(\zeta_{12})\) None 1089.2.e.e \(0\) \(-6\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta_{2} q^{2}+(-\beta_1-1)q^{3}+(\beta_1-1)q^{4}+\cdots\)
1089.2.e.f 1089.e 9.c $4$ $8.696$ \(\Q(\sqrt{-3}, \sqrt{-11})\) \(\Q(\sqrt{-11}) \) 1089.2.e.f \(0\) \(1\) \(-3\) \(0\) $\mathrm{U}(1)[D_{3}]$ \(q-\beta _{3}q^{3}+2\beta _{2}q^{4}+(1-2\beta _{1}-2\beta _{2}+\cdots)q^{5}+\cdots\)
1089.2.e.g 1089.e 9.c $4$ $8.696$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 99.2.m.a \(3\) \(-6\) \(-2\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{1}+\beta _{3})q^{2}+(-2-\beta _{3})q^{3}+\cdots\)
1089.2.e.h 1089.e 9.c $6$ $8.696$ \(\Q(\zeta_{18})\) None 99.2.e.d \(0\) \(0\) \(-3\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta_{5}+\beta_{4}+\cdots-\beta_{2})q^{2}+\cdots+(\beta_{4}+\beta_{2})q^{3}+\cdots\)
1089.2.e.i 1089.e 9.c $8$ $8.696$ 8.0.508277025.1 None 99.2.e.e \(1\) \(5\) \(-4\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{2}+\beta _{7})q^{2}+(1+\beta _{7})q^{3}+(-2+\beta _{1}+\cdots)q^{4}+\cdots\)
1089.2.e.j 1089.e 9.c $12$ $8.696$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1089.2.e.j \(0\) \(4\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{7}q^{2}+(1+\beta _{2}-\beta _{6})q^{3}+(-1-2\beta _{4}+\cdots)q^{4}+\cdots\)
1089.2.e.k 1089.e 9.c $16$ $8.696$ 16.0.\(\cdots\).1 None 1089.2.e.k \(0\) \(-2\) \(4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}-\beta _{2}-\beta _{6})q^{2}-\beta _{13}q^{3}+(2\beta _{5}+\cdots)q^{4}+\cdots\)
1089.2.e.l 1089.e 9.c $20$ $8.696$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 1089.2.e.l \(0\) \(-1\) \(-3\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{3}q^{2}-\beta _{16}q^{3}+(-\beta _{12}+\beta _{17}+\cdots)q^{4}+\cdots\)
1089.2.e.m 1089.e 9.c $20$ $8.696$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 1089.2.e.l \(0\) \(-1\) \(-3\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{3}q^{2}-\beta _{16}q^{3}+(-\beta _{12}+\beta _{17}+\cdots)q^{4}+\cdots\)
1089.2.e.n 1089.e 9.c $24$ $8.696$ None 1089.2.e.n \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$
1089.2.e.o 1089.e 9.c $36$ $8.696$ None 99.2.m.b \(-2\) \(9\) \(1\) \(1\) $\mathrm{SU}(2)[C_{3}]$
1089.2.e.p 1089.e 9.c $36$ $8.696$ None 99.2.m.b \(2\) \(9\) \(1\) \(-1\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1089, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1089, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 2}\)