Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1089,2,Mod(364,1089)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1089, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1089.364");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1089 = 3^{2} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1089.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.69570878012\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{3})\) |
Twist minimal: | no (minimal twist has level 99) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
364.1 | −1.30084 | − | 2.25313i | 1.22607 | + | 1.22342i | −2.38439 | + | 4.12988i | −1.02604 | + | 1.77715i | 1.16159 | − | 4.35397i | 1.59481 | + | 2.76230i | 7.20347 | 0.00649615 | + | 2.99999i | 5.33887 | ||||
364.2 | −1.22272 | − | 2.11781i | 1.57627 | − | 0.717885i | −1.99007 | + | 3.44691i | 1.50144 | − | 2.60057i | −3.44768 | − | 2.46048i | 1.94598 | + | 3.37054i | 4.84231 | 1.96928 | − | 2.26317i | −7.34333 | ||||
364.3 | −1.00432 | − | 1.73953i | 0.413284 | + | 1.68202i | −1.01731 | + | 1.76203i | −0.00272589 | + | 0.00472139i | 2.51086 | − | 2.40820i | −1.91390 | − | 3.31498i | 0.0695356 | −2.65839 | + | 1.39030i | 0.0109507 | ||||
364.4 | −0.947338 | − | 1.64084i | 0.157872 | − | 1.72484i | −0.794900 | + | 1.37681i | −1.75651 | + | 3.04236i | −2.97974 | + | 1.37497i | −1.71600 | − | 2.97220i | −0.777197 | −2.95015 | − | 0.544607i | 6.65603 | ||||
364.5 | −0.741755 | − | 1.28476i | −1.22126 | + | 1.22822i | −0.100401 | + | 0.173899i | 0.0361636 | − | 0.0626372i | 2.48384 | + | 0.657978i | 0.975110 | + | 1.68894i | −2.66913 | −0.0170643 | − | 2.99995i | −0.107298 | ||||
364.6 | −0.728693 | − | 1.26213i | 1.66454 | − | 0.478847i | −0.0619858 | + | 0.107362i | 1.50302 | − | 2.60330i | −1.81731 | − | 1.75194i | −0.825091 | − | 1.42910i | −2.73410 | 2.54141 | − | 1.59412i | −4.38094 | ||||
364.7 | −0.584430 | − | 1.01226i | −1.73005 | − | 0.0832210i | 0.316882 | − | 0.548856i | 1.58346 | − | 2.74264i | 0.926852 | + | 1.79990i | 0.124437 | + | 0.215531i | −3.07850 | 2.98615 | + | 0.287953i | −3.70170 | ||||
364.8 | −0.332160 | − | 0.575318i | 1.61109 | − | 0.635904i | 0.779339 | − | 1.34985i | −0.558312 | + | 0.967024i | −0.900989 | − | 0.715670i | −1.95227 | − | 3.38143i | −2.36410 | 2.19125 | − | 2.04900i | 0.741796 | ||||
364.9 | −0.245247 | − | 0.424780i | −0.361332 | − | 1.69394i | 0.879708 | − | 1.52370i | −0.854089 | + | 1.47932i | −0.630937 | + | 0.568921i | 1.70526 | + | 2.95360i | −1.84397 | −2.73888 | + | 1.22415i | 0.837851 | ||||
364.10 | 0.142574 | + | 0.246946i | 0.0364826 | + | 1.73167i | 0.959345 | − | 1.66163i | −1.35437 | + | 2.34583i | −0.422426 | + | 0.255900i | −2.03667 | − | 3.52761i | 1.11741 | −2.99734 | + | 0.126351i | −0.772391 | ||||
364.11 | 0.288906 | + | 0.500400i | −1.33220 | + | 1.10691i | 0.833067 | − | 1.44291i | −1.50221 | + | 2.60191i | −0.938776 | − | 0.346842i | −0.582160 | − | 1.00833i | 2.11834 | 0.549521 | − | 2.94924i | −1.73599 | ||||
364.12 | 0.338834 | + | 0.586878i | 0.461570 | − | 1.66942i | 0.770383 | − | 1.33434i | −0.145397 | + | 0.251836i | 1.13614 | − | 0.294770i | 1.67774 | + | 2.90594i | 2.39947 | −2.57391 | − | 1.54111i | −0.197063 | ||||
364.13 | 0.503287 | + | 0.871719i | 0.903894 | + | 1.47749i | 0.493403 | − | 0.854600i | 1.99556 | − | 3.45642i | −0.833038 | + | 1.53154i | 1.37814 | + | 2.38701i | 3.00644 | −1.36595 | + | 2.67099i | 4.01737 | ||||
364.14 | 0.719313 | + | 1.24589i | 0.553057 | − | 1.64138i | −0.0348220 | + | 0.0603135i | 1.74427 | − | 3.02116i | 2.44279 | − | 0.491619i | −0.168921 | − | 0.292580i | 2.77706 | −2.38826 | − | 1.81555i | 5.01870 | ||||
364.15 | 0.773068 | + | 1.33899i | 1.56806 | + | 0.735660i | −0.195269 | + | 0.338216i | −0.296016 | + | 0.512715i | 0.227172 | + | 2.66833i | 0.360975 | + | 0.625227i | 2.48845 | 1.91761 | + | 2.30711i | −0.915362 | ||||
364.16 | 1.06943 | + | 1.85231i | 1.72628 | + | 0.141233i | −1.28737 | + | 2.22979i | −0.837993 | + | 1.45145i | 1.58454 | + | 3.34865i | −0.647817 | − | 1.12205i | −1.22928 | 2.96011 | + | 0.487615i | −3.58471 | ||||
364.17 | 1.10759 | + | 1.91839i | −1.72523 | − | 0.153513i | −1.45349 | + | 2.51752i | 0.311236 | − | 0.539077i | −1.61634 | − | 3.47971i | 1.28962 | + | 2.23368i | −2.00911 | 2.95287 | + | 0.529693i | 1.37888 | ||||
364.18 | 1.16450 | + | 2.01697i | −1.02841 | − | 1.39369i | −1.71213 | + | 2.96549i | 0.158510 | − | 0.274547i | 1.61346 | − | 3.69723i | −0.709246 | − | 1.22845i | −3.31708 | −0.884754 | + | 2.86657i | 0.738340 | ||||
727.1 | −1.30084 | + | 2.25313i | 1.22607 | − | 1.22342i | −2.38439 | − | 4.12988i | −1.02604 | − | 1.77715i | 1.16159 | + | 4.35397i | 1.59481 | − | 2.76230i | 7.20347 | 0.00649615 | − | 2.99999i | 5.33887 | ||||
727.2 | −1.22272 | + | 2.11781i | 1.57627 | + | 0.717885i | −1.99007 | − | 3.44691i | 1.50144 | + | 2.60057i | −3.44768 | + | 2.46048i | 1.94598 | − | 3.37054i | 4.84231 | 1.96928 | + | 2.26317i | −7.34333 | ||||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1089.2.e.o | 36 | |
9.c | even | 3 | 1 | inner | 1089.2.e.o | 36 | |
9.c | even | 3 | 1 | 9801.2.a.co | 18 | ||
9.d | odd | 6 | 1 | 9801.2.a.cn | 18 | ||
11.b | odd | 2 | 1 | 1089.2.e.p | 36 | ||
11.d | odd | 10 | 2 | 99.2.m.b | ✓ | 72 | |
33.f | even | 10 | 2 | 297.2.n.b | 72 | ||
99.g | even | 6 | 1 | 9801.2.a.cp | 18 | ||
99.h | odd | 6 | 1 | 1089.2.e.p | 36 | ||
99.h | odd | 6 | 1 | 9801.2.a.cm | 18 | ||
99.o | odd | 30 | 2 | 99.2.m.b | ✓ | 72 | |
99.o | odd | 30 | 2 | 891.2.f.f | 36 | ||
99.p | even | 30 | 2 | 297.2.n.b | 72 | ||
99.p | even | 30 | 2 | 891.2.f.e | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
99.2.m.b | ✓ | 72 | 11.d | odd | 10 | 2 | |
99.2.m.b | ✓ | 72 | 99.o | odd | 30 | 2 | |
297.2.n.b | 72 | 33.f | even | 10 | 2 | ||
297.2.n.b | 72 | 99.p | even | 30 | 2 | ||
891.2.f.e | 36 | 99.p | even | 30 | 2 | ||
891.2.f.f | 36 | 99.o | odd | 30 | 2 | ||
1089.2.e.o | 36 | 1.a | even | 1 | 1 | trivial | |
1089.2.e.o | 36 | 9.c | even | 3 | 1 | inner | |
1089.2.e.p | 36 | 11.b | odd | 2 | 1 | ||
1089.2.e.p | 36 | 99.h | odd | 6 | 1 | ||
9801.2.a.cm | 18 | 99.h | odd | 6 | 1 | ||
9801.2.a.cn | 18 | 9.d | odd | 6 | 1 | ||
9801.2.a.co | 18 | 9.c | even | 3 | 1 | ||
9801.2.a.cp | 18 | 99.g | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1089, [\chi])\):
\( T_{2}^{36} + 2 T_{2}^{35} + 26 T_{2}^{34} + 40 T_{2}^{33} + 370 T_{2}^{32} + 489 T_{2}^{31} + \cdots + 3025 \)
|
\( T_{5}^{36} - T_{5}^{35} + 49 T_{5}^{34} + 6 T_{5}^{33} + 1393 T_{5}^{32} + 978 T_{5}^{31} + 27003 T_{5}^{30} + \cdots + 1 \)
|