Properties

Label 1080.4.q.b.721.3
Level $1080$
Weight $4$
Character 1080.721
Analytic conductor $63.722$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1080,4,Mod(361,1080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1080.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1080, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1080.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,40,0,-34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(63.7220628062\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 16 x^{14} + 14 x^{13} - 284 x^{12} + 764 x^{11} + 19770 x^{10} + 55106 x^{9} + \cdots + 193472540143 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{14} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 721.3
Root \(5.28147 + 2.94432i\) of defining polynomial
Character \(\chi\) \(=\) 1080.721
Dual form 1080.4.q.b.361.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.50000 + 4.33013i) q^{5} +(-5.91307 + 10.2417i) q^{7} +(5.28382 - 9.15185i) q^{11} +(10.0854 + 17.4685i) q^{13} +95.1376 q^{17} -8.49782 q^{19} +(-31.7906 - 55.0629i) q^{23} +(-12.5000 + 21.6506i) q^{25} +(90.4720 - 156.702i) q^{29} +(67.8404 + 117.503i) q^{31} -59.1307 q^{35} -82.5485 q^{37} +(59.9638 + 103.860i) q^{41} +(-11.9830 + 20.7552i) q^{43} +(24.8195 - 42.9886i) q^{47} +(101.571 + 175.927i) q^{49} +70.1397 q^{53} +52.8382 q^{55} +(214.018 + 370.691i) q^{59} +(-359.534 + 622.730i) q^{61} +(-50.4272 + 87.3425i) q^{65} +(-130.985 - 226.872i) q^{67} +77.8019 q^{71} +626.739 q^{73} +(62.4872 + 108.231i) q^{77} +(-186.943 + 323.796i) q^{79} +(-457.533 + 792.471i) q^{83} +(237.844 + 411.958i) q^{85} -905.545 q^{89} -238.544 q^{91} +(-21.2446 - 36.7967i) q^{95} +(-366.564 + 634.907i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 40 q^{5} - 34 q^{7} + 64 q^{11} - 48 q^{13} - 212 q^{17} + 456 q^{19} + 166 q^{23} - 200 q^{25} + 110 q^{29} - 160 q^{31} - 340 q^{35} + 104 q^{37} + 280 q^{41} + 136 q^{43} + 594 q^{47} - 1094 q^{49}+ \cdots + 182 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.50000 + 4.33013i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −5.91307 + 10.2417i −0.319276 + 0.553002i −0.980337 0.197330i \(-0.936773\pi\)
0.661061 + 0.750332i \(0.270106\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.28382 9.15185i 0.144830 0.250853i −0.784479 0.620155i \(-0.787070\pi\)
0.929310 + 0.369302i \(0.120403\pi\)
\(12\) 0 0
\(13\) 10.0854 + 17.4685i 0.215169 + 0.372684i 0.953325 0.301946i \(-0.0976364\pi\)
−0.738156 + 0.674630i \(0.764303\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 95.1376 1.35731 0.678655 0.734457i \(-0.262563\pi\)
0.678655 + 0.734457i \(0.262563\pi\)
\(18\) 0 0
\(19\) −8.49782 −0.102607 −0.0513035 0.998683i \(-0.516338\pi\)
−0.0513035 + 0.998683i \(0.516338\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −31.7906 55.0629i −0.288208 0.499191i 0.685174 0.728380i \(-0.259726\pi\)
−0.973382 + 0.229188i \(0.926393\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 90.4720 156.702i 0.579318 1.00341i −0.416239 0.909255i \(-0.636652\pi\)
0.995558 0.0941536i \(-0.0300145\pi\)
\(30\) 0 0
\(31\) 67.8404 + 117.503i 0.393049 + 0.680780i 0.992850 0.119369i \(-0.0380871\pi\)
−0.599801 + 0.800149i \(0.704754\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −59.1307 −0.285569
\(36\) 0 0
\(37\) −82.5485 −0.366781 −0.183390 0.983040i \(-0.558707\pi\)
−0.183390 + 0.983040i \(0.558707\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 59.9638 + 103.860i 0.228409 + 0.395616i 0.957337 0.288974i \(-0.0933143\pi\)
−0.728928 + 0.684591i \(0.759981\pi\)
\(42\) 0 0
\(43\) −11.9830 + 20.7552i −0.0424976 + 0.0736080i −0.886492 0.462744i \(-0.846865\pi\)
0.843994 + 0.536352i \(0.180198\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 24.8195 42.9886i 0.0770275 0.133415i −0.824939 0.565222i \(-0.808790\pi\)
0.901966 + 0.431807i \(0.142124\pi\)
\(48\) 0 0
\(49\) 101.571 + 175.927i 0.296126 + 0.512905i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 70.1397 0.181782 0.0908909 0.995861i \(-0.471029\pi\)
0.0908909 + 0.995861i \(0.471029\pi\)
\(54\) 0 0
\(55\) 52.8382 0.129540
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 214.018 + 370.691i 0.472251 + 0.817963i 0.999496 0.0317502i \(-0.0101081\pi\)
−0.527244 + 0.849714i \(0.676775\pi\)
\(60\) 0 0
\(61\) −359.534 + 622.730i −0.754648 + 1.30709i 0.190901 + 0.981609i \(0.438859\pi\)
−0.945549 + 0.325480i \(0.894474\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −50.4272 + 87.3425i −0.0962266 + 0.166669i
\(66\) 0 0
\(67\) −130.985 226.872i −0.238840 0.413684i 0.721541 0.692371i \(-0.243434\pi\)
−0.960382 + 0.278687i \(0.910101\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 77.8019 0.130048 0.0650238 0.997884i \(-0.479288\pi\)
0.0650238 + 0.997884i \(0.479288\pi\)
\(72\) 0 0
\(73\) 626.739 1.00485 0.502426 0.864620i \(-0.332441\pi\)
0.502426 + 0.864620i \(0.332441\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 62.4872 + 108.231i 0.0924815 + 0.160183i
\(78\) 0 0
\(79\) −186.943 + 323.796i −0.266238 + 0.461137i −0.967887 0.251385i \(-0.919114\pi\)
0.701649 + 0.712522i \(0.252447\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −457.533 + 792.471i −0.605070 + 1.04801i 0.386970 + 0.922092i \(0.373522\pi\)
−0.992040 + 0.125920i \(0.959812\pi\)
\(84\) 0 0
\(85\) 237.844 + 411.958i 0.303504 + 0.525684i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −905.545 −1.07851 −0.539256 0.842142i \(-0.681294\pi\)
−0.539256 + 0.842142i \(0.681294\pi\)
\(90\) 0 0
\(91\) −238.544 −0.274793
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −21.2446 36.7967i −0.0229436 0.0397396i
\(96\) 0 0
\(97\) −366.564 + 634.907i −0.383700 + 0.664588i −0.991588 0.129435i \(-0.958684\pi\)
0.607888 + 0.794023i \(0.292017\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 722.727 1251.80i 0.712020 1.23325i −0.252078 0.967707i \(-0.581114\pi\)
0.964098 0.265548i \(-0.0855529\pi\)
\(102\) 0 0
\(103\) −121.055 209.673i −0.115804 0.200579i 0.802297 0.596926i \(-0.203611\pi\)
−0.918101 + 0.396346i \(0.870278\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1094.76 −0.989108 −0.494554 0.869147i \(-0.664669\pi\)
−0.494554 + 0.869147i \(0.664669\pi\)
\(108\) 0 0
\(109\) 1759.83 1.54643 0.773214 0.634145i \(-0.218648\pi\)
0.773214 + 0.634145i \(0.218648\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 214.669 + 371.818i 0.178711 + 0.309537i 0.941439 0.337182i \(-0.109474\pi\)
−0.762728 + 0.646719i \(0.776141\pi\)
\(114\) 0 0
\(115\) 158.953 275.314i 0.128891 0.223245i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −562.555 + 974.374i −0.433356 + 0.750595i
\(120\) 0 0
\(121\) 609.662 + 1055.97i 0.458048 + 0.793363i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −271.242 −0.189518 −0.0947592 0.995500i \(-0.530208\pi\)
−0.0947592 + 0.995500i \(0.530208\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1404.04 + 2431.87i 0.936424 + 1.62193i 0.772075 + 0.635532i \(0.219219\pi\)
0.164349 + 0.986402i \(0.447448\pi\)
\(132\) 0 0
\(133\) 50.2482 87.0325i 0.0327599 0.0567419i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1094.02 + 1894.89i −0.682250 + 1.18169i 0.292043 + 0.956405i \(0.405665\pi\)
−0.974293 + 0.225286i \(0.927668\pi\)
\(138\) 0 0
\(139\) 349.941 + 606.116i 0.213537 + 0.369857i 0.952819 0.303539i \(-0.0981683\pi\)
−0.739282 + 0.673396i \(0.764835\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 213.159 0.124652
\(144\) 0 0
\(145\) 904.720 0.518158
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 111.212 + 192.626i 0.0611468 + 0.105909i 0.894978 0.446110i \(-0.147191\pi\)
−0.833831 + 0.552019i \(0.813858\pi\)
\(150\) 0 0
\(151\) 1198.98 2076.69i 0.646169 1.11920i −0.337861 0.941196i \(-0.609703\pi\)
0.984030 0.178002i \(-0.0569634\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −339.202 + 587.516i −0.175777 + 0.304454i
\(156\) 0 0
\(157\) 1165.79 + 2019.21i 0.592612 + 1.02643i 0.993879 + 0.110473i \(0.0352367\pi\)
−0.401267 + 0.915961i \(0.631430\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 751.919 0.368072
\(162\) 0 0
\(163\) 75.4086 0.0362359 0.0181180 0.999836i \(-0.494233\pi\)
0.0181180 + 0.999836i \(0.494233\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1162.13 + 2012.88i 0.538495 + 0.932701i 0.998985 + 0.0450362i \(0.0143403\pi\)
−0.460490 + 0.887665i \(0.652326\pi\)
\(168\) 0 0
\(169\) 895.068 1550.30i 0.407404 0.705645i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −917.804 + 1589.68i −0.403349 + 0.698621i −0.994128 0.108213i \(-0.965487\pi\)
0.590779 + 0.806834i \(0.298821\pi\)
\(174\) 0 0
\(175\) −147.827 256.043i −0.0638551 0.110600i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4347.88 −1.81551 −0.907754 0.419502i \(-0.862205\pi\)
−0.907754 + 0.419502i \(0.862205\pi\)
\(180\) 0 0
\(181\) 2194.28 0.901103 0.450551 0.892751i \(-0.351227\pi\)
0.450551 + 0.892751i \(0.351227\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −206.371 357.445i −0.0820147 0.142054i
\(186\) 0 0
\(187\) 502.690 870.685i 0.196579 0.340486i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1271.94 + 2203.07i −0.481857 + 0.834601i −0.999783 0.0208244i \(-0.993371\pi\)
0.517926 + 0.855425i \(0.326704\pi\)
\(192\) 0 0
\(193\) 212.642 + 368.306i 0.0793071 + 0.137364i 0.902951 0.429743i \(-0.141396\pi\)
−0.823644 + 0.567107i \(0.808063\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −625.217 −0.226116 −0.113058 0.993588i \(-0.536065\pi\)
−0.113058 + 0.993588i \(0.536065\pi\)
\(198\) 0 0
\(199\) 3705.77 1.32007 0.660037 0.751233i \(-0.270541\pi\)
0.660037 + 0.751233i \(0.270541\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1069.93 + 1853.18i 0.369924 + 0.640728i
\(204\) 0 0
\(205\) −299.819 + 519.302i −0.102148 + 0.176925i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −44.9010 + 77.7708i −0.0148606 + 0.0257393i
\(210\) 0 0
\(211\) 108.659 + 188.203i 0.0354521 + 0.0614049i 0.883207 0.468983i \(-0.155380\pi\)
−0.847755 + 0.530388i \(0.822046\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −119.830 −0.0380110
\(216\) 0 0
\(217\) −1604.58 −0.501963
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 959.506 + 1661.91i 0.292051 + 0.505848i
\(222\) 0 0
\(223\) −2588.06 + 4482.65i −0.777172 + 1.34610i 0.156394 + 0.987695i \(0.450013\pi\)
−0.933566 + 0.358406i \(0.883320\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −722.731 + 1251.81i −0.211319 + 0.366015i −0.952127 0.305701i \(-0.901109\pi\)
0.740809 + 0.671716i \(0.234442\pi\)
\(228\) 0 0
\(229\) 2949.65 + 5108.95i 0.851173 + 1.47428i 0.880150 + 0.474695i \(0.157442\pi\)
−0.0289770 + 0.999580i \(0.509225\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4962.50 1.39530 0.697648 0.716441i \(-0.254230\pi\)
0.697648 + 0.716441i \(0.254230\pi\)
\(234\) 0 0
\(235\) 248.195 0.0688954
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2785.66 4824.91i −0.753931 1.30585i −0.945904 0.324446i \(-0.894822\pi\)
0.191973 0.981400i \(-0.438511\pi\)
\(240\) 0 0
\(241\) −2711.29 + 4696.09i −0.724687 + 1.25519i 0.234416 + 0.972136i \(0.424682\pi\)
−0.959103 + 0.283058i \(0.908651\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −507.856 + 879.633i −0.132432 + 0.229378i
\(246\) 0 0
\(247\) −85.7043 148.444i −0.0220779 0.0382400i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6523.01 −1.64035 −0.820176 0.572111i \(-0.806125\pi\)
−0.820176 + 0.572111i \(0.806125\pi\)
\(252\) 0 0
\(253\) −671.903 −0.166965
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2104.56 + 3645.21i 0.510813 + 0.884755i 0.999921 + 0.0125315i \(0.00398899\pi\)
−0.489108 + 0.872223i \(0.662678\pi\)
\(258\) 0 0
\(259\) 488.115 845.440i 0.117104 0.202830i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3441.10 5960.16i 0.806796 1.39741i −0.108275 0.994121i \(-0.534533\pi\)
0.915072 0.403291i \(-0.132134\pi\)
\(264\) 0 0
\(265\) 175.349 + 303.714i 0.0406476 + 0.0704038i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1959.61 0.444162 0.222081 0.975028i \(-0.428715\pi\)
0.222081 + 0.975028i \(0.428715\pi\)
\(270\) 0 0
\(271\) −2727.70 −0.611424 −0.305712 0.952124i \(-0.598894\pi\)
−0.305712 + 0.952124i \(0.598894\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 132.096 + 228.796i 0.0289660 + 0.0501707i
\(276\) 0 0
\(277\) 1287.18 2229.47i 0.279204 0.483595i −0.691984 0.721913i \(-0.743263\pi\)
0.971187 + 0.238319i \(0.0765963\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2200.93 3812.12i 0.467247 0.809296i −0.532053 0.846711i \(-0.678579\pi\)
0.999300 + 0.0374156i \(0.0119125\pi\)
\(282\) 0 0
\(283\) −2241.80 3882.92i −0.470888 0.815602i 0.528557 0.848898i \(-0.322733\pi\)
−0.999446 + 0.0332954i \(0.989400\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1418.28 −0.291702
\(288\) 0 0
\(289\) 4138.17 0.842290
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2304.41 + 3991.36i 0.459472 + 0.795829i 0.998933 0.0461815i \(-0.0147053\pi\)
−0.539461 + 0.842011i \(0.681372\pi\)
\(294\) 0 0
\(295\) −1070.09 + 1853.45i −0.211197 + 0.365804i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 641.244 1110.67i 0.124027 0.214821i
\(300\) 0 0
\(301\) −141.713 245.454i −0.0271369 0.0470025i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3595.34 −0.674978
\(306\) 0 0
\(307\) −3962.95 −0.736735 −0.368368 0.929680i \(-0.620083\pi\)
−0.368368 + 0.929680i \(0.620083\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −794.224 1375.64i −0.144811 0.250821i 0.784491 0.620140i \(-0.212924\pi\)
−0.929303 + 0.369319i \(0.879591\pi\)
\(312\) 0 0
\(313\) 721.627 1249.90i 0.130316 0.225713i −0.793483 0.608593i \(-0.791734\pi\)
0.923798 + 0.382880i \(0.125068\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1831.70 3172.59i 0.324538 0.562116i −0.656881 0.753994i \(-0.728125\pi\)
0.981419 + 0.191879i \(0.0614580\pi\)
\(318\) 0 0
\(319\) −956.076 1655.97i −0.167806 0.290648i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −808.463 −0.139270
\(324\) 0 0
\(325\) −504.272 −0.0860677
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 293.518 + 508.389i 0.0491860 + 0.0851926i
\(330\) 0 0
\(331\) 2292.45 3970.64i 0.380678 0.659354i −0.610481 0.792031i \(-0.709024\pi\)
0.991159 + 0.132677i \(0.0423572\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 654.923 1134.36i 0.106813 0.185005i
\(336\) 0 0
\(337\) 1479.45 + 2562.49i 0.239142 + 0.414206i 0.960468 0.278389i \(-0.0898005\pi\)
−0.721326 + 0.692595i \(0.756467\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1433.83 0.227701
\(342\) 0 0
\(343\) −6458.76 −1.01673
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1591.87 + 2757.20i 0.246271 + 0.426553i 0.962488 0.271324i \(-0.0874614\pi\)
−0.716217 + 0.697877i \(0.754128\pi\)
\(348\) 0 0
\(349\) 2715.50 4703.38i 0.416496 0.721392i −0.579088 0.815265i \(-0.696591\pi\)
0.995584 + 0.0938725i \(0.0299246\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6296.17 10905.3i 0.949324 1.64428i 0.202470 0.979288i \(-0.435103\pi\)
0.746854 0.664988i \(-0.231564\pi\)
\(354\) 0 0
\(355\) 194.505 + 336.892i 0.0290795 + 0.0503672i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4529.29 −0.665868 −0.332934 0.942950i \(-0.608039\pi\)
−0.332934 + 0.942950i \(0.608039\pi\)
\(360\) 0 0
\(361\) −6786.79 −0.989472
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1566.85 + 2713.86i 0.224692 + 0.389178i
\(366\) 0 0
\(367\) −3984.83 + 6901.93i −0.566775 + 0.981683i 0.430107 + 0.902778i \(0.358476\pi\)
−0.996882 + 0.0789054i \(0.974857\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −414.741 + 718.353i −0.0580385 + 0.100526i
\(372\) 0 0
\(373\) −2315.26 4010.15i −0.321393 0.556669i 0.659383 0.751807i \(-0.270818\pi\)
−0.980776 + 0.195138i \(0.937484\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3649.80 0.498606
\(378\) 0 0
\(379\) 5684.71 0.770459 0.385229 0.922821i \(-0.374122\pi\)
0.385229 + 0.922821i \(0.374122\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 45.7892 + 79.3092i 0.00610893 + 0.0105810i 0.869064 0.494700i \(-0.164722\pi\)
−0.862955 + 0.505281i \(0.831389\pi\)
\(384\) 0 0
\(385\) −312.436 + 541.155i −0.0413590 + 0.0716359i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5545.59 9605.24i 0.722808 1.25194i −0.237062 0.971495i \(-0.576184\pi\)
0.959870 0.280446i \(-0.0904823\pi\)
\(390\) 0 0
\(391\) −3024.48 5238.55i −0.391188 0.677557i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1869.43 −0.238130
\(396\) 0 0
\(397\) −9625.41 −1.21684 −0.608420 0.793615i \(-0.708196\pi\)
−0.608420 + 0.793615i \(0.708196\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1767.56 + 3061.50i 0.220119 + 0.381257i 0.954844 0.297108i \(-0.0960222\pi\)
−0.734725 + 0.678365i \(0.762689\pi\)
\(402\) 0 0
\(403\) −1368.40 + 2370.14i −0.169144 + 0.292966i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −436.172 + 755.471i −0.0531209 + 0.0920082i
\(408\) 0 0
\(409\) 5166.68 + 8948.96i 0.624636 + 1.08190i 0.988611 + 0.150493i \(0.0480859\pi\)
−0.363975 + 0.931409i \(0.618581\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −5062.02 −0.603114
\(414\) 0 0
\(415\) −4575.33 −0.541191
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1340.11 2321.15i −0.156250 0.270634i 0.777263 0.629176i \(-0.216607\pi\)
−0.933514 + 0.358542i \(0.883274\pi\)
\(420\) 0 0
\(421\) 6031.60 10447.0i 0.698248 1.20940i −0.270826 0.962628i \(-0.587297\pi\)
0.969074 0.246772i \(-0.0793698\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1189.22 + 2059.79i −0.135731 + 0.235093i
\(426\) 0 0
\(427\) −4251.89 7364.49i −0.481882 0.834644i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 719.508 0.0804118 0.0402059 0.999191i \(-0.487199\pi\)
0.0402059 + 0.999191i \(0.487199\pi\)
\(432\) 0 0
\(433\) 3689.01 0.409429 0.204714 0.978822i \(-0.434373\pi\)
0.204714 + 0.978822i \(0.434373\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 270.151 + 467.915i 0.0295722 + 0.0512206i
\(438\) 0 0
\(439\) 1128.49 1954.61i 0.122688 0.212502i −0.798139 0.602474i \(-0.794182\pi\)
0.920827 + 0.389972i \(0.127515\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3072.90 5322.42i 0.329566 0.570825i −0.652860 0.757479i \(-0.726431\pi\)
0.982426 + 0.186654i \(0.0597642\pi\)
\(444\) 0 0
\(445\) −2263.86 3921.12i −0.241163 0.417706i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4288.40 −0.450740 −0.225370 0.974273i \(-0.572359\pi\)
−0.225370 + 0.974273i \(0.572359\pi\)
\(450\) 0 0
\(451\) 1267.35 0.132322
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −596.359 1032.92i −0.0614456 0.106427i
\(456\) 0 0
\(457\) −6463.45 + 11195.0i −0.661592 + 1.14591i 0.318605 + 0.947888i \(0.396786\pi\)
−0.980197 + 0.198024i \(0.936548\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7265.08 12583.5i 0.733988 1.27130i −0.221178 0.975233i \(-0.570990\pi\)
0.955166 0.296071i \(-0.0956764\pi\)
\(462\) 0 0
\(463\) 765.864 + 1326.51i 0.0768741 + 0.133150i 0.901900 0.431946i \(-0.142173\pi\)
−0.825026 + 0.565095i \(0.808839\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −16271.7 −1.61234 −0.806171 0.591683i \(-0.798464\pi\)
−0.806171 + 0.591683i \(0.798464\pi\)
\(468\) 0 0
\(469\) 3098.08 0.305024
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 126.633 + 219.334i 0.0123099 + 0.0213213i
\(474\) 0 0
\(475\) 106.223 183.983i 0.0102607 0.0177721i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9326.56 16154.1i 0.889648 1.54092i 0.0493566 0.998781i \(-0.484283\pi\)
0.840292 0.542135i \(-0.182384\pi\)
\(480\) 0 0
\(481\) −832.538 1442.00i −0.0789199 0.136693i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3665.64 −0.343192
\(486\) 0 0
\(487\) −6328.11 −0.588817 −0.294409 0.955680i \(-0.595123\pi\)
−0.294409 + 0.955680i \(0.595123\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2178.77 3773.74i −0.200258 0.346857i 0.748354 0.663300i \(-0.230845\pi\)
−0.948611 + 0.316443i \(0.897511\pi\)
\(492\) 0 0
\(493\) 8607.29 14908.3i 0.786314 1.36194i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −460.048 + 796.826i −0.0415211 + 0.0719166i
\(498\) 0 0
\(499\) −6847.63 11860.4i −0.614312 1.06402i −0.990505 0.137479i \(-0.956100\pi\)
0.376192 0.926542i \(-0.377233\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −6429.71 −0.569953 −0.284977 0.958534i \(-0.591986\pi\)
−0.284977 + 0.958534i \(0.591986\pi\)
\(504\) 0 0
\(505\) 7227.27 0.636850
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1599.64 2770.65i −0.139298 0.241271i 0.787933 0.615761i \(-0.211151\pi\)
−0.927231 + 0.374490i \(0.877818\pi\)
\(510\) 0 0
\(511\) −3705.95 + 6418.89i −0.320825 + 0.555685i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 605.273 1048.36i 0.0517893 0.0897017i
\(516\) 0 0
\(517\) −262.283 454.288i −0.0223118 0.0386452i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11378.1 0.956783 0.478391 0.878147i \(-0.341220\pi\)
0.478391 + 0.878147i \(0.341220\pi\)
\(522\) 0 0
\(523\) 15286.8 1.27810 0.639051 0.769164i \(-0.279327\pi\)
0.639051 + 0.769164i \(0.279327\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6454.18 + 11179.0i 0.533489 + 0.924029i
\(528\) 0 0
\(529\) 4062.22 7035.97i 0.333872 0.578283i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1209.52 + 2094.96i −0.0982932 + 0.170249i
\(534\) 0 0
\(535\) −2736.90 4740.45i −0.221171 0.383080i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2146.74 0.171552
\(540\) 0 0
\(541\) −8233.95 −0.654354 −0.327177 0.944963i \(-0.606097\pi\)
−0.327177 + 0.944963i \(0.606097\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4399.56 + 7620.27i 0.345792 + 0.598929i
\(546\) 0 0
\(547\) 5101.54 8836.12i 0.398768 0.690686i −0.594806 0.803869i \(-0.702771\pi\)
0.993574 + 0.113183i \(0.0361046\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −768.815 + 1331.63i −0.0594422 + 0.102957i
\(552\) 0 0
\(553\) −2210.82 3829.25i −0.170006 0.294460i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 47.2572 0.00359489 0.00179744 0.999998i \(-0.499428\pi\)
0.00179744 + 0.999998i \(0.499428\pi\)
\(558\) 0 0
\(559\) −483.417 −0.0365767
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2850.76 + 4937.66i 0.213402 + 0.369623i 0.952777 0.303671i \(-0.0982124\pi\)
−0.739375 + 0.673294i \(0.764879\pi\)
\(564\) 0 0
\(565\) −1073.35 + 1859.09i −0.0799221 + 0.138429i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5681.99 9841.50i 0.418632 0.725091i −0.577170 0.816624i \(-0.695843\pi\)
0.995802 + 0.0915323i \(0.0291765\pi\)
\(570\) 0 0
\(571\) −5894.71 10209.9i −0.432025 0.748289i 0.565023 0.825075i \(-0.308867\pi\)
−0.997048 + 0.0767867i \(0.975534\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1589.53 0.115283
\(576\) 0 0
\(577\) −24947.7 −1.79997 −0.899987 0.435918i \(-0.856424\pi\)
−0.899987 + 0.435918i \(0.856424\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −5410.85 9371.87i −0.386368 0.669209i
\(582\) 0 0
\(583\) 370.606 641.908i 0.0263275 0.0456006i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10734.6 + 18592.9i −0.754794 + 1.30734i 0.190683 + 0.981652i \(0.438930\pi\)
−0.945477 + 0.325690i \(0.894403\pi\)
\(588\) 0 0
\(589\) −576.496 998.521i −0.0403296 0.0698528i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −12062.0 −0.835290 −0.417645 0.908610i \(-0.637144\pi\)
−0.417645 + 0.908610i \(0.637144\pi\)
\(594\) 0 0
\(595\) −5625.55 −0.387605
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −717.294 1242.39i −0.0489279 0.0847457i 0.840524 0.541774i \(-0.182247\pi\)
−0.889452 + 0.457028i \(0.848914\pi\)
\(600\) 0 0
\(601\) −6603.99 + 11438.4i −0.448224 + 0.776346i −0.998271 0.0587878i \(-0.981276\pi\)
0.550047 + 0.835134i \(0.314610\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3048.31 + 5279.83i −0.204845 + 0.354803i
\(606\) 0 0
\(607\) −14532.8 25171.6i −0.971777 1.68317i −0.690184 0.723634i \(-0.742470\pi\)
−0.281594 0.959534i \(-0.590863\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1001.26 0.0662957
\(612\) 0 0
\(613\) 12478.5 0.822186 0.411093 0.911593i \(-0.365147\pi\)
0.411093 + 0.911593i \(0.365147\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4363.83 + 7558.38i 0.284735 + 0.493175i 0.972545 0.232716i \(-0.0747612\pi\)
−0.687810 + 0.725891i \(0.741428\pi\)
\(618\) 0 0
\(619\) 11067.4 19169.4i 0.718639 1.24472i −0.242900 0.970051i \(-0.578099\pi\)
0.961539 0.274668i \(-0.0885680\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5354.55 9274.35i 0.344343 0.596419i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7853.47 −0.497835
\(630\) 0 0
\(631\) 22905.4 1.44509 0.722543 0.691326i \(-0.242973\pi\)
0.722543 + 0.691326i \(0.242973\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −678.105 1174.51i −0.0423776 0.0734002i
\(636\) 0 0
\(637\) −2048.78 + 3548.60i −0.127434 + 0.220723i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5677.78 9834.20i 0.349858 0.605971i −0.636366 0.771387i \(-0.719563\pi\)
0.986224 + 0.165416i \(0.0528967\pi\)
\(642\) 0 0
\(643\) −1307.23 2264.19i −0.0801745 0.138866i 0.823150 0.567824i \(-0.192214\pi\)
−0.903325 + 0.428957i \(0.858881\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1495.04 −0.0908439 −0.0454220 0.998968i \(-0.514463\pi\)
−0.0454220 + 0.998968i \(0.514463\pi\)
\(648\) 0 0
\(649\) 4523.34 0.273585
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12457.7 21577.3i −0.746565 1.29309i −0.949460 0.313888i \(-0.898368\pi\)
0.202895 0.979201i \(-0.434965\pi\)
\(654\) 0 0
\(655\) −7020.20 + 12159.3i −0.418781 + 0.725351i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 11250.4 19486.3i 0.665028 1.15186i −0.314249 0.949341i \(-0.601753\pi\)
0.979278 0.202523i \(-0.0649139\pi\)
\(660\) 0 0
\(661\) 7031.71 + 12179.3i 0.413770 + 0.716671i 0.995298 0.0968554i \(-0.0308784\pi\)
−0.581528 + 0.813526i \(0.697545\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 502.482 0.0293014
\(666\) 0 0
\(667\) −11504.6 −0.667857
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3799.42 + 6580.79i 0.218592 + 0.378612i
\(672\) 0 0
\(673\) 2518.43 4362.05i 0.144247 0.249843i −0.784845 0.619693i \(-0.787257\pi\)
0.929092 + 0.369849i \(0.120591\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 929.496 1609.93i 0.0527673 0.0913956i −0.838435 0.545001i \(-0.816529\pi\)
0.891203 + 0.453606i \(0.149863\pi\)
\(678\) 0 0
\(679\) −4335.03 7508.50i −0.245012 0.424374i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 10695.1 0.599176 0.299588 0.954069i \(-0.403151\pi\)
0.299588 + 0.954069i \(0.403151\pi\)
\(684\) 0 0
\(685\) −10940.2 −0.610223
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 707.391 + 1225.24i 0.0391138 + 0.0677472i
\(690\) 0 0
\(691\) −4189.77 + 7256.90i −0.230661 + 0.399516i −0.958003 0.286759i \(-0.907422\pi\)
0.727342 + 0.686275i \(0.240755\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1749.71 + 3030.58i −0.0954966 + 0.165405i
\(696\) 0 0
\(697\) 5704.82 + 9881.03i 0.310022 + 0.536974i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −25278.4 −1.36199 −0.680994 0.732289i \(-0.738452\pi\)
−0.680994 + 0.732289i \(0.738452\pi\)
\(702\) 0 0
\(703\) 701.482 0.0376343
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8547.07 + 14804.0i 0.454661 + 0.787497i
\(708\) 0 0
\(709\) −3208.62 + 5557.50i −0.169961 + 0.294381i −0.938406 0.345535i \(-0.887697\pi\)
0.768445 + 0.639916i \(0.221031\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4313.37 7470.98i 0.226560 0.392413i
\(714\) 0 0
\(715\) 532.897 + 923.005i 0.0278730 + 0.0482775i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 26029.4 1.35011 0.675057 0.737765i \(-0.264119\pi\)
0.675057 + 0.737765i \(0.264119\pi\)
\(720\) 0 0
\(721\) 2863.22 0.147894
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2261.80 + 3917.55i 0.115864 + 0.200682i
\(726\) 0 0
\(727\) −10621.8 + 18397.5i −0.541873 + 0.938551i 0.456924 + 0.889506i \(0.348951\pi\)
−0.998797 + 0.0490451i \(0.984382\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1140.04 + 1974.60i −0.0576824 + 0.0999089i
\(732\) 0 0
\(733\) 6960.53 + 12056.0i 0.350741 + 0.607501i 0.986379 0.164486i \(-0.0525964\pi\)
−0.635638 + 0.771987i \(0.719263\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2768.40 −0.138365
\(738\) 0 0
\(739\) −11206.6 −0.557838 −0.278919 0.960315i \(-0.589976\pi\)
−0.278919 + 0.960315i \(0.589976\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −7510.94 13009.3i −0.370861 0.642350i 0.618837 0.785519i \(-0.287604\pi\)
−0.989698 + 0.143169i \(0.954271\pi\)
\(744\) 0 0
\(745\) −556.062 + 963.128i −0.0273457 + 0.0473641i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6473.39 11212.2i 0.315798 0.546978i
\(750\) 0 0
\(751\) 5236.36 + 9069.65i 0.254431 + 0.440687i 0.964741 0.263202i \(-0.0847785\pi\)
−0.710310 + 0.703889i \(0.751445\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 11989.8 0.577952
\(756\) 0 0
\(757\) −11485.8 −0.551463 −0.275731 0.961235i \(-0.588920\pi\)
−0.275731 + 0.961235i \(0.588920\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6794.91 + 11769.1i 0.323673 + 0.560619i 0.981243 0.192775i \(-0.0617488\pi\)
−0.657570 + 0.753394i \(0.728415\pi\)
\(762\) 0 0
\(763\) −10406.0 + 18023.7i −0.493737 + 0.855178i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4316.94 + 7477.17i −0.203228 + 0.352001i
\(768\) 0 0
\(769\) 12406.9 + 21489.3i 0.581798 + 1.00770i 0.995266 + 0.0971852i \(0.0309839\pi\)
−0.413468 + 0.910519i \(0.635683\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −19071.6 −0.887397 −0.443699 0.896176i \(-0.646334\pi\)
−0.443699 + 0.896176i \(0.646334\pi\)
\(774\) 0 0
\(775\) −3392.02 −0.157219
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −509.562 882.587i −0.0234364 0.0405930i
\(780\) 0 0
\(781\) 411.091 712.031i 0.0188348 0.0326229i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −5828.95 + 10096.0i −0.265024 + 0.459036i
\(786\) 0 0
\(787\) 21719.8 + 37619.7i 0.983768 + 1.70394i 0.647287 + 0.762247i \(0.275904\pi\)
0.336482 + 0.941690i \(0.390763\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −5077.41 −0.228233
\(792\) 0 0
\(793\) −14504.2 −0.649508
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −320.709 555.484i −0.0142536 0.0246879i 0.858811 0.512293i \(-0.171204\pi\)
−0.873064 + 0.487605i \(0.837871\pi\)
\(798\) 0 0
\(799\) 2361.26 4089.83i 0.104550 0.181086i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3311.58 5735.82i 0.145533 0.252071i
\(804\) 0 0
\(805\) 1879.80 + 3255.90i 0.0823033 + 0.142553i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 19703.7 0.856297 0.428149 0.903708i \(-0.359166\pi\)
0.428149 + 0.903708i \(0.359166\pi\)
\(810\) 0 0
\(811\) 44804.2 1.93994 0.969969 0.243230i \(-0.0782071\pi\)
0.969969 + 0.243230i \(0.0782071\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 188.522 + 326.529i 0.00810260 + 0.0140341i
\(816\) 0 0
\(817\) 101.830 176.374i 0.00436055 0.00755270i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5624.46 9741.86i 0.239093 0.414121i −0.721361 0.692559i \(-0.756483\pi\)
0.960454 + 0.278438i \(0.0898167\pi\)
\(822\) 0 0
\(823\) 19807.4 + 34307.4i 0.838934 + 1.45308i 0.890787 + 0.454421i \(0.150154\pi\)
−0.0518529 + 0.998655i \(0.516513\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −29446.4 −1.23815 −0.619077 0.785331i \(-0.712493\pi\)
−0.619077 + 0.785331i \(0.712493\pi\)
\(828\) 0 0
\(829\) −12267.1 −0.513938 −0.256969 0.966420i \(-0.582724\pi\)
−0.256969 + 0.966420i \(0.582724\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 9663.25 + 16737.2i 0.401935 + 0.696172i
\(834\) 0 0
\(835\) −5810.67 + 10064.4i −0.240822 + 0.417117i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 8147.47 14111.8i 0.335258 0.580685i −0.648276 0.761405i \(-0.724510\pi\)
0.983534 + 0.180721i \(0.0578430\pi\)
\(840\) 0 0
\(841\) −4175.87 7232.81i −0.171219 0.296560i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 8950.68 0.364394
\(846\) 0 0
\(847\) −14419.9 −0.584975
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2624.26 + 4545.36i 0.105709 + 0.183094i
\(852\) 0 0
\(853\) 22554.3 39065.2i 0.905327 1.56807i 0.0848497 0.996394i \(-0.472959\pi\)
0.820477 0.571679i \(-0.193708\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −22328.2 + 38673.5i −0.889984 + 1.54150i −0.0500915 + 0.998745i \(0.515951\pi\)
−0.839892 + 0.542753i \(0.817382\pi\)
\(858\) 0 0
\(859\) 589.701 + 1021.39i 0.0234230 + 0.0405698i 0.877499 0.479578i \(-0.159210\pi\)
−0.854076 + 0.520148i \(0.825877\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 4489.17 0.177072 0.0885359 0.996073i \(-0.471781\pi\)
0.0885359 + 0.996073i \(0.471781\pi\)
\(864\) 0 0
\(865\) −9178.04 −0.360766
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1975.55 + 3421.76i 0.0771185 + 0.133573i
\(870\) 0 0
\(871\) 2642.08 4576.21i 0.102782 0.178024i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 739.133 1280.22i 0.0285569 0.0494620i
\(876\) 0 0
\(877\) −23466.7 40645.5i −0.903550 1.56500i −0.822851 0.568257i \(-0.807618\pi\)
−0.0806990 0.996739i \(-0.525715\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −11123.2 −0.425369 −0.212684 0.977121i \(-0.568221\pi\)
−0.212684 + 0.977121i \(0.568221\pi\)
\(882\) 0 0
\(883\) 44352.9 1.69037 0.845183 0.534477i \(-0.179491\pi\)
0.845183 + 0.534477i \(0.179491\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 20058.7 + 34742.6i 0.759306 + 1.31516i 0.943205 + 0.332211i \(0.107795\pi\)
−0.183899 + 0.982945i \(0.558872\pi\)
\(888\) 0 0
\(889\) 1603.87 2777.99i 0.0605086 0.104804i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −210.911 + 365.309i −0.00790356 + 0.0136894i
\(894\) 0 0
\(895\) −10869.7 18826.9i −0.405960 0.703143i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 24550.6 0.910801
\(900\) 0 0
\(901\) 6672.93 0.246734
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5485.70 + 9501.51i 0.201493 + 0.348996i
\(906\) 0 0
\(907\) −13295.3 + 23028.1i −0.486728 + 0.843038i −0.999884 0.0152576i \(-0.995143\pi\)
0.513155 + 0.858296i \(0.328476\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −7942.08 + 13756.1i −0.288840 + 0.500285i −0.973533 0.228546i \(-0.926603\pi\)
0.684693 + 0.728831i \(0.259936\pi\)
\(912\) 0 0
\(913\) 4835.05 + 8374.55i 0.175265 + 0.303568i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −33208.7 −1.19591
\(918\) 0 0
\(919\) 33673.9 1.20871 0.604353 0.796717i \(-0.293432\pi\)
0.604353 + 0.796717i \(0.293432\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 784.667 + 1359.08i 0.0279823 + 0.0484667i
\(924\) 0 0
\(925\) 1031.86 1787.23i 0.0366781 0.0635283i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −26355.1 + 45648.4i −0.930768 + 1.61214i −0.148757 + 0.988874i \(0.547527\pi\)
−0.782011 + 0.623264i \(0.785806\pi\)
\(930\) 0 0
\(931\) −863.135 1494.99i −0.0303846 0.0526277i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5026.90 0.175826
\(936\) 0 0
\(937\) −20591.1 −0.717912 −0.358956 0.933355i \(-0.616867\pi\)
−0.358956 + 0.933355i \(0.616867\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4192.91 7262.33i −0.145255 0.251589i 0.784213 0.620492i \(-0.213067\pi\)
−0.929468 + 0.368903i \(0.879734\pi\)
\(942\) 0 0
\(943\) 3812.57 6603.56i 0.131659 0.228040i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4020.09 + 6962.99i −0.137946 + 0.238930i −0.926719 0.375755i \(-0.877384\pi\)
0.788773 + 0.614685i \(0.210717\pi\)
\(948\) 0 0
\(949\) 6320.94 + 10948.2i 0.216213 + 0.374493i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 14235.6 0.483877 0.241939 0.970292i \(-0.422217\pi\)
0.241939 + 0.970292i \(0.422217\pi\)
\(954\) 0 0
\(955\) −12719.4 −0.430986
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12938.0 22409.3i −0.435651 0.754570i
\(960\) 0 0
\(961\) 5690.85 9856.84i 0.191026 0.330866i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1063.21 + 1841.53i −0.0354672 + 0.0614311i
\(966\) 0 0
\(967\) 26243.2 + 45454.5i 0.872724 + 1.51160i 0.859167 + 0.511695i \(0.170982\pi\)
0.0135567 + 0.999908i \(0.495685\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5728.28 −0.189320 −0.0946598 0.995510i \(-0.530176\pi\)
−0.0946598 + 0.995510i \(0.530176\pi\)
\(972\) 0 0
\(973\) −8276.90 −0.272708
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14740.3 + 25530.9i 0.482685 + 0.836035i 0.999802 0.0198796i \(-0.00632830\pi\)
−0.517117 + 0.855914i \(0.672995\pi\)
\(978\) 0 0
\(979\) −4784.74 + 8287.41i −0.156201 + 0.270548i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −20420.9 + 35370.0i −0.662589 + 1.14764i 0.317344 + 0.948311i \(0.397209\pi\)
−0.979933 + 0.199328i \(0.936124\pi\)
\(984\) 0 0
\(985\) −1563.04 2707.27i −0.0505611 0.0875744i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1523.79 0.0489926
\(990\) 0 0
\(991\) 53919.4 1.72836 0.864181 0.503181i \(-0.167837\pi\)
0.864181 + 0.503181i \(0.167837\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 9264.41 + 16046.4i 0.295178 + 0.511262i
\(996\) 0 0
\(997\) 11727.7 20313.0i 0.372538 0.645254i −0.617418 0.786636i \(-0.711821\pi\)
0.989955 + 0.141382i \(0.0451544\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.4.q.b.721.3 16
3.2 odd 2 360.4.q.b.241.7 yes 16
9.4 even 3 inner 1080.4.q.b.361.3 16
9.5 odd 6 360.4.q.b.121.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.4.q.b.121.7 16 9.5 odd 6
360.4.q.b.241.7 yes 16 3.2 odd 2
1080.4.q.b.361.3 16 9.4 even 3 inner
1080.4.q.b.721.3 16 1.1 even 1 trivial