Properties

Label 1080.4.q.b.361.6
Level $1080$
Weight $4$
Character 1080.361
Analytic conductor $63.722$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1080,4,Mod(361,1080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1080.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1080, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1080.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,40,0,-34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(63.7220628062\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 16 x^{14} + 14 x^{13} - 284 x^{12} + 764 x^{11} + 19770 x^{10} + 55106 x^{9} + \cdots + 193472540143 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{14} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.6
Root \(-0.887205 + 4.84133i\) of defining polynomial
Character \(\chi\) \(=\) 1080.361
Dual form 1080.4.q.b.721.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.50000 - 4.33013i) q^{5} +(4.29040 + 7.43119i) q^{7} +(24.3465 + 42.1693i) q^{11} +(-3.15788 + 5.46961i) q^{13} +1.12025 q^{17} -72.2412 q^{19} +(-66.4417 + 115.080i) q^{23} +(-12.5000 - 21.6506i) q^{25} +(-43.3334 - 75.0556i) q^{29} +(-49.6174 + 85.9399i) q^{31} +42.9040 q^{35} +168.720 q^{37} +(-72.2997 + 125.227i) q^{41} +(-259.853 - 450.079i) q^{43} +(37.1950 + 64.4236i) q^{47} +(134.685 - 233.281i) q^{49} -399.402 q^{53} +243.465 q^{55} +(-200.086 + 346.559i) q^{59} +(-123.600 - 214.082i) q^{61} +(15.7894 + 27.3481i) q^{65} +(-313.714 + 543.368i) q^{67} -58.8477 q^{71} +9.10248 q^{73} +(-208.912 + 361.846i) q^{77} +(-43.5786 - 75.4803i) q^{79} +(531.267 + 920.182i) q^{83} +(2.80062 - 4.85082i) q^{85} -1055.07 q^{89} -54.1943 q^{91} +(-180.603 + 312.814i) q^{95} +(52.0827 + 90.2099i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 40 q^{5} - 34 q^{7} + 64 q^{11} - 48 q^{13} - 212 q^{17} + 456 q^{19} + 166 q^{23} - 200 q^{25} + 110 q^{29} - 160 q^{31} - 340 q^{35} + 104 q^{37} + 280 q^{41} + 136 q^{43} + 594 q^{47} - 1094 q^{49}+ \cdots + 182 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.50000 4.33013i 0.223607 0.387298i
\(6\) 0 0
\(7\) 4.29040 + 7.43119i 0.231660 + 0.401246i 0.958297 0.285775i \(-0.0922511\pi\)
−0.726637 + 0.687022i \(0.758918\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 24.3465 + 42.1693i 0.667339 + 1.15587i 0.978645 + 0.205556i \(0.0659002\pi\)
−0.311306 + 0.950310i \(0.600766\pi\)
\(12\) 0 0
\(13\) −3.15788 + 5.46961i −0.0673722 + 0.116692i −0.897744 0.440518i \(-0.854795\pi\)
0.830372 + 0.557210i \(0.188128\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.12025 0.0159824 0.00799118 0.999968i \(-0.497456\pi\)
0.00799118 + 0.999968i \(0.497456\pi\)
\(18\) 0 0
\(19\) −72.2412 −0.872278 −0.436139 0.899879i \(-0.643654\pi\)
−0.436139 + 0.899879i \(0.643654\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −66.4417 + 115.080i −0.602350 + 1.04330i 0.390114 + 0.920767i \(0.372436\pi\)
−0.992464 + 0.122535i \(0.960898\pi\)
\(24\) 0 0
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −43.3334 75.0556i −0.277476 0.480602i 0.693281 0.720667i \(-0.256165\pi\)
−0.970757 + 0.240065i \(0.922831\pi\)
\(30\) 0 0
\(31\) −49.6174 + 85.9399i −0.287469 + 0.497911i −0.973205 0.229939i \(-0.926147\pi\)
0.685736 + 0.727851i \(0.259481\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 42.9040 0.207203
\(36\) 0 0
\(37\) 168.720 0.749660 0.374830 0.927094i \(-0.377701\pi\)
0.374830 + 0.927094i \(0.377701\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −72.2997 + 125.227i −0.275398 + 0.477003i −0.970235 0.242163i \(-0.922143\pi\)
0.694837 + 0.719167i \(0.255476\pi\)
\(42\) 0 0
\(43\) −259.853 450.079i −0.921563 1.59619i −0.796998 0.603982i \(-0.793580\pi\)
−0.124565 0.992211i \(-0.539754\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 37.1950 + 64.4236i 0.115435 + 0.199939i 0.917954 0.396688i \(-0.129840\pi\)
−0.802519 + 0.596627i \(0.796507\pi\)
\(48\) 0 0
\(49\) 134.685 233.281i 0.392668 0.680120i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −399.402 −1.03513 −0.517567 0.855643i \(-0.673162\pi\)
−0.517567 + 0.855643i \(0.673162\pi\)
\(54\) 0 0
\(55\) 243.465 0.596886
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −200.086 + 346.559i −0.441508 + 0.764714i −0.997802 0.0662717i \(-0.978890\pi\)
0.556294 + 0.830986i \(0.312223\pi\)
\(60\) 0 0
\(61\) −123.600 214.082i −0.259432 0.449350i 0.706658 0.707556i \(-0.250202\pi\)
−0.966090 + 0.258206i \(0.916869\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 15.7894 + 27.3481i 0.0301298 + 0.0521863i
\(66\) 0 0
\(67\) −313.714 + 543.368i −0.572033 + 0.990790i 0.424324 + 0.905510i \(0.360512\pi\)
−0.996357 + 0.0852799i \(0.972822\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −58.8477 −0.0983653 −0.0491826 0.998790i \(-0.515662\pi\)
−0.0491826 + 0.998790i \(0.515662\pi\)
\(72\) 0 0
\(73\) 9.10248 0.0145940 0.00729702 0.999973i \(-0.497677\pi\)
0.00729702 + 0.999973i \(0.497677\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −208.912 + 361.846i −0.309191 + 0.535535i
\(78\) 0 0
\(79\) −43.5786 75.4803i −0.0620629 0.107496i 0.833324 0.552784i \(-0.186435\pi\)
−0.895387 + 0.445288i \(0.853101\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 531.267 + 920.182i 0.702580 + 1.21690i 0.967558 + 0.252650i \(0.0813022\pi\)
−0.264977 + 0.964255i \(0.585364\pi\)
\(84\) 0 0
\(85\) 2.80062 4.85082i 0.00357376 0.00618994i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1055.07 −1.25659 −0.628297 0.777974i \(-0.716248\pi\)
−0.628297 + 0.777974i \(0.716248\pi\)
\(90\) 0 0
\(91\) −54.1943 −0.0624297
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −180.603 + 312.814i −0.195047 + 0.337832i
\(96\) 0 0
\(97\) 52.0827 + 90.2099i 0.0545175 + 0.0944270i 0.891996 0.452043i \(-0.149305\pi\)
−0.837479 + 0.546470i \(0.815971\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 576.358 + 998.281i 0.567820 + 0.983492i 0.996781 + 0.0801696i \(0.0255462\pi\)
−0.428962 + 0.903323i \(0.641120\pi\)
\(102\) 0 0
\(103\) 293.341 508.081i 0.280619 0.486046i −0.690919 0.722933i \(-0.742794\pi\)
0.971537 + 0.236887i \(0.0761270\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1641.72 1.48329 0.741643 0.670795i \(-0.234047\pi\)
0.741643 + 0.670795i \(0.234047\pi\)
\(108\) 0 0
\(109\) −1853.84 −1.62904 −0.814520 0.580135i \(-0.803000\pi\)
−0.814520 + 0.580135i \(0.803000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −721.143 + 1249.06i −0.600349 + 1.03984i 0.392419 + 0.919787i \(0.371638\pi\)
−0.992768 + 0.120049i \(0.961695\pi\)
\(114\) 0 0
\(115\) 332.209 + 575.402i 0.269379 + 0.466578i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.80631 + 8.32477i 0.00370247 + 0.00641286i
\(120\) 0 0
\(121\) −520.000 + 900.666i −0.390684 + 0.676684i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −1772.04 −1.23814 −0.619068 0.785337i \(-0.712489\pi\)
−0.619068 + 0.785337i \(0.712489\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 584.618 1012.59i 0.389911 0.675346i −0.602526 0.798099i \(-0.705839\pi\)
0.992437 + 0.122753i \(0.0391724\pi\)
\(132\) 0 0
\(133\) −309.944 536.838i −0.202072 0.349998i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −566.836 981.789i −0.353490 0.612262i 0.633369 0.773850i \(-0.281672\pi\)
−0.986858 + 0.161588i \(0.948338\pi\)
\(138\) 0 0
\(139\) −1083.55 + 1876.77i −0.661192 + 1.14522i 0.319110 + 0.947718i \(0.396616\pi\)
−0.980303 + 0.197501i \(0.936717\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −307.533 −0.179841
\(144\) 0 0
\(145\) −433.334 −0.248182
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 698.806 1210.37i 0.384218 0.665485i −0.607443 0.794364i \(-0.707805\pi\)
0.991660 + 0.128879i \(0.0411379\pi\)
\(150\) 0 0
\(151\) −459.152 795.275i −0.247452 0.428600i 0.715366 0.698750i \(-0.246260\pi\)
−0.962818 + 0.270150i \(0.912927\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 248.087 + 429.699i 0.128560 + 0.222673i
\(156\) 0 0
\(157\) −534.904 + 926.481i −0.271911 + 0.470963i −0.969351 0.245680i \(-0.920989\pi\)
0.697440 + 0.716643i \(0.254322\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1140.25 −0.558161
\(162\) 0 0
\(163\) −2475.81 −1.18970 −0.594849 0.803837i \(-0.702788\pi\)
−0.594849 + 0.803837i \(0.702788\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1402.36 + 2428.96i −0.649809 + 1.12550i 0.333360 + 0.942800i \(0.391818\pi\)
−0.983168 + 0.182702i \(0.941516\pi\)
\(168\) 0 0
\(169\) 1078.56 + 1868.11i 0.490922 + 0.850302i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 610.586 + 1057.57i 0.268335 + 0.464770i 0.968432 0.249278i \(-0.0801932\pi\)
−0.700097 + 0.714048i \(0.746860\pi\)
\(174\) 0 0
\(175\) 107.260 185.780i 0.0463319 0.0802493i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −369.190 −0.154160 −0.0770798 0.997025i \(-0.524560\pi\)
−0.0770798 + 0.997025i \(0.524560\pi\)
\(180\) 0 0
\(181\) −2583.82 −1.06107 −0.530536 0.847662i \(-0.678009\pi\)
−0.530536 + 0.847662i \(0.678009\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 421.800 730.580i 0.167629 0.290342i
\(186\) 0 0
\(187\) 27.2741 + 47.2401i 0.0106657 + 0.0184735i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2397.13 + 4151.96i 0.908118 + 1.57291i 0.816676 + 0.577096i \(0.195814\pi\)
0.0914413 + 0.995810i \(0.470853\pi\)
\(192\) 0 0
\(193\) −1363.49 + 2361.63i −0.508528 + 0.880796i 0.491423 + 0.870921i \(0.336477\pi\)
−0.999951 + 0.00987531i \(0.996857\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4546.19 −1.64418 −0.822088 0.569360i \(-0.807191\pi\)
−0.822088 + 0.569360i \(0.807191\pi\)
\(198\) 0 0
\(199\) 3523.79 1.25525 0.627625 0.778516i \(-0.284027\pi\)
0.627625 + 0.778516i \(0.284027\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 371.835 644.036i 0.128560 0.222672i
\(204\) 0 0
\(205\) 361.499 + 626.134i 0.123162 + 0.213322i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1758.82 3046.36i −0.582105 1.00824i
\(210\) 0 0
\(211\) −478.046 + 828.000i −0.155972 + 0.270151i −0.933412 0.358805i \(-0.883184\pi\)
0.777441 + 0.628956i \(0.216518\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2598.53 −0.824271
\(216\) 0 0
\(217\) −851.514 −0.266380
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.53761 + 6.12732i −0.00107677 + 0.00186502i
\(222\) 0 0
\(223\) −1572.24 2723.20i −0.472130 0.817753i 0.527361 0.849641i \(-0.323181\pi\)
−0.999491 + 0.0318879i \(0.989848\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1935.98 + 3353.22i 0.566060 + 0.980444i 0.996950 + 0.0780401i \(0.0248662\pi\)
−0.430890 + 0.902404i \(0.641800\pi\)
\(228\) 0 0
\(229\) −776.369 + 1344.71i −0.224035 + 0.388039i −0.956029 0.293271i \(-0.905256\pi\)
0.731995 + 0.681310i \(0.238590\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3679.79 1.03464 0.517319 0.855792i \(-0.326930\pi\)
0.517319 + 0.855792i \(0.326930\pi\)
\(234\) 0 0
\(235\) 371.950 0.103248
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1580.63 2737.74i 0.427794 0.740960i −0.568883 0.822418i \(-0.692624\pi\)
0.996677 + 0.0814580i \(0.0259576\pi\)
\(240\) 0 0
\(241\) −1741.53 3016.42i −0.465485 0.806244i 0.533738 0.845650i \(-0.320787\pi\)
−0.999223 + 0.0394061i \(0.987453\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −673.425 1166.41i −0.175606 0.304159i
\(246\) 0 0
\(247\) 228.129 395.132i 0.0587673 0.101788i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4282.14 −1.07684 −0.538419 0.842677i \(-0.680978\pi\)
−0.538419 + 0.842677i \(0.680978\pi\)
\(252\) 0 0
\(253\) −6470.48 −1.60789
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2271.89 + 3935.03i −0.551427 + 0.955099i 0.446745 + 0.894661i \(0.352583\pi\)
−0.998172 + 0.0604376i \(0.980750\pi\)
\(258\) 0 0
\(259\) 723.877 + 1253.79i 0.173666 + 0.300798i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3277.39 + 5676.61i 0.768413 + 1.33093i 0.938423 + 0.345487i \(0.112286\pi\)
−0.170011 + 0.985442i \(0.554380\pi\)
\(264\) 0 0
\(265\) −998.506 + 1729.46i −0.231463 + 0.400906i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 79.0864 0.0179256 0.00896279 0.999960i \(-0.497147\pi\)
0.00896279 + 0.999960i \(0.497147\pi\)
\(270\) 0 0
\(271\) 4218.49 0.945590 0.472795 0.881172i \(-0.343245\pi\)
0.472795 + 0.881172i \(0.343245\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 608.661 1054.23i 0.133468 0.231173i
\(276\) 0 0
\(277\) −1931.93 3346.20i −0.419055 0.725825i 0.576789 0.816893i \(-0.304305\pi\)
−0.995845 + 0.0910678i \(0.970972\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2135.70 + 3699.13i 0.453398 + 0.785309i 0.998595 0.0529995i \(-0.0168782\pi\)
−0.545196 + 0.838309i \(0.683545\pi\)
\(282\) 0 0
\(283\) 2725.59 4720.86i 0.572508 0.991612i −0.423800 0.905756i \(-0.639304\pi\)
0.996308 0.0858564i \(-0.0273626\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1240.78 −0.255194
\(288\) 0 0
\(289\) −4911.75 −0.999745
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3101.29 5371.59i 0.618359 1.07103i −0.371426 0.928462i \(-0.621131\pi\)
0.989785 0.142567i \(-0.0455355\pi\)
\(294\) 0 0
\(295\) 1000.43 + 1732.79i 0.197448 + 0.341991i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −419.630 726.821i −0.0811633 0.140579i
\(300\) 0 0
\(301\) 2229.74 3862.03i 0.426978 0.739547i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1236.00 −0.232043
\(306\) 0 0
\(307\) 7323.74 1.36152 0.680762 0.732505i \(-0.261649\pi\)
0.680762 + 0.732505i \(0.261649\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −953.892 + 1652.19i −0.173924 + 0.301245i −0.939788 0.341757i \(-0.888978\pi\)
0.765865 + 0.643002i \(0.222311\pi\)
\(312\) 0 0
\(313\) 268.672 + 465.354i 0.0485184 + 0.0840363i 0.889265 0.457393i \(-0.151217\pi\)
−0.840746 + 0.541429i \(0.817883\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3163.52 + 5479.38i 0.560508 + 0.970828i 0.997452 + 0.0713396i \(0.0227274\pi\)
−0.436944 + 0.899489i \(0.643939\pi\)
\(318\) 0 0
\(319\) 2110.03 3654.67i 0.370341 0.641450i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −80.9281 −0.0139411
\(324\) 0 0
\(325\) 157.894 0.0269489
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −319.162 + 552.805i −0.0534832 + 0.0926357i
\(330\) 0 0
\(331\) −317.469 549.873i −0.0527181 0.0913104i 0.838462 0.544960i \(-0.183455\pi\)
−0.891180 + 0.453650i \(0.850122\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1568.57 + 2716.84i 0.255821 + 0.443095i
\(336\) 0 0
\(337\) 275.760 477.630i 0.0445745 0.0772053i −0.842877 0.538106i \(-0.819140\pi\)
0.887452 + 0.460900i \(0.152473\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4832.03 −0.767358
\(342\) 0 0
\(343\) 5254.62 0.827180
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 196.207 339.841i 0.0303544 0.0525753i −0.850449 0.526057i \(-0.823670\pi\)
0.880804 + 0.473482i \(0.157003\pi\)
\(348\) 0 0
\(349\) 594.722 + 1030.09i 0.0912171 + 0.157993i 0.908024 0.418919i \(-0.137591\pi\)
−0.816806 + 0.576912i \(0.804258\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3690.32 6391.82i −0.556419 0.963746i −0.997792 0.0664223i \(-0.978842\pi\)
0.441372 0.897324i \(-0.354492\pi\)
\(354\) 0 0
\(355\) −147.119 + 254.818i −0.0219951 + 0.0380967i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2784.75 −0.409397 −0.204698 0.978825i \(-0.565621\pi\)
−0.204698 + 0.978825i \(0.565621\pi\)
\(360\) 0 0
\(361\) −1640.20 −0.239132
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 22.7562 39.4149i 0.00326333 0.00565225i
\(366\) 0 0
\(367\) 6068.06 + 10510.2i 0.863080 + 1.49490i 0.868942 + 0.494915i \(0.164801\pi\)
−0.00586197 + 0.999983i \(0.501866\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1713.59 2968.03i −0.239799 0.415344i
\(372\) 0 0
\(373\) 2954.08 5116.63i 0.410072 0.710265i −0.584826 0.811159i \(-0.698837\pi\)
0.994897 + 0.100894i \(0.0321704\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 547.367 0.0747767
\(378\) 0 0
\(379\) 7251.83 0.982854 0.491427 0.870919i \(-0.336475\pi\)
0.491427 + 0.870919i \(0.336475\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5119.59 + 8867.39i −0.683026 + 1.18304i 0.291027 + 0.956715i \(0.406003\pi\)
−0.974053 + 0.226321i \(0.927330\pi\)
\(384\) 0 0
\(385\) 1044.56 + 1809.23i 0.138275 + 0.239498i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2592.38 4490.13i −0.337889 0.585241i 0.646147 0.763213i \(-0.276379\pi\)
−0.984035 + 0.177973i \(0.943046\pi\)
\(390\) 0 0
\(391\) −74.4312 + 128.919i −0.00962698 + 0.0166744i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −435.786 −0.0555108
\(396\) 0 0
\(397\) 8587.28 1.08560 0.542800 0.839862i \(-0.317364\pi\)
0.542800 + 0.839862i \(0.317364\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4819.58 8347.75i 0.600195 1.03957i −0.392596 0.919711i \(-0.628423\pi\)
0.992791 0.119857i \(-0.0382437\pi\)
\(402\) 0 0
\(403\) −313.372 542.776i −0.0387349 0.0670908i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4107.74 + 7114.81i 0.500278 + 0.866506i
\(408\) 0 0
\(409\) 1168.59 2024.06i 0.141279 0.244703i −0.786699 0.617336i \(-0.788212\pi\)
0.927979 + 0.372634i \(0.121545\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3433.79 −0.409118
\(414\) 0 0
\(415\) 5312.67 0.628407
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7907.02 13695.4i 0.921917 1.59681i 0.125470 0.992097i \(-0.459956\pi\)
0.796447 0.604709i \(-0.206711\pi\)
\(420\) 0 0
\(421\) −2482.77 4300.28i −0.287417 0.497822i 0.685775 0.727814i \(-0.259463\pi\)
−0.973193 + 0.229992i \(0.926130\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −14.0031 24.2541i −0.00159824 0.00276823i
\(426\) 0 0
\(427\) 1060.59 1836.99i 0.120200 0.208193i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12384.2 1.38405 0.692027 0.721872i \(-0.256718\pi\)
0.692027 + 0.721872i \(0.256718\pi\)
\(432\) 0 0
\(433\) −14443.8 −1.60306 −0.801528 0.597958i \(-0.795979\pi\)
−0.801528 + 0.597958i \(0.795979\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4799.83 8313.55i 0.525417 0.910048i
\(438\) 0 0
\(439\) −6745.40 11683.4i −0.733350 1.27020i −0.955444 0.295173i \(-0.904623\pi\)
0.222094 0.975025i \(-0.428711\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4639.88 + 8036.50i 0.497623 + 0.861909i 0.999996 0.00274202i \(-0.000872812\pi\)
−0.502373 + 0.864651i \(0.667539\pi\)
\(444\) 0 0
\(445\) −2637.67 + 4568.57i −0.280983 + 0.486677i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −9474.08 −0.995790 −0.497895 0.867237i \(-0.665893\pi\)
−0.497895 + 0.867237i \(0.665893\pi\)
\(450\) 0 0
\(451\) −7040.97 −0.735136
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −135.486 + 234.668i −0.0139597 + 0.0241789i
\(456\) 0 0
\(457\) 8182.75 + 14172.9i 0.837577 + 1.45073i 0.891915 + 0.452203i \(0.149362\pi\)
−0.0543378 + 0.998523i \(0.517305\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2917.71 5053.63i −0.294775 0.510566i 0.680157 0.733066i \(-0.261911\pi\)
−0.974933 + 0.222500i \(0.928578\pi\)
\(462\) 0 0
\(463\) 4309.43 7464.16i 0.432562 0.749220i −0.564531 0.825412i \(-0.690943\pi\)
0.997093 + 0.0761919i \(0.0242762\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −686.868 −0.0680609 −0.0340305 0.999421i \(-0.510834\pi\)
−0.0340305 + 0.999421i \(0.510834\pi\)
\(468\) 0 0
\(469\) −5383.82 −0.530068
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12653.0 21915.6i 1.22999 2.13041i
\(474\) 0 0
\(475\) 903.016 + 1564.07i 0.0872278 + 0.151083i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −8476.47 14681.7i −0.808559 1.40047i −0.913862 0.406025i \(-0.866915\pi\)
0.105303 0.994440i \(-0.466419\pi\)
\(480\) 0 0
\(481\) −532.798 + 922.834i −0.0505063 + 0.0874794i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 520.827 0.0487619
\(486\) 0 0
\(487\) 1481.87 0.137885 0.0689424 0.997621i \(-0.478038\pi\)
0.0689424 + 0.997621i \(0.478038\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 10145.6 17572.6i 0.932512 1.61516i 0.153500 0.988149i \(-0.450945\pi\)
0.779012 0.627009i \(-0.215721\pi\)
\(492\) 0 0
\(493\) −48.5441 84.0809i −0.00443472 0.00768116i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −252.480 437.308i −0.0227873 0.0394687i
\(498\) 0 0
\(499\) −807.143 + 1398.01i −0.0724101 + 0.125418i −0.899957 0.435978i \(-0.856402\pi\)
0.827547 + 0.561396i \(0.189736\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4259.30 −0.377560 −0.188780 0.982019i \(-0.560453\pi\)
−0.188780 + 0.982019i \(0.560453\pi\)
\(504\) 0 0
\(505\) 5763.58 0.507873
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10428.5 18062.6i 0.908122 1.57291i 0.0914511 0.995810i \(-0.470849\pi\)
0.816671 0.577104i \(-0.195817\pi\)
\(510\) 0 0
\(511\) 39.0532 + 67.6422i 0.00338085 + 0.00585580i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1466.70 2540.41i −0.125496 0.217366i
\(516\) 0 0
\(517\) −1811.13 + 3136.97i −0.154069 + 0.266855i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −10867.2 −0.913822 −0.456911 0.889512i \(-0.651044\pi\)
−0.456911 + 0.889512i \(0.651044\pi\)
\(522\) 0 0
\(523\) 11812.5 0.987622 0.493811 0.869569i \(-0.335603\pi\)
0.493811 + 0.869569i \(0.335603\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −55.5838 + 96.2740i −0.00459444 + 0.00795780i
\(528\) 0 0
\(529\) −2745.50 4755.35i −0.225651 0.390840i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −456.628 790.903i −0.0371084 0.0642736i
\(534\) 0 0
\(535\) 4104.31 7108.88i 0.331673 0.574474i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 13116.4 1.04817
\(540\) 0 0
\(541\) 17737.7 1.40962 0.704808 0.709398i \(-0.251033\pi\)
0.704808 + 0.709398i \(0.251033\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4634.59 + 8027.35i −0.364265 + 0.630925i
\(546\) 0 0
\(547\) 11363.3 + 19681.8i 0.888226 + 1.53845i 0.841971 + 0.539523i \(0.181396\pi\)
0.0462556 + 0.998930i \(0.485271\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3130.46 + 5422.11i 0.242036 + 0.419219i
\(552\) 0 0
\(553\) 373.939 647.681i 0.0287550 0.0498050i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5681.80 −0.432218 −0.216109 0.976369i \(-0.569337\pi\)
−0.216109 + 0.976369i \(0.569337\pi\)
\(558\) 0 0
\(559\) 3282.34 0.248351
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2620.03 4538.03i 0.196130 0.339707i −0.751140 0.660143i \(-0.770496\pi\)
0.947270 + 0.320435i \(0.103829\pi\)
\(564\) 0 0
\(565\) 3605.72 + 6245.28i 0.268484 + 0.465028i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8608.47 + 14910.3i 0.634246 + 1.09855i 0.986674 + 0.162707i \(0.0520226\pi\)
−0.352429 + 0.935839i \(0.614644\pi\)
\(570\) 0 0
\(571\) −13163.1 + 22799.1i −0.964724 + 1.67095i −0.254371 + 0.967107i \(0.581868\pi\)
−0.710354 + 0.703845i \(0.751465\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3322.09 0.240940
\(576\) 0 0
\(577\) 2186.42 0.157750 0.0788752 0.996884i \(-0.474867\pi\)
0.0788752 + 0.996884i \(0.474867\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4558.70 + 7895.89i −0.325519 + 0.563816i
\(582\) 0 0
\(583\) −9724.03 16842.5i −0.690786 1.19648i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1773.66 + 3072.07i 0.124713 + 0.216010i 0.921621 0.388092i \(-0.126866\pi\)
−0.796908 + 0.604101i \(0.793532\pi\)
\(588\) 0 0
\(589\) 3584.42 6208.40i 0.250753 0.434317i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6372.25 −0.441277 −0.220638 0.975356i \(-0.570814\pi\)
−0.220638 + 0.975356i \(0.570814\pi\)
\(594\) 0 0
\(595\) 48.0631 0.00331159
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9418.24 16312.9i 0.642435 1.11273i −0.342452 0.939535i \(-0.611258\pi\)
0.984888 0.173195i \(-0.0554091\pi\)
\(600\) 0 0
\(601\) 4361.60 + 7554.51i 0.296029 + 0.512737i 0.975224 0.221221i \(-0.0710042\pi\)
−0.679195 + 0.733958i \(0.737671\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2600.00 + 4503.33i 0.174719 + 0.302622i
\(606\) 0 0
\(607\) −474.168 + 821.283i −0.0317066 + 0.0549174i −0.881443 0.472290i \(-0.843428\pi\)
0.849737 + 0.527207i \(0.176761\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −469.829 −0.0311084
\(612\) 0 0
\(613\) 16627.7 1.09557 0.547787 0.836618i \(-0.315471\pi\)
0.547787 + 0.836618i \(0.315471\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −7503.77 + 12996.9i −0.489612 + 0.848033i −0.999929 0.0119539i \(-0.996195\pi\)
0.510317 + 0.859987i \(0.329528\pi\)
\(618\) 0 0
\(619\) −5561.22 9632.32i −0.361105 0.625453i 0.627038 0.778989i \(-0.284267\pi\)
−0.988143 + 0.153536i \(0.950934\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4526.66 7840.40i −0.291102 0.504204i
\(624\) 0 0
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 189.008 0.0119813
\(630\) 0 0
\(631\) 22734.4 1.43430 0.717151 0.696918i \(-0.245446\pi\)
0.717151 + 0.696918i \(0.245446\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4430.10 + 7673.17i −0.276856 + 0.479528i
\(636\) 0 0
\(637\) 850.639 + 1473.35i 0.0529098 + 0.0916424i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5742.48 9946.28i −0.353845 0.612877i 0.633075 0.774091i \(-0.281793\pi\)
−0.986920 + 0.161213i \(0.948459\pi\)
\(642\) 0 0
\(643\) −6891.02 + 11935.6i −0.422636 + 0.732028i −0.996196 0.0871358i \(-0.972229\pi\)
0.573560 + 0.819164i \(0.305562\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18878.3 −1.14712 −0.573558 0.819165i \(-0.694437\pi\)
−0.573558 + 0.819165i \(0.694437\pi\)
\(648\) 0 0
\(649\) −19485.5 −1.17854
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13052.5 22607.6i 0.782210 1.35483i −0.148442 0.988921i \(-0.547426\pi\)
0.930652 0.365906i \(-0.119241\pi\)
\(654\) 0 0
\(655\) −2923.09 5062.94i −0.174374 0.302024i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 4472.29 + 7746.23i 0.264364 + 0.457891i 0.967397 0.253266i \(-0.0815048\pi\)
−0.703033 + 0.711157i \(0.748171\pi\)
\(660\) 0 0
\(661\) 10765.3 18646.0i 0.633464 1.09719i −0.353374 0.935482i \(-0.614966\pi\)
0.986838 0.161710i \(-0.0517010\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3099.44 −0.180738
\(666\) 0 0
\(667\) 11516.6 0.668551
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6018.45 10424.3i 0.346259 0.599738i
\(672\) 0 0
\(673\) 12769.5 + 22117.5i 0.731395 + 1.26681i 0.956287 + 0.292429i \(0.0944636\pi\)
−0.224892 + 0.974384i \(0.572203\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 15596.9 + 27014.6i 0.885432 + 1.53361i 0.845218 + 0.534422i \(0.179471\pi\)
0.0402138 + 0.999191i \(0.487196\pi\)
\(678\) 0 0
\(679\) −446.911 + 774.072i −0.0252590 + 0.0437499i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −8565.42 −0.479863 −0.239932 0.970790i \(-0.577125\pi\)
−0.239932 + 0.970790i \(0.577125\pi\)
\(684\) 0 0
\(685\) −5668.36 −0.316171
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1261.27 2184.58i 0.0697393 0.120792i
\(690\) 0 0
\(691\) −9503.88 16461.2i −0.523219 0.906243i −0.999635 0.0270223i \(-0.991397\pi\)
0.476415 0.879220i \(-0.341936\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5417.76 + 9383.84i 0.295694 + 0.512157i
\(696\) 0 0
\(697\) −80.9936 + 140.285i −0.00440151 + 0.00762364i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 26916.1 1.45022 0.725112 0.688631i \(-0.241788\pi\)
0.725112 + 0.688631i \(0.241788\pi\)
\(702\) 0 0
\(703\) −12188.6 −0.653912
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4945.61 + 8566.05i −0.263082 + 0.455671i
\(708\) 0 0
\(709\) −11715.1 20291.2i −0.620551 1.07483i −0.989383 0.145330i \(-0.953576\pi\)
0.368832 0.929496i \(-0.379758\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −6593.33 11420.0i −0.346314 0.599834i
\(714\) 0 0
\(715\) −768.832 + 1331.66i −0.0402136 + 0.0696519i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5636.54 0.292361 0.146180 0.989258i \(-0.453302\pi\)
0.146180 + 0.989258i \(0.453302\pi\)
\(720\) 0 0
\(721\) 5034.19 0.260032
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1083.33 + 1876.39i −0.0554952 + 0.0961205i
\(726\) 0 0
\(727\) −9359.59 16211.3i −0.477480 0.827020i 0.522187 0.852831i \(-0.325116\pi\)
−0.999667 + 0.0258116i \(0.991783\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −291.100 504.200i −0.0147287 0.0255109i
\(732\) 0 0
\(733\) 13273.1 22989.7i 0.668831 1.15845i −0.309400 0.950932i \(-0.600128\pi\)
0.978231 0.207518i \(-0.0665385\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −30551.3 −1.52696
\(738\) 0 0
\(739\) −17564.7 −0.874326 −0.437163 0.899382i \(-0.644017\pi\)
−0.437163 + 0.899382i \(0.644017\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −906.746 + 1570.53i −0.0447716 + 0.0775467i −0.887543 0.460725i \(-0.847589\pi\)
0.842771 + 0.538272i \(0.180923\pi\)
\(744\) 0 0
\(745\) −3494.03 6051.84i −0.171827 0.297614i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 7043.65 + 12200.0i 0.343617 + 0.595163i
\(750\) 0 0
\(751\) −5479.66 + 9491.05i −0.266252 + 0.461163i −0.967891 0.251370i \(-0.919119\pi\)
0.701639 + 0.712533i \(0.252452\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4591.52 −0.221328
\(756\) 0 0
\(757\) 9955.99 0.478014 0.239007 0.971018i \(-0.423178\pi\)
0.239007 + 0.971018i \(0.423178\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −12171.3 + 21081.3i −0.579775 + 1.00420i 0.415730 + 0.909488i \(0.363526\pi\)
−0.995505 + 0.0947118i \(0.969807\pi\)
\(762\) 0 0
\(763\) −7953.70 13776.2i −0.377383 0.653647i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1263.70 2188.78i −0.0594907 0.103041i
\(768\) 0 0
\(769\) 13430.2 23261.8i 0.629787 1.09082i −0.357807 0.933795i \(-0.616476\pi\)
0.987594 0.157028i \(-0.0501912\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13695.6 0.637254 0.318627 0.947880i \(-0.396778\pi\)
0.318627 + 0.947880i \(0.396778\pi\)
\(774\) 0 0
\(775\) 2480.87 0.114988
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5223.02 9046.54i 0.240224 0.416079i
\(780\) 0 0
\(781\) −1432.73 2481.57i −0.0656430 0.113697i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2674.52 + 4632.41i 0.121602 + 0.210621i
\(786\) 0 0
\(787\) −10871.1 + 18829.3i −0.492393 + 0.852850i −0.999962 0.00876125i \(-0.997211\pi\)
0.507568 + 0.861612i \(0.330545\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12376.0 −0.556307
\(792\) 0 0
\(793\) 1561.26 0.0699141
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13253.1 + 22955.1i −0.589021 + 1.02021i 0.405340 + 0.914166i \(0.367153\pi\)
−0.994361 + 0.106048i \(0.966180\pi\)
\(798\) 0 0
\(799\) 41.6676 + 72.1704i 0.00184492 + 0.00319550i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 221.613 + 383.845i 0.00973917 + 0.0168687i
\(804\) 0 0
\(805\) −2850.61 + 4937.41i −0.124809 + 0.216175i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −18438.3 −0.801304 −0.400652 0.916230i \(-0.631216\pi\)
−0.400652 + 0.916230i \(0.631216\pi\)
\(810\) 0 0
\(811\) −29237.5 −1.26593 −0.632965 0.774181i \(-0.718162\pi\)
−0.632965 + 0.774181i \(0.718162\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6189.54 + 10720.6i −0.266025 + 0.460768i
\(816\) 0 0
\(817\) 18772.1 + 32514.2i 0.803859 + 1.39232i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 650.252 + 1126.27i 0.0276419 + 0.0478771i 0.879515 0.475870i \(-0.157867\pi\)
−0.851874 + 0.523747i \(0.824534\pi\)
\(822\) 0 0
\(823\) −18327.9 + 31744.8i −0.776268 + 1.34454i 0.157811 + 0.987469i \(0.449556\pi\)
−0.934079 + 0.357067i \(0.883777\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24331.0 −1.02306 −0.511531 0.859265i \(-0.670922\pi\)
−0.511531 + 0.859265i \(0.670922\pi\)
\(828\) 0 0
\(829\) −45642.9 −1.91224 −0.956119 0.292980i \(-0.905353\pi\)
−0.956119 + 0.292980i \(0.905353\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 150.881 261.333i 0.00627575 0.0108699i
\(834\) 0 0
\(835\) 7011.81 + 12144.8i 0.290603 + 0.503340i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2402.81 + 4161.79i 0.0988728 + 0.171253i 0.911218 0.411924i \(-0.135143\pi\)
−0.812346 + 0.583176i \(0.801810\pi\)
\(840\) 0 0
\(841\) 8438.94 14616.7i 0.346014 0.599314i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10785.6 0.439094
\(846\) 0 0
\(847\) −8924.02 −0.362023
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −11210.1 + 19416.4i −0.451558 + 0.782121i
\(852\) 0 0
\(853\) 12122.3 + 20996.4i 0.486587 + 0.842793i 0.999881 0.0154196i \(-0.00490841\pi\)
−0.513294 + 0.858213i \(0.671575\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14991.0 + 25965.2i 0.597529 + 1.03495i 0.993185 + 0.116552i \(0.0371842\pi\)
−0.395655 + 0.918399i \(0.629482\pi\)
\(858\) 0 0
\(859\) 23640.6 40946.8i 0.939008 1.62641i 0.171681 0.985153i \(-0.445080\pi\)
0.767327 0.641256i \(-0.221586\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −13655.1 −0.538614 −0.269307 0.963054i \(-0.586795\pi\)
−0.269307 + 0.963054i \(0.586795\pi\)
\(864\) 0 0
\(865\) 6105.86 0.240006
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2121.97 3675.36i 0.0828341 0.143473i
\(870\) 0 0
\(871\) −1981.34 3431.78i −0.0770783 0.133504i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −536.300 928.898i −0.0207203 0.0358886i
\(876\) 0 0
\(877\) 14193.0 24582.9i 0.546479 0.946529i −0.452033 0.892001i \(-0.649301\pi\)
0.998512 0.0545280i \(-0.0173654\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −13719.4 −0.524651 −0.262326 0.964979i \(-0.584489\pi\)
−0.262326 + 0.964979i \(0.584489\pi\)
\(882\) 0 0
\(883\) −18580.8 −0.708145 −0.354073 0.935218i \(-0.615203\pi\)
−0.354073 + 0.935218i \(0.615203\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −11633.2 + 20149.2i −0.440364 + 0.762733i −0.997716 0.0675431i \(-0.978484\pi\)
0.557352 + 0.830276i \(0.311817\pi\)
\(888\) 0 0
\(889\) −7602.76 13168.4i −0.286826 0.496797i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2687.01 4654.04i −0.100691 0.174402i
\(894\) 0 0
\(895\) −922.975 + 1598.64i −0.0344711 + 0.0597057i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8600.35 0.319063
\(900\) 0 0
\(901\) −447.430 −0.0165439
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6459.56 + 11188.3i −0.237263 + 0.410952i
\(906\) 0 0
\(907\) 17839.7 + 30899.2i 0.653095 + 1.13119i 0.982368 + 0.186959i \(0.0598630\pi\)
−0.329273 + 0.944235i \(0.606804\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1533.53 2656.15i −0.0557717 0.0965995i 0.836792 0.547521i \(-0.184429\pi\)
−0.892563 + 0.450922i \(0.851095\pi\)
\(912\) 0 0
\(913\) −25869.0 + 44806.3i −0.937719 + 1.62418i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 10033.0 0.361307
\(918\) 0 0
\(919\) −8770.06 −0.314796 −0.157398 0.987535i \(-0.550311\pi\)
−0.157398 + 0.987535i \(0.550311\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 185.834 321.874i 0.00662709 0.0114785i
\(924\) 0 0
\(925\) −2109.00 3652.90i −0.0749660 0.129845i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 5330.92 + 9233.43i 0.188269 + 0.326091i 0.944673 0.328013i \(-0.106379\pi\)
−0.756404 + 0.654104i \(0.773046\pi\)
\(930\) 0 0
\(931\) −9729.81 + 16852.5i −0.342515 + 0.593254i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 272.741 0.00953965
\(936\) 0 0
\(937\) −18445.1 −0.643089 −0.321545 0.946894i \(-0.604202\pi\)
−0.321545 + 0.946894i \(0.604202\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1233.19 2135.95i 0.0427214 0.0739956i −0.843874 0.536541i \(-0.819731\pi\)
0.886595 + 0.462546i \(0.153064\pi\)
\(942\) 0 0
\(943\) −9607.43 16640.6i −0.331772 0.574646i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 11889.2 + 20592.6i 0.407968 + 0.706622i 0.994662 0.103187i \(-0.0329041\pi\)
−0.586694 + 0.809809i \(0.699571\pi\)
\(948\) 0 0
\(949\) −28.7446 + 49.7870i −0.000983233 + 0.00170301i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −4728.75 −0.160734 −0.0803668 0.996765i \(-0.525609\pi\)
−0.0803668 + 0.996765i \(0.525609\pi\)
\(954\) 0 0
\(955\) 23971.3 0.812245
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4863.90 8424.53i 0.163779 0.283673i
\(960\) 0 0
\(961\) 9971.73 + 17271.5i 0.334723 + 0.579757i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6817.43 + 11808.1i 0.227421 + 0.393904i
\(966\) 0 0
\(967\) −8729.62 + 15120.1i −0.290306 + 0.502824i −0.973882 0.227055i \(-0.927090\pi\)
0.683576 + 0.729879i \(0.260424\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −35241.4 −1.16473 −0.582364 0.812928i \(-0.697872\pi\)
−0.582364 + 0.812928i \(0.697872\pi\)
\(972\) 0 0
\(973\) −18595.5 −0.612686
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −17091.9 + 29604.0i −0.559691 + 0.969413i 0.437831 + 0.899057i \(0.355747\pi\)
−0.997522 + 0.0703555i \(0.977587\pi\)
\(978\) 0 0
\(979\) −25687.1 44491.4i −0.838575 1.45245i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −17521.3 30347.9i −0.568509 0.984686i −0.996714 0.0810043i \(-0.974187\pi\)
0.428205 0.903682i \(-0.359146\pi\)
\(984\) 0 0
\(985\) −11365.5 + 19685.6i −0.367649 + 0.636787i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 69060.3 2.22041
\(990\) 0 0
\(991\) −553.013 −0.0177266 −0.00886329 0.999961i \(-0.502821\pi\)
−0.00886329 + 0.999961i \(0.502821\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 8809.48 15258.5i 0.280683 0.486156i
\(996\) 0 0
\(997\) 28962.3 + 50164.1i 0.920004 + 1.59349i 0.799405 + 0.600792i \(0.205148\pi\)
0.120599 + 0.992701i \(0.461519\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.4.q.b.361.6 16
3.2 odd 2 360.4.q.b.121.4 16
9.2 odd 6 360.4.q.b.241.4 yes 16
9.7 even 3 inner 1080.4.q.b.721.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.4.q.b.121.4 16 3.2 odd 2
360.4.q.b.241.4 yes 16 9.2 odd 6
1080.4.q.b.361.6 16 1.1 even 1 trivial
1080.4.q.b.721.6 16 9.7 even 3 inner