Properties

Label 1080.2.b.d.971.3
Level $1080$
Weight $2$
Character 1080.971
Analytic conductor $8.624$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1080,2,Mod(971,1080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1080.971"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1080, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1080.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.62384341830\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + x^{14} + 2 x^{13} - 6 x^{12} + 8 x^{11} - 6 x^{10} - 8 x^{9} + 32 x^{8} - 16 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 971.3
Root \(-1.23596 + 0.687323i\) of defining polynomial
Character \(\chi\) \(=\) 1080.971
Dual form 1080.2.b.d.971.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.23596 - 0.687323i) q^{2} +(1.05517 + 1.69900i) q^{4} -1.00000 q^{5} +0.920206i q^{7} +(-0.136384 - 2.82514i) q^{8} +(1.23596 + 0.687323i) q^{10} -0.482221i q^{11} +2.01753i q^{13} +(0.632479 - 1.13733i) q^{14} +(-1.77322 + 3.58548i) q^{16} -0.701532i q^{17} +0.782948 q^{19} +(-1.05517 - 1.69900i) q^{20} +(-0.331442 + 0.596004i) q^{22} -1.44101 q^{23} +1.00000 q^{25} +(1.38669 - 2.49357i) q^{26} +(-1.56343 + 0.970977i) q^{28} -2.14505 q^{29} +6.59164i q^{31} +(4.65601 - 3.21273i) q^{32} +(-0.482179 + 0.867062i) q^{34} -0.920206i q^{35} -2.33837i q^{37} +(-0.967689 - 0.538138i) q^{38} +(0.136384 + 2.82514i) q^{40} +7.36833i q^{41} -7.06978 q^{43} +(0.819295 - 0.508827i) q^{44} +(1.78103 + 0.990441i) q^{46} -0.294304 q^{47} +6.15322 q^{49} +(-1.23596 - 0.687323i) q^{50} +(-3.42778 + 2.12884i) q^{52} -10.5190 q^{53} +0.482221i q^{55} +(2.59971 - 0.125502i) q^{56} +(2.65119 + 1.47434i) q^{58} +10.8042i q^{59} +8.65852i q^{61} +(4.53059 - 8.14697i) q^{62} +(-7.96280 + 0.770608i) q^{64} -2.01753i q^{65} -11.2157 q^{67} +(1.19190 - 0.740238i) q^{68} +(-0.632479 + 1.13733i) q^{70} -5.57514 q^{71} +1.01962 q^{73} +(-1.60722 + 2.89013i) q^{74} +(0.826146 + 1.33023i) q^{76} +0.443743 q^{77} +1.86662i q^{79} +(1.77322 - 3.58548i) q^{80} +(5.06442 - 9.10693i) q^{82} +1.75905i q^{83} +0.701532i q^{85} +(8.73794 + 4.85922i) q^{86} +(-1.36234 + 0.0657674i) q^{88} +11.9152i q^{89} -1.85654 q^{91} +(-1.52052 - 2.44828i) q^{92} +(0.363747 + 0.202282i) q^{94} -0.782948 q^{95} +3.93818 q^{97} +(-7.60511 - 4.22925i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} + 2 q^{4} - 16 q^{5} - 4 q^{8} - 2 q^{10} + 6 q^{14} + 10 q^{16} - 8 q^{19} - 2 q^{20} + 4 q^{22} - 8 q^{23} + 16 q^{25} - 16 q^{26} + 20 q^{28} - 8 q^{32} + 18 q^{34} - 14 q^{38} + 4 q^{40}+ \cdots - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.23596 0.687323i −0.873953 0.486011i
\(3\) 0 0
\(4\) 1.05517 + 1.69900i 0.527587 + 0.849501i
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0.920206i 0.347805i 0.984763 + 0.173903i \(0.0556378\pi\)
−0.984763 + 0.173903i \(0.944362\pi\)
\(8\) −0.136384 2.82514i −0.0482191 0.998837i
\(9\) 0 0
\(10\) 1.23596 + 0.687323i 0.390844 + 0.217351i
\(11\) 0.482221i 0.145395i −0.997354 0.0726976i \(-0.976839\pi\)
0.997354 0.0726976i \(-0.0231608\pi\)
\(12\) 0 0
\(13\) 2.01753i 0.559561i 0.960064 + 0.279781i \(0.0902617\pi\)
−0.960064 + 0.279781i \(0.909738\pi\)
\(14\) 0.632479 1.13733i 0.169037 0.303965i
\(15\) 0 0
\(16\) −1.77322 + 3.58548i −0.443304 + 0.896371i
\(17\) 0.701532i 0.170146i −0.996375 0.0850732i \(-0.972888\pi\)
0.996375 0.0850732i \(-0.0271124\pi\)
\(18\) 0 0
\(19\) 0.782948 0.179621 0.0898103 0.995959i \(-0.471374\pi\)
0.0898103 + 0.995959i \(0.471374\pi\)
\(20\) −1.05517 1.69900i −0.235944 0.379908i
\(21\) 0 0
\(22\) −0.331442 + 0.596004i −0.0706637 + 0.127069i
\(23\) −1.44101 −0.300472 −0.150236 0.988650i \(-0.548003\pi\)
−0.150236 + 0.988650i \(0.548003\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 1.38669 2.49357i 0.271953 0.489030i
\(27\) 0 0
\(28\) −1.56343 + 0.970977i −0.295461 + 0.183497i
\(29\) −2.14505 −0.398326 −0.199163 0.979966i \(-0.563822\pi\)
−0.199163 + 0.979966i \(0.563822\pi\)
\(30\) 0 0
\(31\) 6.59164i 1.18389i 0.805977 + 0.591946i \(0.201640\pi\)
−0.805977 + 0.591946i \(0.798360\pi\)
\(32\) 4.65601 3.21273i 0.823073 0.567935i
\(33\) 0 0
\(34\) −0.482179 + 0.867062i −0.0826930 + 0.148700i
\(35\) 0.920206i 0.155543i
\(36\) 0 0
\(37\) 2.33837i 0.384426i −0.981353 0.192213i \(-0.938433\pi\)
0.981353 0.192213i \(-0.0615665\pi\)
\(38\) −0.967689 0.538138i −0.156980 0.0872975i
\(39\) 0 0
\(40\) 0.136384 + 2.82514i 0.0215642 + 0.446693i
\(41\) 7.36833i 1.15074i 0.817893 + 0.575370i \(0.195142\pi\)
−0.817893 + 0.575370i \(0.804858\pi\)
\(42\) 0 0
\(43\) −7.06978 −1.07813 −0.539066 0.842264i \(-0.681223\pi\)
−0.539066 + 0.842264i \(0.681223\pi\)
\(44\) 0.819295 0.508827i 0.123513 0.0767086i
\(45\) 0 0
\(46\) 1.78103 + 0.990441i 0.262598 + 0.146033i
\(47\) −0.294304 −0.0429287 −0.0214643 0.999770i \(-0.506833\pi\)
−0.0214643 + 0.999770i \(0.506833\pi\)
\(48\) 0 0
\(49\) 6.15322 0.879031
\(50\) −1.23596 0.687323i −0.174791 0.0972022i
\(51\) 0 0
\(52\) −3.42778 + 2.12884i −0.475348 + 0.295217i
\(53\) −10.5190 −1.44489 −0.722445 0.691428i \(-0.756982\pi\)
−0.722445 + 0.691428i \(0.756982\pi\)
\(54\) 0 0
\(55\) 0.482221i 0.0650227i
\(56\) 2.59971 0.125502i 0.347401 0.0167709i
\(57\) 0 0
\(58\) 2.65119 + 1.47434i 0.348118 + 0.193591i
\(59\) 10.8042i 1.40659i 0.710899 + 0.703295i \(0.248288\pi\)
−0.710899 + 0.703295i \(0.751712\pi\)
\(60\) 0 0
\(61\) 8.65852i 1.10861i 0.832313 + 0.554305i \(0.187016\pi\)
−0.832313 + 0.554305i \(0.812984\pi\)
\(62\) 4.53059 8.14697i 0.575385 1.03467i
\(63\) 0 0
\(64\) −7.96280 + 0.770608i −0.995350 + 0.0963260i
\(65\) 2.01753i 0.250243i
\(66\) 0 0
\(67\) −11.2157 −1.37022 −0.685110 0.728439i \(-0.740246\pi\)
−0.685110 + 0.728439i \(0.740246\pi\)
\(68\) 1.19190 0.740238i 0.144540 0.0897670i
\(69\) 0 0
\(70\) −0.632479 + 1.13733i −0.0755957 + 0.135937i
\(71\) −5.57514 −0.661647 −0.330824 0.943693i \(-0.607327\pi\)
−0.330824 + 0.943693i \(0.607327\pi\)
\(72\) 0 0
\(73\) 1.01962 0.119337 0.0596686 0.998218i \(-0.480996\pi\)
0.0596686 + 0.998218i \(0.480996\pi\)
\(74\) −1.60722 + 2.89013i −0.186835 + 0.335970i
\(75\) 0 0
\(76\) 0.826146 + 1.33023i 0.0947654 + 0.152588i
\(77\) 0.443743 0.0505692
\(78\) 0 0
\(79\) 1.86662i 0.210012i 0.994472 + 0.105006i \(0.0334861\pi\)
−0.994472 + 0.105006i \(0.966514\pi\)
\(80\) 1.77322 3.58548i 0.198252 0.400869i
\(81\) 0 0
\(82\) 5.06442 9.10693i 0.559272 1.00569i
\(83\) 1.75905i 0.193081i 0.995329 + 0.0965404i \(0.0307777\pi\)
−0.995329 + 0.0965404i \(0.969222\pi\)
\(84\) 0 0
\(85\) 0.701532i 0.0760918i
\(86\) 8.73794 + 4.85922i 0.942236 + 0.523984i
\(87\) 0 0
\(88\) −1.36234 + 0.0657674i −0.145226 + 0.00701082i
\(89\) 11.9152i 1.26301i 0.775373 + 0.631503i \(0.217562\pi\)
−0.775373 + 0.631503i \(0.782438\pi\)
\(90\) 0 0
\(91\) −1.85654 −0.194618
\(92\) −1.52052 2.44828i −0.158525 0.255251i
\(93\) 0 0
\(94\) 0.363747 + 0.202282i 0.0375176 + 0.0208638i
\(95\) −0.782948 −0.0803287
\(96\) 0 0
\(97\) 3.93818 0.399862 0.199931 0.979810i \(-0.435928\pi\)
0.199931 + 0.979810i \(0.435928\pi\)
\(98\) −7.60511 4.22925i −0.768232 0.427219i
\(99\) 0 0
\(100\) 1.05517 + 1.69900i 0.105517 + 0.169900i
\(101\) 8.11015 0.806990 0.403495 0.914982i \(-0.367795\pi\)
0.403495 + 0.914982i \(0.367795\pi\)
\(102\) 0 0
\(103\) 14.0930i 1.38863i 0.719672 + 0.694314i \(0.244292\pi\)
−0.719672 + 0.694314i \(0.755708\pi\)
\(104\) 5.69979 0.275159i 0.558910 0.0269815i
\(105\) 0 0
\(106\) 13.0010 + 7.22993i 1.26277 + 0.702233i
\(107\) 2.23739i 0.216297i 0.994135 + 0.108149i \(0.0344922\pi\)
−0.994135 + 0.108149i \(0.965508\pi\)
\(108\) 0 0
\(109\) 14.7481i 1.41261i −0.707907 0.706306i \(-0.750360\pi\)
0.707907 0.706306i \(-0.249640\pi\)
\(110\) 0.331442 0.596004i 0.0316017 0.0568268i
\(111\) 0 0
\(112\) −3.29939 1.63173i −0.311763 0.154184i
\(113\) 17.3371i 1.63094i 0.578802 + 0.815468i \(0.303520\pi\)
−0.578802 + 0.815468i \(0.696480\pi\)
\(114\) 0 0
\(115\) 1.44101 0.134375
\(116\) −2.26340 3.64444i −0.210151 0.338378i
\(117\) 0 0
\(118\) 7.42599 13.3535i 0.683618 1.22929i
\(119\) 0.645554 0.0591778
\(120\) 0 0
\(121\) 10.7675 0.978860
\(122\) 5.95121 10.7016i 0.538797 0.968873i
\(123\) 0 0
\(124\) −11.1992 + 6.95532i −1.00572 + 0.624606i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 3.45636i 0.306702i −0.988172 0.153351i \(-0.950993\pi\)
0.988172 0.153351i \(-0.0490066\pi\)
\(128\) 10.3713 + 4.52058i 0.916704 + 0.399566i
\(129\) 0 0
\(130\) −1.38669 + 2.49357i −0.121621 + 0.218701i
\(131\) 17.4536i 1.52493i 0.647032 + 0.762463i \(0.276010\pi\)
−0.647032 + 0.762463i \(0.723990\pi\)
\(132\) 0 0
\(133\) 0.720473i 0.0624730i
\(134\) 13.8622 + 7.70884i 1.19751 + 0.665942i
\(135\) 0 0
\(136\) −1.98192 + 0.0956778i −0.169948 + 0.00820430i
\(137\) 9.15998i 0.782590i −0.920265 0.391295i \(-0.872027\pi\)
0.920265 0.391295i \(-0.127973\pi\)
\(138\) 0 0
\(139\) −8.97927 −0.761611 −0.380806 0.924655i \(-0.624353\pi\)
−0.380806 + 0.924655i \(0.624353\pi\)
\(140\) 1.56343 0.970977i 0.132134 0.0820626i
\(141\) 0 0
\(142\) 6.89063 + 3.83192i 0.578249 + 0.321568i
\(143\) 0.972894 0.0813575
\(144\) 0 0
\(145\) 2.14505 0.178137
\(146\) −1.26020 0.700807i −0.104295 0.0579992i
\(147\) 0 0
\(148\) 3.97290 2.46739i 0.326571 0.202818i
\(149\) −5.27614 −0.432238 −0.216119 0.976367i \(-0.569340\pi\)
−0.216119 + 0.976367i \(0.569340\pi\)
\(150\) 0 0
\(151\) 16.8834i 1.37395i 0.726681 + 0.686975i \(0.241062\pi\)
−0.726681 + 0.686975i \(0.758938\pi\)
\(152\) −0.106782 2.21193i −0.00866114 0.179412i
\(153\) 0 0
\(154\) −0.548447 0.304995i −0.0441951 0.0245772i
\(155\) 6.59164i 0.529453i
\(156\) 0 0
\(157\) 14.2642i 1.13841i −0.822196 0.569204i \(-0.807251\pi\)
0.822196 0.569204i \(-0.192749\pi\)
\(158\) 1.28297 2.30706i 0.102068 0.183540i
\(159\) 0 0
\(160\) −4.65601 + 3.21273i −0.368090 + 0.253988i
\(161\) 1.32603i 0.104506i
\(162\) 0 0
\(163\) −2.68674 −0.210442 −0.105221 0.994449i \(-0.533555\pi\)
−0.105221 + 0.994449i \(0.533555\pi\)
\(164\) −12.5188 + 7.77487i −0.977555 + 0.607115i
\(165\) 0 0
\(166\) 1.20904 2.17411i 0.0938394 0.168744i
\(167\) −7.28504 −0.563733 −0.281867 0.959454i \(-0.590954\pi\)
−0.281867 + 0.959454i \(0.590954\pi\)
\(168\) 0 0
\(169\) 8.92959 0.686891
\(170\) 0.482179 0.867062i 0.0369814 0.0665006i
\(171\) 0 0
\(172\) −7.45985 12.0116i −0.568808 0.915874i
\(173\) 6.06567 0.461164 0.230582 0.973053i \(-0.425937\pi\)
0.230582 + 0.973053i \(0.425937\pi\)
\(174\) 0 0
\(175\) 0.920206i 0.0695611i
\(176\) 1.72900 + 0.855083i 0.130328 + 0.0644543i
\(177\) 0 0
\(178\) 8.18958 14.7266i 0.613835 1.10381i
\(179\) 18.1969i 1.36010i 0.733165 + 0.680050i \(0.238042\pi\)
−0.733165 + 0.680050i \(0.761958\pi\)
\(180\) 0 0
\(181\) 5.60765i 0.416813i −0.978042 0.208407i \(-0.933172\pi\)
0.978042 0.208407i \(-0.0668278\pi\)
\(182\) 2.29460 + 1.27604i 0.170087 + 0.0945866i
\(183\) 0 0
\(184\) 0.196531 + 4.07106i 0.0144885 + 0.300122i
\(185\) 2.33837i 0.171921i
\(186\) 0 0
\(187\) −0.338293 −0.0247385
\(188\) −0.310542 0.500023i −0.0226486 0.0364680i
\(189\) 0 0
\(190\) 0.967689 + 0.538138i 0.0702035 + 0.0390406i
\(191\) −8.21210 −0.594206 −0.297103 0.954845i \(-0.596021\pi\)
−0.297103 + 0.954845i \(0.596021\pi\)
\(192\) 0 0
\(193\) 14.2696 1.02715 0.513573 0.858046i \(-0.328322\pi\)
0.513573 + 0.858046i \(0.328322\pi\)
\(194\) −4.86742 2.70680i −0.349460 0.194337i
\(195\) 0 0
\(196\) 6.49272 + 10.4543i 0.463765 + 0.746738i
\(197\) −3.98477 −0.283903 −0.141952 0.989874i \(-0.545338\pi\)
−0.141952 + 0.989874i \(0.545338\pi\)
\(198\) 0 0
\(199\) 27.7090i 1.96424i −0.188264 0.982118i \(-0.560286\pi\)
0.188264 0.982118i \(-0.439714\pi\)
\(200\) −0.136384 2.82514i −0.00964382 0.199767i
\(201\) 0 0
\(202\) −10.0238 5.57429i −0.705271 0.392206i
\(203\) 1.97389i 0.138540i
\(204\) 0 0
\(205\) 7.36833i 0.514626i
\(206\) 9.68647 17.4184i 0.674888 1.21359i
\(207\) 0 0
\(208\) −7.23381 3.57751i −0.501574 0.248056i
\(209\) 0.377554i 0.0261160i
\(210\) 0 0
\(211\) −17.5428 −1.20769 −0.603847 0.797100i \(-0.706366\pi\)
−0.603847 + 0.797100i \(0.706366\pi\)
\(212\) −11.0993 17.8717i −0.762305 1.22744i
\(213\) 0 0
\(214\) 1.53781 2.76532i 0.105123 0.189033i
\(215\) 7.06978 0.482155
\(216\) 0 0
\(217\) −6.06567 −0.411764
\(218\) −10.1367 + 18.2280i −0.686545 + 1.23456i
\(219\) 0 0
\(220\) −0.819295 + 0.508827i −0.0552369 + 0.0343051i
\(221\) 1.41536 0.0952073
\(222\) 0 0
\(223\) 0.406159i 0.0271984i 0.999908 + 0.0135992i \(0.00432890\pi\)
−0.999908 + 0.0135992i \(0.995671\pi\)
\(224\) 2.95637 + 4.28449i 0.197531 + 0.286269i
\(225\) 0 0
\(226\) 11.9162 21.4279i 0.792653 1.42536i
\(227\) 17.6015i 1.16825i −0.811663 0.584126i \(-0.801437\pi\)
0.811663 0.584126i \(-0.198563\pi\)
\(228\) 0 0
\(229\) 25.2194i 1.66655i −0.552860 0.833274i \(-0.686464\pi\)
0.552860 0.833274i \(-0.313536\pi\)
\(230\) −1.78103 0.990441i −0.117437 0.0653078i
\(231\) 0 0
\(232\) 0.292551 + 6.06006i 0.0192069 + 0.397862i
\(233\) 12.9599i 0.849034i 0.905420 + 0.424517i \(0.139556\pi\)
−0.905420 + 0.424517i \(0.860444\pi\)
\(234\) 0 0
\(235\) 0.294304 0.0191983
\(236\) −18.3564 + 11.4003i −1.19490 + 0.742098i
\(237\) 0 0
\(238\) −0.797876 0.443704i −0.0517186 0.0287611i
\(239\) −12.1176 −0.783821 −0.391911 0.920003i \(-0.628186\pi\)
−0.391911 + 0.920003i \(0.628186\pi\)
\(240\) 0 0
\(241\) 6.52697 0.420439 0.210220 0.977654i \(-0.432582\pi\)
0.210220 + 0.977654i \(0.432582\pi\)
\(242\) −13.3081 7.40073i −0.855478 0.475737i
\(243\) 0 0
\(244\) −14.7109 + 9.13625i −0.941766 + 0.584888i
\(245\) −6.15322 −0.393115
\(246\) 0 0
\(247\) 1.57962i 0.100509i
\(248\) 18.6223 0.898995i 1.18252 0.0570862i
\(249\) 0 0
\(250\) 1.23596 + 0.687323i 0.0781687 + 0.0434701i
\(251\) 8.66260i 0.546779i −0.961903 0.273389i \(-0.911855\pi\)
0.961903 0.273389i \(-0.0881447\pi\)
\(252\) 0 0
\(253\) 0.694887i 0.0436872i
\(254\) −2.37564 + 4.27191i −0.149061 + 0.268043i
\(255\) 0 0
\(256\) −9.71140 12.7157i −0.606962 0.794730i
\(257\) 22.7615i 1.41982i −0.704291 0.709912i \(-0.748735\pi\)
0.704291 0.709912i \(-0.251265\pi\)
\(258\) 0 0
\(259\) 2.15179 0.133706
\(260\) 3.42778 2.12884i 0.212582 0.132025i
\(261\) 0 0
\(262\) 11.9962 21.5718i 0.741130 1.33271i
\(263\) 20.7096 1.27701 0.638506 0.769617i \(-0.279553\pi\)
0.638506 + 0.769617i \(0.279553\pi\)
\(264\) 0 0
\(265\) 10.5190 0.646175
\(266\) 0.495198 0.890473i 0.0303625 0.0545984i
\(267\) 0 0
\(268\) −11.8346 19.0556i −0.722910 1.16400i
\(269\) 13.2212 0.806112 0.403056 0.915175i \(-0.367948\pi\)
0.403056 + 0.915175i \(0.367948\pi\)
\(270\) 0 0
\(271\) 4.05018i 0.246031i −0.992405 0.123016i \(-0.960743\pi\)
0.992405 0.123016i \(-0.0392565\pi\)
\(272\) 2.51533 + 1.24397i 0.152514 + 0.0754266i
\(273\) 0 0
\(274\) −6.29587 + 11.3213i −0.380347 + 0.683947i
\(275\) 0.482221i 0.0290790i
\(276\) 0 0
\(277\) 4.33623i 0.260539i −0.991479 0.130269i \(-0.958416\pi\)
0.991479 0.130269i \(-0.0415842\pi\)
\(278\) 11.0980 + 6.17166i 0.665612 + 0.370151i
\(279\) 0 0
\(280\) −2.59971 + 0.125502i −0.155362 + 0.00750016i
\(281\) 24.2605i 1.44726i −0.690188 0.723630i \(-0.742472\pi\)
0.690188 0.723630i \(-0.257528\pi\)
\(282\) 0 0
\(283\) −27.0761 −1.60951 −0.804754 0.593609i \(-0.797703\pi\)
−0.804754 + 0.593609i \(0.797703\pi\)
\(284\) −5.88274 9.47218i −0.349076 0.562070i
\(285\) 0 0
\(286\) −1.20245 0.668693i −0.0711026 0.0395406i
\(287\) −6.78038 −0.400233
\(288\) 0 0
\(289\) 16.5079 0.971050
\(290\) −2.65119 1.47434i −0.155683 0.0865764i
\(291\) 0 0
\(292\) 1.07587 + 1.73233i 0.0629607 + 0.101377i
\(293\) −20.2078 −1.18055 −0.590275 0.807202i \(-0.700981\pi\)
−0.590275 + 0.807202i \(0.700981\pi\)
\(294\) 0 0
\(295\) 10.8042i 0.629046i
\(296\) −6.60623 + 0.318917i −0.383979 + 0.0185367i
\(297\) 0 0
\(298\) 6.52107 + 3.62641i 0.377756 + 0.210072i
\(299\) 2.90728i 0.168132i
\(300\) 0 0
\(301\) 6.50566i 0.374980i
\(302\) 11.6043 20.8671i 0.667755 1.20077i
\(303\) 0 0
\(304\) −1.38834 + 2.80725i −0.0796266 + 0.161007i
\(305\) 8.65852i 0.495786i
\(306\) 0 0
\(307\) −9.07799 −0.518108 −0.259054 0.965863i \(-0.583411\pi\)
−0.259054 + 0.965863i \(0.583411\pi\)
\(308\) 0.468226 + 0.753921i 0.0266797 + 0.0429586i
\(309\) 0 0
\(310\) −4.53059 + 8.14697i −0.257320 + 0.462717i
\(311\) −15.9031 −0.901782 −0.450891 0.892579i \(-0.648894\pi\)
−0.450891 + 0.892579i \(0.648894\pi\)
\(312\) 0 0
\(313\) −22.2979 −1.26035 −0.630176 0.776452i \(-0.717017\pi\)
−0.630176 + 0.776452i \(0.717017\pi\)
\(314\) −9.80413 + 17.6299i −0.553279 + 0.994915i
\(315\) 0 0
\(316\) −3.17140 + 1.96961i −0.178405 + 0.110799i
\(317\) 24.9636 1.40210 0.701048 0.713114i \(-0.252716\pi\)
0.701048 + 0.713114i \(0.252716\pi\)
\(318\) 0 0
\(319\) 1.03439i 0.0579146i
\(320\) 7.96280 0.770608i 0.445134 0.0430783i
\(321\) 0 0
\(322\) −0.911410 + 1.63891i −0.0507909 + 0.0913330i
\(323\) 0.549262i 0.0305618i
\(324\) 0 0
\(325\) 2.01753i 0.111912i
\(326\) 3.32070 + 1.84666i 0.183916 + 0.102277i
\(327\) 0 0
\(328\) 20.8165 1.00492i 1.14940 0.0554876i
\(329\) 0.270821i 0.0149308i
\(330\) 0 0
\(331\) −1.81036 −0.0995065 −0.0497532 0.998762i \(-0.515843\pi\)
−0.0497532 + 0.998762i \(0.515843\pi\)
\(332\) −2.98863 + 1.85610i −0.164022 + 0.101867i
\(333\) 0 0
\(334\) 9.00399 + 5.00718i 0.492676 + 0.273981i
\(335\) 11.2157 0.612781
\(336\) 0 0
\(337\) 27.1410 1.47847 0.739233 0.673449i \(-0.235188\pi\)
0.739233 + 0.673449i \(0.235188\pi\)
\(338\) −11.0366 6.13751i −0.600311 0.333837i
\(339\) 0 0
\(340\) −1.19190 + 0.740238i −0.0646401 + 0.0401450i
\(341\) 3.17863 0.172132
\(342\) 0 0
\(343\) 12.1037i 0.653537i
\(344\) 0.964206 + 19.9731i 0.0519865 + 1.07688i
\(345\) 0 0
\(346\) −7.49690 4.16907i −0.403036 0.224131i
\(347\) 29.1993i 1.56750i −0.621075 0.783751i \(-0.713304\pi\)
0.621075 0.783751i \(-0.286696\pi\)
\(348\) 0 0
\(349\) 4.81219i 0.257591i −0.991671 0.128795i \(-0.958889\pi\)
0.991671 0.128795i \(-0.0411110\pi\)
\(350\) 0.632479 1.13733i 0.0338074 0.0607931i
\(351\) 0 0
\(352\) −1.54925 2.24522i −0.0825751 0.119671i
\(353\) 2.68613i 0.142968i −0.997442 0.0714841i \(-0.977226\pi\)
0.997442 0.0714841i \(-0.0227735\pi\)
\(354\) 0 0
\(355\) 5.57514 0.295898
\(356\) −20.2439 + 12.5726i −1.07293 + 0.666346i
\(357\) 0 0
\(358\) 12.5072 22.4906i 0.661024 1.18866i
\(359\) −1.20997 −0.0638600 −0.0319300 0.999490i \(-0.510165\pi\)
−0.0319300 + 0.999490i \(0.510165\pi\)
\(360\) 0 0
\(361\) −18.3870 −0.967736
\(362\) −3.85427 + 6.93081i −0.202576 + 0.364275i
\(363\) 0 0
\(364\) −1.95897 3.15427i −0.102678 0.165329i
\(365\) −1.01962 −0.0533692
\(366\) 0 0
\(367\) 2.67794i 0.139787i 0.997554 + 0.0698936i \(0.0222660\pi\)
−0.997554 + 0.0698936i \(0.977734\pi\)
\(368\) 2.55523 5.16673i 0.133200 0.269334i
\(369\) 0 0
\(370\) 1.60722 2.89013i 0.0835553 0.150251i
\(371\) 9.67962i 0.502541i
\(372\) 0 0
\(373\) 17.6359i 0.913155i 0.889684 + 0.456577i \(0.150925\pi\)
−0.889684 + 0.456577i \(0.849075\pi\)
\(374\) 0.418116 + 0.232517i 0.0216203 + 0.0120232i
\(375\) 0 0
\(376\) 0.0401384 + 0.831450i 0.00206998 + 0.0428787i
\(377\) 4.32769i 0.222888i
\(378\) 0 0
\(379\) 26.4128 1.35673 0.678367 0.734723i \(-0.262688\pi\)
0.678367 + 0.734723i \(0.262688\pi\)
\(380\) −0.826146 1.33023i −0.0423804 0.0682394i
\(381\) 0 0
\(382\) 10.1498 + 5.64436i 0.519308 + 0.288791i
\(383\) 31.4773 1.60841 0.804207 0.594349i \(-0.202590\pi\)
0.804207 + 0.594349i \(0.202590\pi\)
\(384\) 0 0
\(385\) −0.443743 −0.0226152
\(386\) −17.6366 9.80781i −0.897677 0.499204i
\(387\) 0 0
\(388\) 4.15547 + 6.69098i 0.210962 + 0.339683i
\(389\) −12.9035 −0.654233 −0.327116 0.944984i \(-0.606077\pi\)
−0.327116 + 0.944984i \(0.606077\pi\)
\(390\) 0 0
\(391\) 1.01092i 0.0511242i
\(392\) −0.839202 17.3837i −0.0423861 0.878009i
\(393\) 0 0
\(394\) 4.92500 + 2.73883i 0.248118 + 0.137980i
\(395\) 1.86662i 0.0939200i
\(396\) 0 0
\(397\) 29.0747i 1.45922i 0.683866 + 0.729608i \(0.260297\pi\)
−0.683866 + 0.729608i \(0.739703\pi\)
\(398\) −19.0450 + 34.2471i −0.954640 + 1.71665i
\(399\) 0 0
\(400\) −1.77322 + 3.58548i −0.0886609 + 0.179274i
\(401\) 4.03847i 0.201672i 0.994903 + 0.100836i \(0.0321517\pi\)
−0.994903 + 0.100836i \(0.967848\pi\)
\(402\) 0 0
\(403\) −13.2988 −0.662461
\(404\) 8.55761 + 13.7792i 0.425757 + 0.685539i
\(405\) 0 0
\(406\) −1.35670 + 2.43964i −0.0673318 + 0.121077i
\(407\) −1.12761 −0.0558937
\(408\) 0 0
\(409\) 23.4511 1.15958 0.579792 0.814764i \(-0.303134\pi\)
0.579792 + 0.814764i \(0.303134\pi\)
\(410\) −5.06442 + 9.10693i −0.250114 + 0.449759i
\(411\) 0 0
\(412\) −23.9441 + 14.8706i −1.17964 + 0.732622i
\(413\) −9.94211 −0.489219
\(414\) 0 0
\(415\) 1.75905i 0.0863484i
\(416\) 6.48176 + 9.39361i 0.317795 + 0.460560i
\(417\) 0 0
\(418\) −0.259502 + 0.466640i −0.0126926 + 0.0228241i
\(419\) 10.7206i 0.523734i −0.965104 0.261867i \(-0.915662\pi\)
0.965104 0.261867i \(-0.0843381\pi\)
\(420\) 0 0
\(421\) 14.6900i 0.715945i 0.933732 + 0.357972i \(0.116532\pi\)
−0.933732 + 0.357972i \(0.883468\pi\)
\(422\) 21.6821 + 12.0576i 1.05547 + 0.586952i
\(423\) 0 0
\(424\) 1.43462 + 29.7175i 0.0696713 + 1.44321i
\(425\) 0.701532i 0.0340293i
\(426\) 0 0
\(427\) −7.96763 −0.385581
\(428\) −3.80134 + 2.36084i −0.183745 + 0.114115i
\(429\) 0 0
\(430\) −8.73794 4.85922i −0.421381 0.234333i
\(431\) −11.1052 −0.534921 −0.267460 0.963569i \(-0.586184\pi\)
−0.267460 + 0.963569i \(0.586184\pi\)
\(432\) 0 0
\(433\) −13.1055 −0.629812 −0.314906 0.949123i \(-0.601973\pi\)
−0.314906 + 0.949123i \(0.601973\pi\)
\(434\) 7.49690 + 4.16907i 0.359862 + 0.200122i
\(435\) 0 0
\(436\) 25.0571 15.5618i 1.20002 0.745275i
\(437\) −1.12824 −0.0539709
\(438\) 0 0
\(439\) 11.5099i 0.549338i −0.961539 0.274669i \(-0.911432\pi\)
0.961539 0.274669i \(-0.0885682\pi\)
\(440\) 1.36234 0.0657674i 0.0649471 0.00313534i
\(441\) 0 0
\(442\) −1.74932 0.972809i −0.0832067 0.0462718i
\(443\) 14.5661i 0.692055i −0.938224 0.346028i \(-0.887530\pi\)
0.938224 0.346028i \(-0.112470\pi\)
\(444\) 0 0
\(445\) 11.9152i 0.564834i
\(446\) 0.279163 0.501995i 0.0132187 0.0237702i
\(447\) 0 0
\(448\) −0.709118 7.32742i −0.0335027 0.346188i
\(449\) 12.5436i 0.591967i 0.955193 + 0.295984i \(0.0956474\pi\)
−0.955193 + 0.295984i \(0.904353\pi\)
\(450\) 0 0
\(451\) 3.55317 0.167312
\(452\) −29.4558 + 18.2936i −1.38548 + 0.860460i
\(453\) 0 0
\(454\) −12.0979 + 21.7547i −0.567783 + 1.02100i
\(455\) 1.85654 0.0870360
\(456\) 0 0
\(457\) 5.52282 0.258347 0.129173 0.991622i \(-0.458768\pi\)
0.129173 + 0.991622i \(0.458768\pi\)
\(458\) −17.3339 + 31.1701i −0.809961 + 1.45648i
\(459\) 0 0
\(460\) 1.52052 + 2.44828i 0.0708945 + 0.114152i
\(461\) 37.7632 1.75881 0.879405 0.476075i \(-0.157941\pi\)
0.879405 + 0.476075i \(0.157941\pi\)
\(462\) 0 0
\(463\) 34.1260i 1.58597i 0.609241 + 0.792985i \(0.291474\pi\)
−0.609241 + 0.792985i \(0.708526\pi\)
\(464\) 3.80364 7.69104i 0.176579 0.357048i
\(465\) 0 0
\(466\) 8.90767 16.0179i 0.412640 0.742016i
\(467\) 12.9667i 0.600026i 0.953935 + 0.300013i \(0.0969910\pi\)
−0.953935 + 0.300013i \(0.903009\pi\)
\(468\) 0 0
\(469\) 10.3208i 0.476570i
\(470\) −0.363747 0.202282i −0.0167784 0.00933058i
\(471\) 0 0
\(472\) 30.5234 1.47352i 1.40495 0.0678245i
\(473\) 3.40920i 0.156755i
\(474\) 0 0
\(475\) 0.782948 0.0359241
\(476\) 0.681171 + 1.09680i 0.0312214 + 0.0502716i
\(477\) 0 0
\(478\) 14.9768 + 8.32870i 0.685023 + 0.380946i
\(479\) 36.0652 1.64786 0.823931 0.566690i \(-0.191776\pi\)
0.823931 + 0.566690i \(0.191776\pi\)
\(480\) 0 0
\(481\) 4.71773 0.215110
\(482\) −8.06705 4.48614i −0.367444 0.204338i
\(483\) 0 0
\(484\) 11.3615 + 18.2939i 0.516434 + 0.831543i
\(485\) −3.93818 −0.178824
\(486\) 0 0
\(487\) 40.1129i 1.81769i 0.417135 + 0.908845i \(0.363034\pi\)
−0.417135 + 0.908845i \(0.636966\pi\)
\(488\) 24.4615 1.18089i 1.10732 0.0534562i
\(489\) 0 0
\(490\) 7.60511 + 4.22925i 0.343564 + 0.191058i
\(491\) 38.8605i 1.75375i 0.480720 + 0.876874i \(0.340375\pi\)
−0.480720 + 0.876874i \(0.659625\pi\)
\(492\) 0 0
\(493\) 1.50482i 0.0677737i
\(494\) 1.08571 1.95234i 0.0488483 0.0878398i
\(495\) 0 0
\(496\) −23.6342 11.6884i −1.06121 0.524825i
\(497\) 5.13028i 0.230124i
\(498\) 0 0
\(499\) −10.1400 −0.453928 −0.226964 0.973903i \(-0.572880\pi\)
−0.226964 + 0.973903i \(0.572880\pi\)
\(500\) −1.05517 1.69900i −0.0471888 0.0759817i
\(501\) 0 0
\(502\) −5.95401 + 10.7066i −0.265740 + 0.477859i
\(503\) 29.8213 1.32967 0.664834 0.746991i \(-0.268502\pi\)
0.664834 + 0.746991i \(0.268502\pi\)
\(504\) 0 0
\(505\) −8.11015 −0.360897
\(506\) 0.477612 0.858849i 0.0212324 0.0381805i
\(507\) 0 0
\(508\) 5.87236 3.64706i 0.260544 0.161812i
\(509\) 31.1769 1.38189 0.690945 0.722907i \(-0.257195\pi\)
0.690945 + 0.722907i \(0.257195\pi\)
\(510\) 0 0
\(511\) 0.938258i 0.0415061i
\(512\) 3.26307 + 22.3909i 0.144209 + 0.989547i
\(513\) 0 0
\(514\) −15.6445 + 28.1322i −0.690050 + 1.24086i
\(515\) 14.0930i 0.621013i
\(516\) 0 0
\(517\) 0.141920i 0.00624162i
\(518\) −2.65951 1.47897i −0.116852 0.0649823i
\(519\) 0 0
\(520\) −5.69979 + 0.275159i −0.249952 + 0.0120665i
\(521\) 30.7989i 1.34932i −0.738127 0.674662i \(-0.764289\pi\)
0.738127 0.674662i \(-0.235711\pi\)
\(522\) 0 0
\(523\) 26.0367 1.13851 0.569253 0.822162i \(-0.307233\pi\)
0.569253 + 0.822162i \(0.307233\pi\)
\(524\) −29.6536 + 18.4165i −1.29543 + 0.804530i
\(525\) 0 0
\(526\) −25.5962 14.2342i −1.11605 0.620641i
\(527\) 4.62424 0.201435
\(528\) 0 0
\(529\) −20.9235 −0.909717
\(530\) −13.0010 7.22993i −0.564726 0.314048i
\(531\) 0 0
\(532\) −1.22409 + 0.760224i −0.0530709 + 0.0329599i
\(533\) −14.8658 −0.643909
\(534\) 0 0
\(535\) 2.23739i 0.0967310i
\(536\) 1.52965 + 31.6860i 0.0660708 + 1.36863i
\(537\) 0 0
\(538\) −16.3408 9.08725i −0.704504 0.391779i
\(539\) 2.96721i 0.127807i
\(540\) 0 0
\(541\) 17.2351i 0.740994i 0.928834 + 0.370497i \(0.120813\pi\)
−0.928834 + 0.370497i \(0.879187\pi\)
\(542\) −2.78378 + 5.00585i −0.119574 + 0.215020i
\(543\) 0 0
\(544\) −2.25383 3.26633i −0.0966321 0.140043i
\(545\) 14.7481i 0.631739i
\(546\) 0 0
\(547\) 33.1887 1.41905 0.709523 0.704682i \(-0.248910\pi\)
0.709523 + 0.704682i \(0.248910\pi\)
\(548\) 15.5628 9.66537i 0.664811 0.412884i
\(549\) 0 0
\(550\) −0.331442 + 0.596004i −0.0141327 + 0.0254137i
\(551\) −1.67946 −0.0715475
\(552\) 0 0
\(553\) −1.71768 −0.0730431
\(554\) −2.98039 + 5.35939i −0.126625 + 0.227699i
\(555\) 0 0
\(556\) −9.47469 15.2558i −0.401816 0.646990i
\(557\) 19.8024 0.839053 0.419526 0.907743i \(-0.362196\pi\)
0.419526 + 0.907743i \(0.362196\pi\)
\(558\) 0 0
\(559\) 14.2635i 0.603280i
\(560\) 3.29939 + 1.63173i 0.139424 + 0.0689530i
\(561\) 0 0
\(562\) −16.6748 + 29.9849i −0.703384 + 1.26484i
\(563\) 23.6881i 0.998333i −0.866506 0.499166i \(-0.833640\pi\)
0.866506 0.499166i \(-0.166360\pi\)
\(564\) 0 0
\(565\) 17.3371i 0.729377i
\(566\) 33.4649 + 18.6100i 1.40663 + 0.782238i
\(567\) 0 0
\(568\) 0.760361 + 15.7505i 0.0319040 + 0.660878i
\(569\) 1.15817i 0.0485531i 0.999705 + 0.0242765i \(0.00772822\pi\)
−0.999705 + 0.0242765i \(0.992272\pi\)
\(570\) 0 0
\(571\) −26.1823 −1.09570 −0.547848 0.836578i \(-0.684553\pi\)
−0.547848 + 0.836578i \(0.684553\pi\)
\(572\) 1.02657 + 1.65295i 0.0429231 + 0.0691133i
\(573\) 0 0
\(574\) 8.38025 + 4.66032i 0.349785 + 0.194518i
\(575\) −1.44101 −0.0600944
\(576\) 0 0
\(577\) −35.9581 −1.49696 −0.748479 0.663159i \(-0.769215\pi\)
−0.748479 + 0.663159i \(0.769215\pi\)
\(578\) −20.4030 11.3462i −0.848652 0.471941i
\(579\) 0 0
\(580\) 2.26340 + 3.64444i 0.0939825 + 0.151327i
\(581\) −1.61869 −0.0671545
\(582\) 0 0
\(583\) 5.07247i 0.210080i
\(584\) −0.139060 2.88056i −0.00575433 0.119198i
\(585\) 0 0
\(586\) 24.9759 + 13.8893i 1.03174 + 0.573760i
\(587\) 7.68401i 0.317153i 0.987347 + 0.158577i \(0.0506905\pi\)
−0.987347 + 0.158577i \(0.949310\pi\)
\(588\) 0 0
\(589\) 5.16091i 0.212651i
\(590\) −7.42599 + 13.3535i −0.305723 + 0.549756i
\(591\) 0 0
\(592\) 8.38420 + 4.14645i 0.344589 + 0.170418i
\(593\) 14.3657i 0.589930i 0.955508 + 0.294965i \(0.0953080\pi\)
−0.955508 + 0.294965i \(0.904692\pi\)
\(594\) 0 0
\(595\) −0.645554 −0.0264651
\(596\) −5.56724 8.96417i −0.228043 0.367187i
\(597\) 0 0
\(598\) −1.99824 + 3.59327i −0.0817142 + 0.146940i
\(599\) −17.9780 −0.734562 −0.367281 0.930110i \(-0.619711\pi\)
−0.367281 + 0.930110i \(0.619711\pi\)
\(600\) 0 0
\(601\) −21.2552 −0.867018 −0.433509 0.901149i \(-0.642725\pi\)
−0.433509 + 0.901149i \(0.642725\pi\)
\(602\) −4.47149 + 8.04070i −0.182244 + 0.327715i
\(603\) 0 0
\(604\) −28.6849 + 17.8149i −1.16717 + 0.724878i
\(605\) −10.7675 −0.437760
\(606\) 0 0
\(607\) 0.428639i 0.0173979i −0.999962 0.00869897i \(-0.997231\pi\)
0.999962 0.00869897i \(-0.00276900\pi\)
\(608\) 3.64541 2.51540i 0.147841 0.102013i
\(609\) 0 0
\(610\) −5.95121 + 10.7016i −0.240957 + 0.433293i
\(611\) 0.593766i 0.0240212i
\(612\) 0 0
\(613\) 40.6593i 1.64221i 0.570774 + 0.821107i \(0.306643\pi\)
−0.570774 + 0.821107i \(0.693357\pi\)
\(614\) 11.2200 + 6.23951i 0.452802 + 0.251806i
\(615\) 0 0
\(616\) −0.0605195 1.25364i −0.00243840 0.0505104i
\(617\) 16.8640i 0.678920i −0.940621 0.339460i \(-0.889756\pi\)
0.940621 0.339460i \(-0.110244\pi\)
\(618\) 0 0
\(619\) 16.2055 0.651353 0.325677 0.945481i \(-0.394408\pi\)
0.325677 + 0.945481i \(0.394408\pi\)
\(620\) 11.1992 6.95532i 0.449771 0.279332i
\(621\) 0 0
\(622\) 19.6555 + 10.9306i 0.788114 + 0.438276i
\(623\) −10.9644 −0.439280
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 27.5592 + 15.3259i 1.10149 + 0.612545i
\(627\) 0 0
\(628\) 24.2349 15.0512i 0.967079 0.600609i
\(629\) −1.64044 −0.0654088
\(630\) 0 0
\(631\) 10.7163i 0.426609i −0.976986 0.213304i \(-0.931577\pi\)
0.976986 0.213304i \(-0.0684226\pi\)
\(632\) 5.27347 0.254578i 0.209767 0.0101266i
\(633\) 0 0
\(634\) −30.8539 17.1581i −1.22537 0.681434i
\(635\) 3.45636i 0.137161i
\(636\) 0 0
\(637\) 12.4143i 0.491872i
\(638\) 0.710959 1.27846i 0.0281471 0.0506147i
\(639\) 0 0
\(640\) −10.3713 4.52058i −0.409963 0.178692i
\(641\) 25.7665i 1.01772i −0.860851 0.508858i \(-0.830068\pi\)
0.860851 0.508858i \(-0.169932\pi\)
\(642\) 0 0
\(643\) −9.51281 −0.375149 −0.187574 0.982250i \(-0.560063\pi\)
−0.187574 + 0.982250i \(0.560063\pi\)
\(644\) 2.25293 1.39919i 0.0887777 0.0551358i
\(645\) 0 0
\(646\) −0.377521 + 0.678864i −0.0148534 + 0.0267096i
\(647\) −0.478556 −0.0188140 −0.00940699 0.999956i \(-0.502994\pi\)
−0.00940699 + 0.999956i \(0.502994\pi\)
\(648\) 0 0
\(649\) 5.21002 0.204511
\(650\) 1.38669 2.49357i 0.0543906 0.0978060i
\(651\) 0 0
\(652\) −2.83498 4.56478i −0.111026 0.178771i
\(653\) −35.1846 −1.37688 −0.688439 0.725294i \(-0.741704\pi\)
−0.688439 + 0.725294i \(0.741704\pi\)
\(654\) 0 0
\(655\) 17.4536i 0.681967i
\(656\) −26.4190 13.0657i −1.03149 0.510128i
\(657\) 0 0
\(658\) −0.186141 + 0.334722i −0.00725654 + 0.0130488i
\(659\) 11.6312i 0.453088i −0.974001 0.226544i \(-0.927257\pi\)
0.974001 0.226544i \(-0.0727427\pi\)
\(660\) 0 0
\(661\) 25.6802i 0.998843i −0.866359 0.499421i \(-0.833546\pi\)
0.866359 0.499421i \(-0.166454\pi\)
\(662\) 2.23753 + 1.24430i 0.0869640 + 0.0483612i
\(663\) 0 0
\(664\) 4.96956 0.239907i 0.192856 0.00931018i
\(665\) 0.720473i 0.0279388i
\(666\) 0 0
\(667\) 3.09104 0.119686
\(668\) −7.68698 12.3773i −0.297418 0.478892i
\(669\) 0 0
\(670\) −13.8622 7.70884i −0.535542 0.297818i
\(671\) 4.17533 0.161187
\(672\) 0 0
\(673\) −1.60255 −0.0617738 −0.0308869 0.999523i \(-0.509833\pi\)
−0.0308869 + 0.999523i \(0.509833\pi\)
\(674\) −33.5451 18.6547i −1.29211 0.718551i
\(675\) 0 0
\(676\) 9.42226 + 15.1714i 0.362395 + 0.583515i
\(677\) −7.62519 −0.293060 −0.146530 0.989206i \(-0.546810\pi\)
−0.146530 + 0.989206i \(0.546810\pi\)
\(678\) 0 0
\(679\) 3.62394i 0.139074i
\(680\) 1.98192 0.0956778i 0.0760033 0.00366908i
\(681\) 0 0
\(682\) −3.92864 2.18474i −0.150436 0.0836582i
\(683\) 28.3435i 1.08453i −0.840207 0.542266i \(-0.817566\pi\)
0.840207 0.542266i \(-0.182434\pi\)
\(684\) 0 0
\(685\) 9.15998i 0.349985i
\(686\) 8.31914 14.9596i 0.317626 0.571161i
\(687\) 0 0
\(688\) 12.5363 25.3486i 0.477940 0.966406i
\(689\) 21.2223i 0.808505i
\(690\) 0 0
\(691\) 19.3466 0.735979 0.367990 0.929830i \(-0.380046\pi\)
0.367990 + 0.929830i \(0.380046\pi\)
\(692\) 6.40033 + 10.3056i 0.243304 + 0.391759i
\(693\) 0 0
\(694\) −20.0694 + 36.0891i −0.761823 + 1.36992i
\(695\) 8.97927 0.340603
\(696\) 0 0
\(697\) 5.16912 0.195794
\(698\) −3.30753 + 5.94766i −0.125192 + 0.225122i
\(699\) 0 0
\(700\) −1.56343 + 0.970977i −0.0590922 + 0.0366995i
\(701\) 49.8239 1.88182 0.940912 0.338650i \(-0.109970\pi\)
0.940912 + 0.338650i \(0.109970\pi\)
\(702\) 0 0
\(703\) 1.83082i 0.0690509i
\(704\) 0.371604 + 3.83983i 0.0140053 + 0.144719i
\(705\) 0 0
\(706\) −1.84624 + 3.31993i −0.0694841 + 0.124947i
\(707\) 7.46301i 0.280675i
\(708\) 0 0
\(709\) 2.93005i 0.110040i 0.998485 + 0.0550202i \(0.0175223\pi\)
−0.998485 + 0.0550202i \(0.982478\pi\)
\(710\) −6.89063 3.83192i −0.258601 0.143810i
\(711\) 0 0
\(712\) 33.6620 1.62504i 1.26154 0.0609010i
\(713\) 9.49863i 0.355726i
\(714\) 0 0
\(715\) −0.972894 −0.0363842
\(716\) −30.9166 + 19.2009i −1.15541 + 0.717571i
\(717\) 0 0
\(718\) 1.49547 + 0.831643i 0.0558106 + 0.0310367i
\(719\) −42.4103 −1.58164 −0.790818 0.612051i \(-0.790345\pi\)
−0.790818 + 0.612051i \(0.790345\pi\)
\(720\) 0 0
\(721\) −12.9685 −0.482972
\(722\) 22.7255 + 12.6378i 0.845756 + 0.470330i
\(723\) 0 0
\(724\) 9.52741 5.91704i 0.354083 0.219905i
\(725\) −2.14505 −0.0796651
\(726\) 0 0
\(727\) 33.8955i 1.25712i −0.777763 0.628558i \(-0.783645\pi\)
0.777763 0.628558i \(-0.216355\pi\)
\(728\) 0.253203 + 5.24498i 0.00938432 + 0.194392i
\(729\) 0 0
\(730\) 1.26020 + 0.700807i 0.0466422 + 0.0259380i
\(731\) 4.95967i 0.183440i
\(732\) 0 0
\(733\) 4.65523i 0.171945i 0.996298 + 0.0859724i \(0.0273997\pi\)
−0.996298 + 0.0859724i \(0.972600\pi\)
\(734\) 1.84061 3.30981i 0.0679381 0.122167i
\(735\) 0 0
\(736\) −6.70936 + 4.62958i −0.247310 + 0.170649i
\(737\) 5.40847i 0.199223i
\(738\) 0 0
\(739\) 42.8311 1.57557 0.787783 0.615953i \(-0.211229\pi\)
0.787783 + 0.615953i \(0.211229\pi\)
\(740\) −3.97290 + 2.46739i −0.146047 + 0.0907031i
\(741\) 0 0
\(742\) −6.65303 + 11.9636i −0.244240 + 0.439197i
\(743\) 22.1930 0.814182 0.407091 0.913388i \(-0.366543\pi\)
0.407091 + 0.913388i \(0.366543\pi\)
\(744\) 0 0
\(745\) 5.27614 0.193303
\(746\) 12.1216 21.7973i 0.443803 0.798054i
\(747\) 0 0
\(748\) −0.356958 0.574761i −0.0130517 0.0210154i
\(749\) −2.05886 −0.0752293
\(750\) 0 0
\(751\) 0.0193272i 0.000705259i −1.00000 0.000352629i \(-0.999888\pi\)
1.00000 0.000352629i \(-0.000112245\pi\)
\(752\) 0.521865 1.05522i 0.0190305 0.0384800i
\(753\) 0 0
\(754\) −2.97452 + 5.34884i −0.108326 + 0.194793i
\(755\) 16.8834i 0.614450i
\(756\) 0 0
\(757\) 47.2539i 1.71747i 0.512417 + 0.858736i \(0.328750\pi\)
−0.512417 + 0.858736i \(0.671250\pi\)
\(758\) −32.6451 18.1541i −1.18572 0.659388i
\(759\) 0 0
\(760\) 0.106782 + 2.21193i 0.00387338 + 0.0802353i
\(761\) 40.7068i 1.47562i 0.675007 + 0.737811i \(0.264140\pi\)
−0.675007 + 0.737811i \(0.735860\pi\)
\(762\) 0 0
\(763\) 13.5713 0.491314
\(764\) −8.66519 13.9524i −0.313495 0.504779i
\(765\) 0 0
\(766\) −38.9045 21.6351i −1.40568 0.781707i
\(767\) −21.7978 −0.787073
\(768\) 0 0
\(769\) 1.80744 0.0651780 0.0325890 0.999469i \(-0.489625\pi\)
0.0325890 + 0.999469i \(0.489625\pi\)
\(770\) 0.548447 + 0.304995i 0.0197647 + 0.0109913i
\(771\) 0 0
\(772\) 15.0569 + 24.2440i 0.541909 + 0.872562i
\(773\) −39.1312 −1.40745 −0.703726 0.710471i \(-0.748482\pi\)
−0.703726 + 0.710471i \(0.748482\pi\)
\(774\) 0 0
\(775\) 6.59164i 0.236779i
\(776\) −0.537106 11.1259i −0.0192810 0.399397i
\(777\) 0 0
\(778\) 15.9481 + 8.86887i 0.571769 + 0.317964i
\(779\) 5.76902i 0.206696i
\(780\) 0 0
\(781\) 2.68845i 0.0962004i
\(782\) 0.694826 1.24945i 0.0248469 0.0446801i
\(783\) 0 0
\(784\) −10.9110 + 22.0623i −0.389678 + 0.787938i
\(785\) 14.2642i 0.509112i
\(786\) 0 0
\(787\) 4.89070 0.174335 0.0871673 0.996194i \(-0.472219\pi\)
0.0871673 + 0.996194i \(0.472219\pi\)
\(788\) −4.20463 6.77014i −0.149784 0.241176i
\(789\) 0 0
\(790\) −1.28297 + 2.30706i −0.0456461 + 0.0820816i
\(791\) −15.9537 −0.567248
\(792\) 0 0
\(793\) −17.4688 −0.620335
\(794\) 19.9837 35.9350i 0.709195 1.27529i
\(795\) 0 0
\(796\) 47.0776 29.2378i 1.66862 1.03631i
\(797\) 31.9556 1.13193 0.565963 0.824430i \(-0.308504\pi\)
0.565963 + 0.824430i \(0.308504\pi\)
\(798\) 0 0
\(799\) 0.206464i 0.00730416i
\(800\) 4.65601 3.21273i 0.164615 0.113587i
\(801\) 0 0
\(802\) 2.77574 4.99137i 0.0980147 0.176252i
\(803\) 0.491681i 0.0173511i
\(804\) 0 0
\(805\) 1.32603i 0.0467364i
\(806\) 16.4367 + 9.14058i 0.578959 + 0.321963i
\(807\) 0 0
\(808\) −1.10610 22.9123i −0.0389123 0.806051i
\(809\) 37.3798i 1.31420i −0.753801 0.657102i \(-0.771782\pi\)
0.753801 0.657102i \(-0.228218\pi\)
\(810\) 0 0
\(811\) 17.2532 0.605842 0.302921 0.953016i \(-0.402038\pi\)
0.302921 + 0.953016i \(0.402038\pi\)
\(812\) 3.35364 2.08279i 0.117690 0.0730918i
\(813\) 0 0
\(814\) 1.39368 + 0.775035i 0.0488485 + 0.0271650i
\(815\) 2.68674 0.0941125
\(816\) 0 0
\(817\) −5.53527 −0.193655
\(818\) −28.9846 16.1185i −1.01342 0.563571i
\(819\) 0 0
\(820\) 12.5188 7.77487i 0.437176 0.271510i
\(821\) −5.86159 −0.204571 −0.102285 0.994755i \(-0.532616\pi\)
−0.102285 + 0.994755i \(0.532616\pi\)
\(822\) 0 0
\(823\) 2.27164i 0.0791843i −0.999216 0.0395921i \(-0.987394\pi\)
0.999216 0.0395921i \(-0.0126059\pi\)
\(824\) 39.8147 1.92207i 1.38701 0.0669584i
\(825\) 0 0
\(826\) 12.2880 + 6.83344i 0.427554 + 0.237766i
\(827\) 43.9531i 1.52840i 0.644981 + 0.764199i \(0.276865\pi\)
−0.644981 + 0.764199i \(0.723135\pi\)
\(828\) 0 0
\(829\) 19.7872i 0.687239i −0.939109 0.343620i \(-0.888347\pi\)
0.939109 0.343620i \(-0.111653\pi\)
\(830\) −1.20904 + 2.17411i −0.0419663 + 0.0754644i
\(831\) 0 0
\(832\) −1.55472 16.0652i −0.0539003 0.556959i
\(833\) 4.31668i 0.149564i
\(834\) 0 0
\(835\) 7.28504 0.252109
\(836\) 0.641465 0.398385i 0.0221855 0.0137784i
\(837\) 0 0
\(838\) −7.36849 + 13.2501i −0.254540 + 0.457719i
\(839\) 17.6073 0.607872 0.303936 0.952692i \(-0.401699\pi\)
0.303936 + 0.952692i \(0.401699\pi\)
\(840\) 0 0
\(841\) −24.3988 −0.841337
\(842\) 10.0968 18.1561i 0.347957 0.625702i
\(843\) 0 0
\(844\) −18.5107 29.8052i −0.637163 1.02594i
\(845\) −8.92959 −0.307187
\(846\) 0 0
\(847\) 9.90829i 0.340453i
\(848\) 18.6524 37.7156i 0.640526 1.29516i
\(849\) 0 0
\(850\) −0.482179 + 0.867062i −0.0165386 + 0.0297400i
\(851\) 3.36963i 0.115509i
\(852\) 0 0
\(853\) 31.9062i 1.09245i 0.837640 + 0.546223i \(0.183935\pi\)
−0.837640 + 0.546223i \(0.816065\pi\)
\(854\) 9.84764 + 5.47634i 0.336979 + 0.187396i
\(855\) 0 0
\(856\) 6.32095 0.305145i 0.216045 0.0104296i
\(857\) 16.0007i 0.546574i 0.961933 + 0.273287i \(0.0881108\pi\)
−0.961933 + 0.273287i \(0.911889\pi\)
\(858\) 0 0
\(859\) 5.29765 0.180754 0.0903768 0.995908i \(-0.471193\pi\)
0.0903768 + 0.995908i \(0.471193\pi\)
\(860\) 7.45985 + 12.0116i 0.254379 + 0.409591i
\(861\) 0 0
\(862\) 13.7256 + 7.63289i 0.467496 + 0.259977i
\(863\) 30.1157 1.02515 0.512576 0.858642i \(-0.328691\pi\)
0.512576 + 0.858642i \(0.328691\pi\)
\(864\) 0 0
\(865\) −6.06567 −0.206239
\(866\) 16.1979 + 9.00774i 0.550426 + 0.306095i
\(867\) 0 0
\(868\) −6.40033 10.3056i −0.217241 0.349794i
\(869\) 0.900125 0.0305347
\(870\) 0 0
\(871\) 22.6280i 0.766722i
\(872\) −41.6654 + 2.01141i −1.41097 + 0.0681149i
\(873\) 0 0
\(874\) 1.39445 + 0.775464i 0.0471680 + 0.0262304i
\(875\) 0.920206i 0.0311087i
\(876\) 0 0
\(877\) 27.0663i 0.913963i −0.889476 0.456981i \(-0.848931\pi\)
0.889476 0.456981i \(-0.151069\pi\)
\(878\) −7.91102 + 14.2257i −0.266984 + 0.480095i
\(879\) 0 0
\(880\) −1.72900 0.855083i −0.0582845 0.0288249i
\(881\) 26.2189i 0.883338i −0.897178 0.441669i \(-0.854387\pi\)
0.897178 0.441669i \(-0.145613\pi\)
\(882\) 0 0
\(883\) 1.87380 0.0630584 0.0315292 0.999503i \(-0.489962\pi\)
0.0315292 + 0.999503i \(0.489962\pi\)
\(884\) 1.49345 + 2.40470i 0.0502301 + 0.0808787i
\(885\) 0 0
\(886\) −10.0116 + 18.0030i −0.336346 + 0.604824i
\(887\) −20.9667 −0.703992 −0.351996 0.936001i \(-0.614497\pi\)
−0.351996 + 0.936001i \(0.614497\pi\)
\(888\) 0 0
\(889\) 3.18056 0.106673
\(890\) −8.18958 + 14.7266i −0.274515 + 0.493638i
\(891\) 0 0
\(892\) −0.690066 + 0.428569i −0.0231051 + 0.0143495i
\(893\) −0.230425 −0.00771087
\(894\) 0 0
\(895\) 18.1969i 0.608256i
\(896\) −4.15987 + 9.54376i −0.138971 + 0.318835i
\(897\) 0 0
\(898\) 8.62148 15.5033i 0.287703 0.517352i
\(899\) 14.1394i 0.471575i
\(900\) 0 0
\(901\) 7.37938i 0.245843i
\(902\) −4.39156 2.44217i −0.146223 0.0813155i
\(903\) 0 0
\(904\) 48.9797 2.36450i 1.62904 0.0786423i
\(905\) 5.60765i 0.186405i
\(906\) 0 0
\(907\) 7.98889 0.265267 0.132633 0.991165i \(-0.457657\pi\)
0.132633 + 0.991165i \(0.457657\pi\)
\(908\) 29.9050 18.5726i 0.992432 0.616354i
\(909\) 0 0
\(910\) −2.29460 1.27604i −0.0760653 0.0423004i
\(911\) −55.3654 −1.83434 −0.917169 0.398497i \(-0.869532\pi\)
−0.917169 + 0.398497i \(0.869532\pi\)
\(912\) 0 0
\(913\) 0.848251 0.0280730
\(914\) −6.82597 3.79597i −0.225783 0.125559i
\(915\) 0 0
\(916\) 42.8479 26.6109i 1.41573 0.879249i
\(917\) −16.0609 −0.530377
\(918\) 0 0
\(919\) 39.2576i 1.29499i −0.762070 0.647495i \(-0.775817\pi\)
0.762070 0.647495i \(-0.224183\pi\)
\(920\) −0.196531 4.07106i −0.00647945 0.134219i
\(921\) 0 0
\(922\) −46.6737 25.9556i −1.53712 0.854801i
\(923\) 11.2480i 0.370232i
\(924\) 0 0
\(925\) 2.33837i 0.0768853i
\(926\) 23.4556 42.1783i 0.770799 1.38606i
\(927\) 0 0
\(928\) −9.98736 + 6.89146i −0.327851 + 0.226223i
\(929\) 42.8360i 1.40540i 0.711485 + 0.702701i \(0.248023\pi\)
−0.711485 + 0.702701i \(0.751977\pi\)
\(930\) 0 0
\(931\) 4.81765 0.157892
\(932\) −22.0190 + 13.6750i −0.721255 + 0.447939i
\(933\) 0 0
\(934\) 8.91229 16.0262i 0.291619 0.524394i
\(935\) 0.338293 0.0110634
\(936\) 0 0
\(937\) −30.5942 −0.999469 −0.499734 0.866179i \(-0.666569\pi\)
−0.499734 + 0.866179i \(0.666569\pi\)
\(938\) −7.09372 + 12.7560i −0.231618 + 0.416500i
\(939\) 0 0
\(940\) 0.310542 + 0.500023i 0.0101288 + 0.0163090i
\(941\) 46.8808 1.52827 0.764136 0.645055i \(-0.223166\pi\)
0.764136 + 0.645055i \(0.223166\pi\)
\(942\) 0 0
\(943\) 10.6179i 0.345765i
\(944\) −38.7384 19.1582i −1.26083 0.623547i
\(945\) 0 0
\(946\) 2.34322 4.21362i 0.0761847 0.136997i
\(947\) 53.5877i 1.74137i 0.491844 + 0.870684i \(0.336323\pi\)
−0.491844 + 0.870684i \(0.663677\pi\)
\(948\) 0 0
\(949\) 2.05711i 0.0667765i
\(950\) −0.967689 0.538138i −0.0313960 0.0174595i
\(951\) 0 0
\(952\) −0.0880433 1.82378i −0.00285350 0.0591090i
\(953\) 23.4773i 0.760503i 0.924883 + 0.380252i \(0.124163\pi\)
−0.924883 + 0.380252i \(0.875837\pi\)
\(954\) 0 0
\(955\) 8.21210 0.265737
\(956\) −12.7862 20.5878i −0.413534 0.665857i
\(957\) 0 0
\(958\) −44.5750 24.7885i −1.44015 0.800879i
\(959\) 8.42907 0.272189
\(960\) 0 0
\(961\) −12.4497 −0.401603
\(962\) −5.83091 3.24261i −0.187996 0.104546i
\(963\) 0 0
\(964\) 6.88709 + 11.0893i 0.221818 + 0.357164i
\(965\) −14.2696 −0.459354
\(966\) 0 0
\(967\) 0.755493i 0.0242950i 0.999926 + 0.0121475i \(0.00386677\pi\)
−0.999926 + 0.0121475i \(0.996133\pi\)
\(968\) −1.46851 30.4196i −0.0471998 0.977722i
\(969\) 0 0
\(970\) 4.86742 + 2.70680i 0.156283 + 0.0869102i
\(971\) 0.229783i 0.00737407i −0.999993 0.00368704i \(-0.998826\pi\)
0.999993 0.00368704i \(-0.00117362\pi\)
\(972\) 0 0
\(973\) 8.26278i 0.264893i
\(974\) 27.5705 49.5778i 0.883417 1.58857i
\(975\) 0 0
\(976\) −31.0450 15.3534i −0.993726 0.491452i
\(977\) 12.4218i 0.397410i 0.980059 + 0.198705i \(0.0636735\pi\)
−0.980059 + 0.198705i \(0.936326\pi\)
\(978\) 0 0
\(979\) 5.74575 0.183635
\(980\) −6.49272 10.4543i −0.207402 0.333951i
\(981\) 0 0
\(982\) 26.7097 48.0298i 0.852341 1.53269i
\(983\) −23.7013 −0.755956 −0.377978 0.925815i \(-0.623380\pi\)
−0.377978 + 0.925815i \(0.623380\pi\)
\(984\) 0 0
\(985\) 3.98477 0.126965
\(986\) 1.03430 1.85989i 0.0329387 0.0592310i
\(987\) 0 0
\(988\) −2.68377 + 1.66677i −0.0853822 + 0.0530270i
\(989\) 10.1876 0.323948
\(990\) 0 0
\(991\) 4.03872i 0.128294i 0.997940 + 0.0641471i \(0.0204327\pi\)
−0.997940 + 0.0641471i \(0.979567\pi\)
\(992\) 21.1771 + 30.6907i 0.672375 + 0.974431i
\(993\) 0 0
\(994\) −3.52616 + 6.34080i −0.111843 + 0.201118i
\(995\) 27.7090i 0.878433i
\(996\) 0 0
\(997\) 49.3776i 1.56380i −0.623401 0.781902i \(-0.714250\pi\)
0.623401 0.781902i \(-0.285750\pi\)
\(998\) 12.5326 + 6.96945i 0.396712 + 0.220614i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.2.b.d.971.3 yes 16
3.2 odd 2 1080.2.b.a.971.14 yes 16
4.3 odd 2 4320.2.b.b.431.7 16
8.3 odd 2 1080.2.b.a.971.13 16
8.5 even 2 4320.2.b.d.431.10 16
12.11 even 2 4320.2.b.d.431.7 16
24.5 odd 2 4320.2.b.b.431.10 16
24.11 even 2 inner 1080.2.b.d.971.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.b.a.971.13 16 8.3 odd 2
1080.2.b.a.971.14 yes 16 3.2 odd 2
1080.2.b.d.971.3 yes 16 1.1 even 1 trivial
1080.2.b.d.971.4 yes 16 24.11 even 2 inner
4320.2.b.b.431.7 16 4.3 odd 2
4320.2.b.b.431.10 16 24.5 odd 2
4320.2.b.d.431.7 16 12.11 even 2
4320.2.b.d.431.10 16 8.5 even 2