Properties

Label 1080.2
Level 1080
Weight 2
Dimension 12480
Nonzero newspaces 27
Sturm bound 124416
Trace bound 22

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 27 \)
Sturm bound: \(124416\)
Trace bound: \(22\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1080))\).

Total New Old
Modular forms 32544 12864 19680
Cusp forms 29665 12480 17185
Eisenstein series 2879 384 2495

Trace form

\( 12480 q - 16 q^{2} - 24 q^{3} - 28 q^{4} + 2 q^{5} - 72 q^{6} - 28 q^{7} - 28 q^{8} - 48 q^{9} - 50 q^{10} - 72 q^{11} - 24 q^{12} - 20 q^{13} - 28 q^{14} - 48 q^{15} - 92 q^{16} - 84 q^{17} - 24 q^{18}+ \cdots - 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1080))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1080.2.a \(\chi_{1080}(1, \cdot)\) 1080.2.a.a 1 1
1080.2.a.b 1
1080.2.a.c 1
1080.2.a.d 1
1080.2.a.e 1
1080.2.a.f 1
1080.2.a.g 1
1080.2.a.h 1
1080.2.a.i 1
1080.2.a.j 1
1080.2.a.k 1
1080.2.a.l 1
1080.2.a.m 2
1080.2.a.n 2
1080.2.b \(\chi_{1080}(971, \cdot)\) 1080.2.b.a 16 1
1080.2.b.b 16
1080.2.b.c 16
1080.2.b.d 16
1080.2.d \(\chi_{1080}(109, \cdot)\) 1080.2.d.a 4 1
1080.2.d.b 4
1080.2.d.c 4
1080.2.d.d 4
1080.2.d.e 4
1080.2.d.f 4
1080.2.d.g 16
1080.2.d.h 16
1080.2.d.i 20
1080.2.d.j 20
1080.2.f \(\chi_{1080}(649, \cdot)\) 1080.2.f.a 2 1
1080.2.f.b 2
1080.2.f.c 2
1080.2.f.d 2
1080.2.f.e 4
1080.2.f.f 4
1080.2.f.g 8
1080.2.h \(\chi_{1080}(431, \cdot)\) None 0 1
1080.2.k \(\chi_{1080}(541, \cdot)\) 1080.2.k.a 12 1
1080.2.k.b 16
1080.2.k.c 16
1080.2.k.d 20
1080.2.m \(\chi_{1080}(539, \cdot)\) 1080.2.m.a 8 1
1080.2.m.b 40
1080.2.m.c 48
1080.2.o \(\chi_{1080}(1079, \cdot)\) None 0 1
1080.2.q \(\chi_{1080}(361, \cdot)\) 1080.2.q.a 2 2
1080.2.q.b 4
1080.2.q.c 4
1080.2.q.d 6
1080.2.q.e 8
1080.2.s \(\chi_{1080}(377, \cdot)\) 1080.2.s.a 24 2
1080.2.s.b 24
1080.2.t \(\chi_{1080}(487, \cdot)\) None 0 2
1080.2.w \(\chi_{1080}(163, \cdot)\) n/a 192 2
1080.2.x \(\chi_{1080}(53, \cdot)\) n/a 192 2
1080.2.bb \(\chi_{1080}(359, \cdot)\) None 0 2
1080.2.bd \(\chi_{1080}(179, \cdot)\) n/a 136 2
1080.2.bf \(\chi_{1080}(181, \cdot)\) 1080.2.bf.a 4 2
1080.2.bf.b 92
1080.2.bg \(\chi_{1080}(71, \cdot)\) None 0 2
1080.2.bi \(\chi_{1080}(289, \cdot)\) 1080.2.bi.a 4 2
1080.2.bi.b 32
1080.2.bk \(\chi_{1080}(469, \cdot)\) n/a 136 2
1080.2.bm \(\chi_{1080}(251, \cdot)\) 1080.2.bm.a 48 2
1080.2.bm.b 48
1080.2.bo \(\chi_{1080}(121, \cdot)\) n/a 216 6
1080.2.bp \(\chi_{1080}(307, \cdot)\) n/a 272 4
1080.2.bs \(\chi_{1080}(197, \cdot)\) n/a 272 4
1080.2.bt \(\chi_{1080}(17, \cdot)\) 1080.2.bt.a 72 4
1080.2.bw \(\chi_{1080}(127, \cdot)\) None 0 4
1080.2.bx \(\chi_{1080}(59, \cdot)\) n/a 1272 6
1080.2.cc \(\chi_{1080}(61, \cdot)\) n/a 864 6
1080.2.cd \(\chi_{1080}(119, \cdot)\) None 0 6
1080.2.cg \(\chi_{1080}(49, \cdot)\) n/a 324 6
1080.2.ch \(\chi_{1080}(11, \cdot)\) n/a 864 6
1080.2.ci \(\chi_{1080}(191, \cdot)\) None 0 6
1080.2.cj \(\chi_{1080}(229, \cdot)\) n/a 1272 6
1080.2.co \(\chi_{1080}(77, \cdot)\) n/a 2544 12
1080.2.cp \(\chi_{1080}(7, \cdot)\) None 0 12
1080.2.cs \(\chi_{1080}(113, \cdot)\) n/a 648 12
1080.2.ct \(\chi_{1080}(43, \cdot)\) n/a 2544 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1080))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1080)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 32}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(108))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(120))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(135))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(180))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(216))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(270))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(360))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(540))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1080))\)\(^{\oplus 1}\)