Properties

Label 4320.2.b.d.431.10
Level $4320$
Weight $2$
Character 4320.431
Analytic conductor $34.495$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4320,2,Mod(431,4320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4320.431"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,16,0,0,0,0,0,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + x^{14} + 2 x^{13} - 6 x^{12} + 8 x^{11} - 6 x^{10} - 8 x^{9} + 32 x^{8} - 16 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 431.10
Root \(-1.23596 + 0.687323i\) of defining polynomial
Character \(\chi\) \(=\) 4320.431
Dual form 4320.2.b.d.431.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +0.920206i q^{7} +0.482221i q^{11} -2.01753i q^{13} -0.701532i q^{17} -0.782948 q^{19} -1.44101 q^{23} +1.00000 q^{25} +2.14505 q^{29} +6.59164i q^{31} +0.920206i q^{35} +2.33837i q^{37} +7.36833i q^{41} +7.06978 q^{43} -0.294304 q^{47} +6.15322 q^{49} +10.5190 q^{53} +0.482221i q^{55} -10.8042i q^{59} -8.65852i q^{61} -2.01753i q^{65} +11.2157 q^{67} -5.57514 q^{71} +1.01962 q^{73} -0.443743 q^{77} +1.86662i q^{79} -1.75905i q^{83} -0.701532i q^{85} +11.9152i q^{89} +1.85654 q^{91} -0.782948 q^{95} +3.93818 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{5} + 8 q^{19} - 8 q^{23} + 16 q^{25} - 16 q^{47} - 8 q^{49} - 32 q^{53} - 32 q^{67} + 24 q^{71} + 8 q^{73} - 48 q^{91} + 8 q^{95} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4320\mathbb{Z}\right)^\times\).

\(n\) \(2081\) \(2431\) \(3457\) \(3781\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0.920206i 0.347805i 0.984763 + 0.173903i \(0.0556378\pi\)
−0.984763 + 0.173903i \(0.944362\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.482221i 0.145395i 0.997354 + 0.0726976i \(0.0231608\pi\)
−0.997354 + 0.0726976i \(0.976839\pi\)
\(12\) 0 0
\(13\) − 2.01753i − 0.559561i −0.960064 0.279781i \(-0.909738\pi\)
0.960064 0.279781i \(-0.0902617\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 0.701532i − 0.170146i −0.996375 0.0850732i \(-0.972888\pi\)
0.996375 0.0850732i \(-0.0271124\pi\)
\(18\) 0 0
\(19\) −0.782948 −0.179621 −0.0898103 0.995959i \(-0.528626\pi\)
−0.0898103 + 0.995959i \(0.528626\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.44101 −0.300472 −0.150236 0.988650i \(-0.548003\pi\)
−0.150236 + 0.988650i \(0.548003\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.14505 0.398326 0.199163 0.979966i \(-0.436178\pi\)
0.199163 + 0.979966i \(0.436178\pi\)
\(30\) 0 0
\(31\) 6.59164i 1.18389i 0.805977 + 0.591946i \(0.201640\pi\)
−0.805977 + 0.591946i \(0.798360\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.920206i 0.155543i
\(36\) 0 0
\(37\) 2.33837i 0.384426i 0.981353 + 0.192213i \(0.0615665\pi\)
−0.981353 + 0.192213i \(0.938433\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.36833i 1.15074i 0.817893 + 0.575370i \(0.195142\pi\)
−0.817893 + 0.575370i \(0.804858\pi\)
\(42\) 0 0
\(43\) 7.06978 1.07813 0.539066 0.842264i \(-0.318777\pi\)
0.539066 + 0.842264i \(0.318777\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.294304 −0.0429287 −0.0214643 0.999770i \(-0.506833\pi\)
−0.0214643 + 0.999770i \(0.506833\pi\)
\(48\) 0 0
\(49\) 6.15322 0.879031
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.5190 1.44489 0.722445 0.691428i \(-0.243018\pi\)
0.722445 + 0.691428i \(0.243018\pi\)
\(54\) 0 0
\(55\) 0.482221i 0.0650227i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 10.8042i − 1.40659i −0.710899 0.703295i \(-0.751712\pi\)
0.710899 0.703295i \(-0.248288\pi\)
\(60\) 0 0
\(61\) − 8.65852i − 1.10861i −0.832313 0.554305i \(-0.812984\pi\)
0.832313 0.554305i \(-0.187016\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 2.01753i − 0.250243i
\(66\) 0 0
\(67\) 11.2157 1.37022 0.685110 0.728439i \(-0.259754\pi\)
0.685110 + 0.728439i \(0.259754\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.57514 −0.661647 −0.330824 0.943693i \(-0.607327\pi\)
−0.330824 + 0.943693i \(0.607327\pi\)
\(72\) 0 0
\(73\) 1.01962 0.119337 0.0596686 0.998218i \(-0.480996\pi\)
0.0596686 + 0.998218i \(0.480996\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.443743 −0.0505692
\(78\) 0 0
\(79\) 1.86662i 0.210012i 0.994472 + 0.105006i \(0.0334861\pi\)
−0.994472 + 0.105006i \(0.966514\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 1.75905i − 0.193081i −0.995329 0.0965404i \(-0.969222\pi\)
0.995329 0.0965404i \(-0.0307777\pi\)
\(84\) 0 0
\(85\) − 0.701532i − 0.0760918i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 11.9152i 1.26301i 0.775373 + 0.631503i \(0.217562\pi\)
−0.775373 + 0.631503i \(0.782438\pi\)
\(90\) 0 0
\(91\) 1.85654 0.194618
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.782948 −0.0803287
\(96\) 0 0
\(97\) 3.93818 0.399862 0.199931 0.979810i \(-0.435928\pi\)
0.199931 + 0.979810i \(0.435928\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.11015 −0.806990 −0.403495 0.914982i \(-0.632205\pi\)
−0.403495 + 0.914982i \(0.632205\pi\)
\(102\) 0 0
\(103\) 14.0930i 1.38863i 0.719672 + 0.694314i \(0.244292\pi\)
−0.719672 + 0.694314i \(0.755708\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 2.23739i − 0.216297i −0.994135 0.108149i \(-0.965508\pi\)
0.994135 0.108149i \(-0.0344922\pi\)
\(108\) 0 0
\(109\) 14.7481i 1.41261i 0.707907 + 0.706306i \(0.249640\pi\)
−0.707907 + 0.706306i \(0.750360\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 17.3371i 1.63094i 0.578802 + 0.815468i \(0.303520\pi\)
−0.578802 + 0.815468i \(0.696480\pi\)
\(114\) 0 0
\(115\) −1.44101 −0.134375
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.645554 0.0591778
\(120\) 0 0
\(121\) 10.7675 0.978860
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) − 3.45636i − 0.306702i −0.988172 0.153351i \(-0.950993\pi\)
0.988172 0.153351i \(-0.0490066\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 17.4536i − 1.52493i −0.647032 0.762463i \(-0.723990\pi\)
0.647032 0.762463i \(-0.276010\pi\)
\(132\) 0 0
\(133\) − 0.720473i − 0.0624730i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 9.15998i − 0.782590i −0.920265 0.391295i \(-0.872027\pi\)
0.920265 0.391295i \(-0.127973\pi\)
\(138\) 0 0
\(139\) 8.97927 0.761611 0.380806 0.924655i \(-0.375647\pi\)
0.380806 + 0.924655i \(0.375647\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.972894 0.0813575
\(144\) 0 0
\(145\) 2.14505 0.178137
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.27614 0.432238 0.216119 0.976367i \(-0.430660\pi\)
0.216119 + 0.976367i \(0.430660\pi\)
\(150\) 0 0
\(151\) 16.8834i 1.37395i 0.726681 + 0.686975i \(0.241062\pi\)
−0.726681 + 0.686975i \(0.758938\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.59164i 0.529453i
\(156\) 0 0
\(157\) 14.2642i 1.13841i 0.822196 + 0.569204i \(0.192749\pi\)
−0.822196 + 0.569204i \(0.807251\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 1.32603i − 0.104506i
\(162\) 0 0
\(163\) 2.68674 0.210442 0.105221 0.994449i \(-0.466445\pi\)
0.105221 + 0.994449i \(0.466445\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.28504 −0.563733 −0.281867 0.959454i \(-0.590954\pi\)
−0.281867 + 0.959454i \(0.590954\pi\)
\(168\) 0 0
\(169\) 8.92959 0.686891
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.06567 −0.461164 −0.230582 0.973053i \(-0.574063\pi\)
−0.230582 + 0.973053i \(0.574063\pi\)
\(174\) 0 0
\(175\) 0.920206i 0.0695611i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 18.1969i − 1.36010i −0.733165 0.680050i \(-0.761958\pi\)
0.733165 0.680050i \(-0.238042\pi\)
\(180\) 0 0
\(181\) 5.60765i 0.416813i 0.978042 + 0.208407i \(0.0668278\pi\)
−0.978042 + 0.208407i \(0.933172\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.33837i 0.171921i
\(186\) 0 0
\(187\) 0.338293 0.0247385
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.21210 −0.594206 −0.297103 0.954845i \(-0.596021\pi\)
−0.297103 + 0.954845i \(0.596021\pi\)
\(192\) 0 0
\(193\) 14.2696 1.02715 0.513573 0.858046i \(-0.328322\pi\)
0.513573 + 0.858046i \(0.328322\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.98477 0.283903 0.141952 0.989874i \(-0.454662\pi\)
0.141952 + 0.989874i \(0.454662\pi\)
\(198\) 0 0
\(199\) − 27.7090i − 1.96424i −0.188264 0.982118i \(-0.560286\pi\)
0.188264 0.982118i \(-0.439714\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.97389i 0.138540i
\(204\) 0 0
\(205\) 7.36833i 0.514626i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 0.377554i − 0.0261160i
\(210\) 0 0
\(211\) 17.5428 1.20769 0.603847 0.797100i \(-0.293634\pi\)
0.603847 + 0.797100i \(0.293634\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.06978 0.482155
\(216\) 0 0
\(217\) −6.06567 −0.411764
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.41536 −0.0952073
\(222\) 0 0
\(223\) 0.406159i 0.0271984i 0.999908 + 0.0135992i \(0.00432890\pi\)
−0.999908 + 0.0135992i \(0.995671\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.6015i 1.16825i 0.811663 + 0.584126i \(0.198563\pi\)
−0.811663 + 0.584126i \(0.801437\pi\)
\(228\) 0 0
\(229\) 25.2194i 1.66655i 0.552860 + 0.833274i \(0.313536\pi\)
−0.552860 + 0.833274i \(0.686464\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.9599i 0.849034i 0.905420 + 0.424517i \(0.139556\pi\)
−0.905420 + 0.424517i \(0.860444\pi\)
\(234\) 0 0
\(235\) −0.294304 −0.0191983
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −12.1176 −0.783821 −0.391911 0.920003i \(-0.628186\pi\)
−0.391911 + 0.920003i \(0.628186\pi\)
\(240\) 0 0
\(241\) 6.52697 0.420439 0.210220 0.977654i \(-0.432582\pi\)
0.210220 + 0.977654i \(0.432582\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.15322 0.393115
\(246\) 0 0
\(247\) 1.57962i 0.100509i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 8.66260i 0.546779i 0.961903 + 0.273389i \(0.0881447\pi\)
−0.961903 + 0.273389i \(0.911855\pi\)
\(252\) 0 0
\(253\) − 0.694887i − 0.0436872i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 22.7615i − 1.41982i −0.704291 0.709912i \(-0.748735\pi\)
0.704291 0.709912i \(-0.251265\pi\)
\(258\) 0 0
\(259\) −2.15179 −0.133706
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 20.7096 1.27701 0.638506 0.769617i \(-0.279553\pi\)
0.638506 + 0.769617i \(0.279553\pi\)
\(264\) 0 0
\(265\) 10.5190 0.646175
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −13.2212 −0.806112 −0.403056 0.915175i \(-0.632052\pi\)
−0.403056 + 0.915175i \(0.632052\pi\)
\(270\) 0 0
\(271\) − 4.05018i − 0.246031i −0.992405 0.123016i \(-0.960743\pi\)
0.992405 0.123016i \(-0.0392565\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.482221i 0.0290790i
\(276\) 0 0
\(277\) 4.33623i 0.260539i 0.991479 + 0.130269i \(0.0415842\pi\)
−0.991479 + 0.130269i \(0.958416\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 24.2605i − 1.44726i −0.690188 0.723630i \(-0.742472\pi\)
0.690188 0.723630i \(-0.257528\pi\)
\(282\) 0 0
\(283\) 27.0761 1.60951 0.804754 0.593609i \(-0.202297\pi\)
0.804754 + 0.593609i \(0.202297\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.78038 −0.400233
\(288\) 0 0
\(289\) 16.5079 0.971050
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 20.2078 1.18055 0.590275 0.807202i \(-0.299019\pi\)
0.590275 + 0.807202i \(0.299019\pi\)
\(294\) 0 0
\(295\) − 10.8042i − 0.629046i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.90728i 0.168132i
\(300\) 0 0
\(301\) 6.50566i 0.374980i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 8.65852i − 0.495786i
\(306\) 0 0
\(307\) 9.07799 0.518108 0.259054 0.965863i \(-0.416589\pi\)
0.259054 + 0.965863i \(0.416589\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −15.9031 −0.901782 −0.450891 0.892579i \(-0.648894\pi\)
−0.450891 + 0.892579i \(0.648894\pi\)
\(312\) 0 0
\(313\) −22.2979 −1.26035 −0.630176 0.776452i \(-0.717017\pi\)
−0.630176 + 0.776452i \(0.717017\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −24.9636 −1.40210 −0.701048 0.713114i \(-0.747284\pi\)
−0.701048 + 0.713114i \(0.747284\pi\)
\(318\) 0 0
\(319\) 1.03439i 0.0579146i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.549262i 0.0305618i
\(324\) 0 0
\(325\) − 2.01753i − 0.111912i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 0.270821i − 0.0149308i
\(330\) 0 0
\(331\) 1.81036 0.0995065 0.0497532 0.998762i \(-0.484157\pi\)
0.0497532 + 0.998762i \(0.484157\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 11.2157 0.612781
\(336\) 0 0
\(337\) 27.1410 1.47847 0.739233 0.673449i \(-0.235188\pi\)
0.739233 + 0.673449i \(0.235188\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3.17863 −0.172132
\(342\) 0 0
\(343\) 12.1037i 0.653537i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 29.1993i 1.56750i 0.621075 + 0.783751i \(0.286696\pi\)
−0.621075 + 0.783751i \(0.713304\pi\)
\(348\) 0 0
\(349\) 4.81219i 0.257591i 0.991671 + 0.128795i \(0.0411110\pi\)
−0.991671 + 0.128795i \(0.958889\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 2.68613i − 0.142968i −0.997442 0.0714841i \(-0.977226\pi\)
0.997442 0.0714841i \(-0.0227735\pi\)
\(354\) 0 0
\(355\) −5.57514 −0.295898
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.20997 −0.0638600 −0.0319300 0.999490i \(-0.510165\pi\)
−0.0319300 + 0.999490i \(0.510165\pi\)
\(360\) 0 0
\(361\) −18.3870 −0.967736
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.01962 0.0533692
\(366\) 0 0
\(367\) 2.67794i 0.139787i 0.997554 + 0.0698936i \(0.0222660\pi\)
−0.997554 + 0.0698936i \(0.977734\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9.67962i 0.502541i
\(372\) 0 0
\(373\) − 17.6359i − 0.913155i −0.889684 0.456577i \(-0.849075\pi\)
0.889684 0.456577i \(-0.150925\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 4.32769i − 0.222888i
\(378\) 0 0
\(379\) −26.4128 −1.35673 −0.678367 0.734723i \(-0.737312\pi\)
−0.678367 + 0.734723i \(0.737312\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 31.4773 1.60841 0.804207 0.594349i \(-0.202590\pi\)
0.804207 + 0.594349i \(0.202590\pi\)
\(384\) 0 0
\(385\) −0.443743 −0.0226152
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 12.9035 0.654233 0.327116 0.944984i \(-0.393923\pi\)
0.327116 + 0.944984i \(0.393923\pi\)
\(390\) 0 0
\(391\) 1.01092i 0.0511242i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.86662i 0.0939200i
\(396\) 0 0
\(397\) − 29.0747i − 1.45922i −0.683866 0.729608i \(-0.739703\pi\)
0.683866 0.729608i \(-0.260297\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.03847i 0.201672i 0.994903 + 0.100836i \(0.0321517\pi\)
−0.994903 + 0.100836i \(0.967848\pi\)
\(402\) 0 0
\(403\) 13.2988 0.662461
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.12761 −0.0558937
\(408\) 0 0
\(409\) 23.4511 1.15958 0.579792 0.814764i \(-0.303134\pi\)
0.579792 + 0.814764i \(0.303134\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9.94211 0.489219
\(414\) 0 0
\(415\) − 1.75905i − 0.0863484i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.7206i 0.523734i 0.965104 + 0.261867i \(0.0843381\pi\)
−0.965104 + 0.261867i \(0.915662\pi\)
\(420\) 0 0
\(421\) − 14.6900i − 0.715945i −0.933732 0.357972i \(-0.883468\pi\)
0.933732 0.357972i \(-0.116532\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 0.701532i − 0.0340293i
\(426\) 0 0
\(427\) 7.96763 0.385581
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11.1052 −0.534921 −0.267460 0.963569i \(-0.586184\pi\)
−0.267460 + 0.963569i \(0.586184\pi\)
\(432\) 0 0
\(433\) −13.1055 −0.629812 −0.314906 0.949123i \(-0.601973\pi\)
−0.314906 + 0.949123i \(0.601973\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.12824 0.0539709
\(438\) 0 0
\(439\) − 11.5099i − 0.549338i −0.961539 0.274669i \(-0.911432\pi\)
0.961539 0.274669i \(-0.0885682\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 14.5661i 0.692055i 0.938224 + 0.346028i \(0.112470\pi\)
−0.938224 + 0.346028i \(0.887530\pi\)
\(444\) 0 0
\(445\) 11.9152i 0.564834i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.5436i 0.591967i 0.955193 + 0.295984i \(0.0956474\pi\)
−0.955193 + 0.295984i \(0.904353\pi\)
\(450\) 0 0
\(451\) −3.55317 −0.167312
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.85654 0.0870360
\(456\) 0 0
\(457\) 5.52282 0.258347 0.129173 0.991622i \(-0.458768\pi\)
0.129173 + 0.991622i \(0.458768\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −37.7632 −1.75881 −0.879405 0.476075i \(-0.842059\pi\)
−0.879405 + 0.476075i \(0.842059\pi\)
\(462\) 0 0
\(463\) 34.1260i 1.58597i 0.609241 + 0.792985i \(0.291474\pi\)
−0.609241 + 0.792985i \(0.708526\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 12.9667i − 0.600026i −0.953935 0.300013i \(-0.903009\pi\)
0.953935 0.300013i \(-0.0969910\pi\)
\(468\) 0 0
\(469\) 10.3208i 0.476570i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.40920i 0.156755i
\(474\) 0 0
\(475\) −0.782948 −0.0359241
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 36.0652 1.64786 0.823931 0.566690i \(-0.191776\pi\)
0.823931 + 0.566690i \(0.191776\pi\)
\(480\) 0 0
\(481\) 4.71773 0.215110
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.93818 0.178824
\(486\) 0 0
\(487\) 40.1129i 1.81769i 0.417135 + 0.908845i \(0.363034\pi\)
−0.417135 + 0.908845i \(0.636966\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 38.8605i − 1.75375i −0.480720 0.876874i \(-0.659625\pi\)
0.480720 0.876874i \(-0.340375\pi\)
\(492\) 0 0
\(493\) − 1.50482i − 0.0677737i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 5.13028i − 0.230124i
\(498\) 0 0
\(499\) 10.1400 0.453928 0.226964 0.973903i \(-0.427120\pi\)
0.226964 + 0.973903i \(0.427120\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 29.8213 1.32967 0.664834 0.746991i \(-0.268502\pi\)
0.664834 + 0.746991i \(0.268502\pi\)
\(504\) 0 0
\(505\) −8.11015 −0.360897
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −31.1769 −1.38189 −0.690945 0.722907i \(-0.742805\pi\)
−0.690945 + 0.722907i \(0.742805\pi\)
\(510\) 0 0
\(511\) 0.938258i 0.0415061i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 14.0930i 0.621013i
\(516\) 0 0
\(517\) − 0.141920i − 0.00624162i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 30.7989i − 1.34932i −0.738127 0.674662i \(-0.764289\pi\)
0.738127 0.674662i \(-0.235711\pi\)
\(522\) 0 0
\(523\) −26.0367 −1.13851 −0.569253 0.822162i \(-0.692767\pi\)
−0.569253 + 0.822162i \(0.692767\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.62424 0.201435
\(528\) 0 0
\(529\) −20.9235 −0.909717
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 14.8658 0.643909
\(534\) 0 0
\(535\) − 2.23739i − 0.0967310i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.96721i 0.127807i
\(540\) 0 0
\(541\) − 17.2351i − 0.740994i −0.928834 0.370497i \(-0.879187\pi\)
0.928834 0.370497i \(-0.120813\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.7481i 0.631739i
\(546\) 0 0
\(547\) −33.1887 −1.41905 −0.709523 0.704682i \(-0.751090\pi\)
−0.709523 + 0.704682i \(0.751090\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.67946 −0.0715475
\(552\) 0 0
\(553\) −1.71768 −0.0730431
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −19.8024 −0.839053 −0.419526 0.907743i \(-0.637804\pi\)
−0.419526 + 0.907743i \(0.637804\pi\)
\(558\) 0 0
\(559\) − 14.2635i − 0.603280i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 23.6881i 0.998333i 0.866506 + 0.499166i \(0.166360\pi\)
−0.866506 + 0.499166i \(0.833640\pi\)
\(564\) 0 0
\(565\) 17.3371i 0.729377i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.15817i 0.0485531i 0.999705 + 0.0242765i \(0.00772822\pi\)
−0.999705 + 0.0242765i \(0.992272\pi\)
\(570\) 0 0
\(571\) 26.1823 1.09570 0.547848 0.836578i \(-0.315447\pi\)
0.547848 + 0.836578i \(0.315447\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.44101 −0.0600944
\(576\) 0 0
\(577\) −35.9581 −1.49696 −0.748479 0.663159i \(-0.769215\pi\)
−0.748479 + 0.663159i \(0.769215\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.61869 0.0671545
\(582\) 0 0
\(583\) 5.07247i 0.210080i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 7.68401i − 0.317153i −0.987347 0.158577i \(-0.949310\pi\)
0.987347 0.158577i \(-0.0506905\pi\)
\(588\) 0 0
\(589\) − 5.16091i − 0.212651i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.3657i 0.589930i 0.955508 + 0.294965i \(0.0953080\pi\)
−0.955508 + 0.294965i \(0.904692\pi\)
\(594\) 0 0
\(595\) 0.645554 0.0264651
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −17.9780 −0.734562 −0.367281 0.930110i \(-0.619711\pi\)
−0.367281 + 0.930110i \(0.619711\pi\)
\(600\) 0 0
\(601\) −21.2552 −0.867018 −0.433509 0.901149i \(-0.642725\pi\)
−0.433509 + 0.901149i \(0.642725\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.7675 0.437760
\(606\) 0 0
\(607\) − 0.428639i − 0.0173979i −0.999962 0.00869897i \(-0.997231\pi\)
0.999962 0.00869897i \(-0.00276900\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.593766i 0.0240212i
\(612\) 0 0
\(613\) − 40.6593i − 1.64221i −0.570774 0.821107i \(-0.693357\pi\)
0.570774 0.821107i \(-0.306643\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 16.8640i − 0.678920i −0.940621 0.339460i \(-0.889756\pi\)
0.940621 0.339460i \(-0.110244\pi\)
\(618\) 0 0
\(619\) −16.2055 −0.651353 −0.325677 0.945481i \(-0.605592\pi\)
−0.325677 + 0.945481i \(0.605592\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −10.9644 −0.439280
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.64044 0.0654088
\(630\) 0 0
\(631\) − 10.7163i − 0.426609i −0.976986 0.213304i \(-0.931577\pi\)
0.976986 0.213304i \(-0.0684226\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 3.45636i − 0.137161i
\(636\) 0 0
\(637\) − 12.4143i − 0.491872i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 25.7665i − 1.01772i −0.860851 0.508858i \(-0.830068\pi\)
0.860851 0.508858i \(-0.169932\pi\)
\(642\) 0 0
\(643\) 9.51281 0.375149 0.187574 0.982250i \(-0.439937\pi\)
0.187574 + 0.982250i \(0.439937\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.478556 −0.0188140 −0.00940699 0.999956i \(-0.502994\pi\)
−0.00940699 + 0.999956i \(0.502994\pi\)
\(648\) 0 0
\(649\) 5.21002 0.204511
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 35.1846 1.37688 0.688439 0.725294i \(-0.258296\pi\)
0.688439 + 0.725294i \(0.258296\pi\)
\(654\) 0 0
\(655\) − 17.4536i − 0.681967i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 11.6312i 0.453088i 0.974001 + 0.226544i \(0.0727427\pi\)
−0.974001 + 0.226544i \(0.927257\pi\)
\(660\) 0 0
\(661\) 25.6802i 0.998843i 0.866359 + 0.499421i \(0.166454\pi\)
−0.866359 + 0.499421i \(0.833546\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 0.720473i − 0.0279388i
\(666\) 0 0
\(667\) −3.09104 −0.119686
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.17533 0.161187
\(672\) 0 0
\(673\) −1.60255 −0.0617738 −0.0308869 0.999523i \(-0.509833\pi\)
−0.0308869 + 0.999523i \(0.509833\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.62519 0.293060 0.146530 0.989206i \(-0.453190\pi\)
0.146530 + 0.989206i \(0.453190\pi\)
\(678\) 0 0
\(679\) 3.62394i 0.139074i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 28.3435i 1.08453i 0.840207 + 0.542266i \(0.182434\pi\)
−0.840207 + 0.542266i \(0.817566\pi\)
\(684\) 0 0
\(685\) − 9.15998i − 0.349985i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 21.2223i − 0.808505i
\(690\) 0 0
\(691\) −19.3466 −0.735979 −0.367990 0.929830i \(-0.619954\pi\)
−0.367990 + 0.929830i \(0.619954\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.97927 0.340603
\(696\) 0 0
\(697\) 5.16912 0.195794
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −49.8239 −1.88182 −0.940912 0.338650i \(-0.890030\pi\)
−0.940912 + 0.338650i \(0.890030\pi\)
\(702\) 0 0
\(703\) − 1.83082i − 0.0690509i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 7.46301i − 0.280675i
\(708\) 0 0
\(709\) − 2.93005i − 0.110040i −0.998485 0.0550202i \(-0.982478\pi\)
0.998485 0.0550202i \(-0.0175223\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 9.49863i − 0.355726i
\(714\) 0 0
\(715\) 0.972894 0.0363842
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −42.4103 −1.58164 −0.790818 0.612051i \(-0.790345\pi\)
−0.790818 + 0.612051i \(0.790345\pi\)
\(720\) 0 0
\(721\) −12.9685 −0.482972
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.14505 0.0796651
\(726\) 0 0
\(727\) − 33.8955i − 1.25712i −0.777763 0.628558i \(-0.783645\pi\)
0.777763 0.628558i \(-0.216355\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 4.95967i − 0.183440i
\(732\) 0 0
\(733\) − 4.65523i − 0.171945i −0.996298 0.0859724i \(-0.972600\pi\)
0.996298 0.0859724i \(-0.0273997\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.40847i 0.199223i
\(738\) 0 0
\(739\) −42.8311 −1.57557 −0.787783 0.615953i \(-0.788771\pi\)
−0.787783 + 0.615953i \(0.788771\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 22.1930 0.814182 0.407091 0.913388i \(-0.366543\pi\)
0.407091 + 0.913388i \(0.366543\pi\)
\(744\) 0 0
\(745\) 5.27614 0.193303
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.05886 0.0752293
\(750\) 0 0
\(751\) − 0.0193272i 0 0.000705259i −1.00000 0.000352629i \(-0.999888\pi\)
1.00000 0.000352629i \(-0.000112245\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16.8834i 0.614450i
\(756\) 0 0
\(757\) − 47.2539i − 1.71747i −0.512417 0.858736i \(-0.671250\pi\)
0.512417 0.858736i \(-0.328750\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 40.7068i 1.47562i 0.675007 + 0.737811i \(0.264140\pi\)
−0.675007 + 0.737811i \(0.735860\pi\)
\(762\) 0 0
\(763\) −13.5713 −0.491314
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −21.7978 −0.787073
\(768\) 0 0
\(769\) 1.80744 0.0651780 0.0325890 0.999469i \(-0.489625\pi\)
0.0325890 + 0.999469i \(0.489625\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 39.1312 1.40745 0.703726 0.710471i \(-0.251518\pi\)
0.703726 + 0.710471i \(0.251518\pi\)
\(774\) 0 0
\(775\) 6.59164i 0.236779i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 5.76902i − 0.206696i
\(780\) 0 0
\(781\) − 2.68845i − 0.0962004i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 14.2642i 0.509112i
\(786\) 0 0
\(787\) −4.89070 −0.174335 −0.0871673 0.996194i \(-0.527781\pi\)
−0.0871673 + 0.996194i \(0.527781\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −15.9537 −0.567248
\(792\) 0 0
\(793\) −17.4688 −0.620335
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −31.9556 −1.13193 −0.565963 0.824430i \(-0.691496\pi\)
−0.565963 + 0.824430i \(0.691496\pi\)
\(798\) 0 0
\(799\) 0.206464i 0.00730416i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.491681i 0.0173511i
\(804\) 0 0
\(805\) − 1.32603i − 0.0467364i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 37.3798i − 1.31420i −0.753801 0.657102i \(-0.771782\pi\)
0.753801 0.657102i \(-0.228218\pi\)
\(810\) 0 0
\(811\) −17.2532 −0.605842 −0.302921 0.953016i \(-0.597962\pi\)
−0.302921 + 0.953016i \(0.597962\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.68674 0.0941125
\(816\) 0 0
\(817\) −5.53527 −0.193655
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.86159 0.204571 0.102285 0.994755i \(-0.467384\pi\)
0.102285 + 0.994755i \(0.467384\pi\)
\(822\) 0 0
\(823\) − 2.27164i − 0.0791843i −0.999216 0.0395921i \(-0.987394\pi\)
0.999216 0.0395921i \(-0.0126059\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 43.9531i − 1.52840i −0.644981 0.764199i \(-0.723135\pi\)
0.644981 0.764199i \(-0.276865\pi\)
\(828\) 0 0
\(829\) 19.7872i 0.687239i 0.939109 + 0.343620i \(0.111653\pi\)
−0.939109 + 0.343620i \(0.888347\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 4.31668i − 0.149564i
\(834\) 0 0
\(835\) −7.28504 −0.252109
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 17.6073 0.607872 0.303936 0.952692i \(-0.401699\pi\)
0.303936 + 0.952692i \(0.401699\pi\)
\(840\) 0 0
\(841\) −24.3988 −0.841337
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 8.92959 0.307187
\(846\) 0 0
\(847\) 9.90829i 0.340453i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 3.36963i − 0.115509i
\(852\) 0 0
\(853\) − 31.9062i − 1.09245i −0.837640 0.546223i \(-0.816065\pi\)
0.837640 0.546223i \(-0.183935\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 16.0007i 0.546574i 0.961933 + 0.273287i \(0.0881108\pi\)
−0.961933 + 0.273287i \(0.911889\pi\)
\(858\) 0 0
\(859\) −5.29765 −0.180754 −0.0903768 0.995908i \(-0.528807\pi\)
−0.0903768 + 0.995908i \(0.528807\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 30.1157 1.02515 0.512576 0.858642i \(-0.328691\pi\)
0.512576 + 0.858642i \(0.328691\pi\)
\(864\) 0 0
\(865\) −6.06567 −0.206239
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.900125 −0.0305347
\(870\) 0 0
\(871\) − 22.6280i − 0.766722i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.920206i 0.0311087i
\(876\) 0 0
\(877\) 27.0663i 0.913963i 0.889476 + 0.456981i \(0.151069\pi\)
−0.889476 + 0.456981i \(0.848931\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 26.2189i − 0.883338i −0.897178 0.441669i \(-0.854387\pi\)
0.897178 0.441669i \(-0.145613\pi\)
\(882\) 0 0
\(883\) −1.87380 −0.0630584 −0.0315292 0.999503i \(-0.510038\pi\)
−0.0315292 + 0.999503i \(0.510038\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −20.9667 −0.703992 −0.351996 0.936001i \(-0.614497\pi\)
−0.351996 + 0.936001i \(0.614497\pi\)
\(888\) 0 0
\(889\) 3.18056 0.106673
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.230425 0.00771087
\(894\) 0 0
\(895\) − 18.1969i − 0.608256i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 14.1394i 0.471575i
\(900\) 0 0
\(901\) − 7.37938i − 0.245843i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.60765i 0.186405i
\(906\) 0 0
\(907\) −7.98889 −0.265267 −0.132633 0.991165i \(-0.542343\pi\)
−0.132633 + 0.991165i \(0.542343\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −55.3654 −1.83434 −0.917169 0.398497i \(-0.869532\pi\)
−0.917169 + 0.398497i \(0.869532\pi\)
\(912\) 0 0
\(913\) 0.848251 0.0280730
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 16.0609 0.530377
\(918\) 0 0
\(919\) − 39.2576i − 1.29499i −0.762070 0.647495i \(-0.775817\pi\)
0.762070 0.647495i \(-0.224183\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 11.2480i 0.370232i
\(924\) 0 0
\(925\) 2.33837i 0.0768853i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 42.8360i 1.40540i 0.711485 + 0.702701i \(0.248023\pi\)
−0.711485 + 0.702701i \(0.751977\pi\)
\(930\) 0 0
\(931\) −4.81765 −0.157892
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.338293 0.0110634
\(936\) 0 0
\(937\) −30.5942 −0.999469 −0.499734 0.866179i \(-0.666569\pi\)
−0.499734 + 0.866179i \(0.666569\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −46.8808 −1.52827 −0.764136 0.645055i \(-0.776834\pi\)
−0.764136 + 0.645055i \(0.776834\pi\)
\(942\) 0 0
\(943\) − 10.6179i − 0.345765i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 53.5877i − 1.74137i −0.491844 0.870684i \(-0.663677\pi\)
0.491844 0.870684i \(-0.336323\pi\)
\(948\) 0 0
\(949\) − 2.05711i − 0.0667765i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 23.4773i 0.760503i 0.924883 + 0.380252i \(0.124163\pi\)
−0.924883 + 0.380252i \(0.875837\pi\)
\(954\) 0 0
\(955\) −8.21210 −0.265737
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 8.42907 0.272189
\(960\) 0 0
\(961\) −12.4497 −0.401603
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 14.2696 0.459354
\(966\) 0 0
\(967\) 0.755493i 0.0242950i 0.999926 + 0.0121475i \(0.00386677\pi\)
−0.999926 + 0.0121475i \(0.996133\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.229783i 0.00737407i 0.999993 + 0.00368704i \(0.00117362\pi\)
−0.999993 + 0.00368704i \(0.998826\pi\)
\(972\) 0 0
\(973\) 8.26278i 0.264893i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12.4218i 0.397410i 0.980059 + 0.198705i \(0.0636735\pi\)
−0.980059 + 0.198705i \(0.936326\pi\)
\(978\) 0 0
\(979\) −5.74575 −0.183635
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −23.7013 −0.755956 −0.377978 0.925815i \(-0.623380\pi\)
−0.377978 + 0.925815i \(0.623380\pi\)
\(984\) 0 0
\(985\) 3.98477 0.126965
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −10.1876 −0.323948
\(990\) 0 0
\(991\) 4.03872i 0.128294i 0.997940 + 0.0641471i \(0.0204327\pi\)
−0.997940 + 0.0641471i \(0.979567\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 27.7090i − 0.878433i
\(996\) 0 0
\(997\) 49.3776i 1.56380i 0.623401 + 0.781902i \(0.285750\pi\)
−0.623401 + 0.781902i \(0.714250\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.b.d.431.10 16
3.2 odd 2 4320.2.b.b.431.10 16
4.3 odd 2 1080.2.b.a.971.13 16
8.3 odd 2 4320.2.b.b.431.7 16
8.5 even 2 1080.2.b.d.971.3 yes 16
12.11 even 2 1080.2.b.d.971.4 yes 16
24.5 odd 2 1080.2.b.a.971.14 yes 16
24.11 even 2 inner 4320.2.b.d.431.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.b.a.971.13 16 4.3 odd 2
1080.2.b.a.971.14 yes 16 24.5 odd 2
1080.2.b.d.971.3 yes 16 8.5 even 2
1080.2.b.d.971.4 yes 16 12.11 even 2
4320.2.b.b.431.7 16 8.3 odd 2
4320.2.b.b.431.10 16 3.2 odd 2
4320.2.b.d.431.7 16 24.11 even 2 inner
4320.2.b.d.431.10 16 1.1 even 1 trivial