Properties

Label 1058.4.a.t.1.13
Level $1058$
Weight $4$
Character 1058.1
Self dual yes
Analytic conductor $62.424$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1058,4,Mod(1,1058)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1058.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1058, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1058 = 2 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1058.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-30,1,60,0,-2,-80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.4240207861\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2 x^{14} - 242 x^{13} + 347 x^{12} + 22092 x^{11} - 27616 x^{10} - 966502 x^{9} + \cdots - 23850793 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 23^{4} \)
Twist minimal: no (minimal twist has level 46)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(-7.94917\) of defining polynomial
Character \(\chi\) \(=\) 1058.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +6.26666 q^{3} +4.00000 q^{4} +10.4231 q^{5} -12.5333 q^{6} -11.8502 q^{7} -8.00000 q^{8} +12.2711 q^{9} -20.8461 q^{10} -35.3884 q^{11} +25.0667 q^{12} +3.85975 q^{13} +23.7004 q^{14} +65.3178 q^{15} +16.0000 q^{16} +30.9194 q^{17} -24.5421 q^{18} -134.172 q^{19} +41.6922 q^{20} -74.2611 q^{21} +70.7768 q^{22} -50.1333 q^{24} -16.3599 q^{25} -7.71950 q^{26} -92.3012 q^{27} -47.4007 q^{28} +62.7371 q^{29} -130.636 q^{30} +258.765 q^{31} -32.0000 q^{32} -221.767 q^{33} -61.8388 q^{34} -123.515 q^{35} +49.0843 q^{36} +327.190 q^{37} +268.344 q^{38} +24.1878 q^{39} -83.3845 q^{40} -69.1568 q^{41} +148.522 q^{42} -297.588 q^{43} -141.554 q^{44} +127.902 q^{45} -502.104 q^{47} +100.267 q^{48} -202.573 q^{49} +32.7198 q^{50} +193.761 q^{51} +15.4390 q^{52} -577.436 q^{53} +184.602 q^{54} -368.855 q^{55} +94.8014 q^{56} -840.811 q^{57} -125.474 q^{58} -447.008 q^{59} +261.271 q^{60} -354.178 q^{61} -517.530 q^{62} -145.414 q^{63} +64.0000 q^{64} +40.2304 q^{65} +443.534 q^{66} -1006.32 q^{67} +123.678 q^{68} +247.030 q^{70} +754.659 q^{71} -98.1686 q^{72} +707.721 q^{73} -654.381 q^{74} -102.522 q^{75} -536.688 q^{76} +419.359 q^{77} -48.3755 q^{78} -114.160 q^{79} +166.769 q^{80} -909.740 q^{81} +138.314 q^{82} -258.777 q^{83} -297.044 q^{84} +322.274 q^{85} +595.175 q^{86} +393.153 q^{87} +283.107 q^{88} -340.860 q^{89} -255.804 q^{90} -45.7388 q^{91} +1621.59 q^{93} +1004.21 q^{94} -1398.48 q^{95} -200.533 q^{96} +629.323 q^{97} +405.146 q^{98} -434.254 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 30 q^{2} + q^{3} + 60 q^{4} - 2 q^{6} - 80 q^{7} - 120 q^{8} + 96 q^{9} + 15 q^{11} + 4 q^{12} + 52 q^{13} + 160 q^{14} - 224 q^{15} + 240 q^{16} + 72 q^{17} - 192 q^{18} - 145 q^{19} - 57 q^{21}+ \cdots + 1569 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 6.26666 1.20602 0.603010 0.797734i \(-0.293968\pi\)
0.603010 + 0.797734i \(0.293968\pi\)
\(4\) 4.00000 0.500000
\(5\) 10.4231 0.932267 0.466133 0.884715i \(-0.345647\pi\)
0.466133 + 0.884715i \(0.345647\pi\)
\(6\) −12.5333 −0.852785
\(7\) −11.8502 −0.639850 −0.319925 0.947443i \(-0.603658\pi\)
−0.319925 + 0.947443i \(0.603658\pi\)
\(8\) −8.00000 −0.353553
\(9\) 12.2711 0.454484
\(10\) −20.8461 −0.659212
\(11\) −35.3884 −0.970000 −0.485000 0.874514i \(-0.661180\pi\)
−0.485000 + 0.874514i \(0.661180\pi\)
\(12\) 25.0667 0.603010
\(13\) 3.85975 0.0823463 0.0411732 0.999152i \(-0.486890\pi\)
0.0411732 + 0.999152i \(0.486890\pi\)
\(14\) 23.7004 0.452442
\(15\) 65.3178 1.12433
\(16\) 16.0000 0.250000
\(17\) 30.9194 0.441121 0.220560 0.975373i \(-0.429211\pi\)
0.220560 + 0.975373i \(0.429211\pi\)
\(18\) −24.5421 −0.321369
\(19\) −134.172 −1.62006 −0.810031 0.586387i \(-0.800550\pi\)
−0.810031 + 0.586387i \(0.800550\pi\)
\(20\) 41.6922 0.466133
\(21\) −74.2611 −0.771671
\(22\) 70.7768 0.685894
\(23\) 0 0
\(24\) −50.1333 −0.426392
\(25\) −16.3599 −0.130879
\(26\) −7.71950 −0.0582277
\(27\) −92.3012 −0.657903
\(28\) −47.4007 −0.319925
\(29\) 62.7371 0.401724 0.200862 0.979620i \(-0.435626\pi\)
0.200862 + 0.979620i \(0.435626\pi\)
\(30\) −130.636 −0.795023
\(31\) 258.765 1.49921 0.749606 0.661884i \(-0.230243\pi\)
0.749606 + 0.661884i \(0.230243\pi\)
\(32\) −32.0000 −0.176777
\(33\) −221.767 −1.16984
\(34\) −61.8388 −0.311919
\(35\) −123.515 −0.596510
\(36\) 49.0843 0.227242
\(37\) 327.190 1.45378 0.726889 0.686755i \(-0.240966\pi\)
0.726889 + 0.686755i \(0.240966\pi\)
\(38\) 268.344 1.14556
\(39\) 24.1878 0.0993113
\(40\) −83.3845 −0.329606
\(41\) −69.1568 −0.263426 −0.131713 0.991288i \(-0.542048\pi\)
−0.131713 + 0.991288i \(0.542048\pi\)
\(42\) 148.522 0.545654
\(43\) −297.588 −1.05539 −0.527694 0.849435i \(-0.676943\pi\)
−0.527694 + 0.849435i \(0.676943\pi\)
\(44\) −141.554 −0.485000
\(45\) 127.902 0.423700
\(46\) 0 0
\(47\) −502.104 −1.55828 −0.779142 0.626847i \(-0.784345\pi\)
−0.779142 + 0.626847i \(0.784345\pi\)
\(48\) 100.267 0.301505
\(49\) −202.573 −0.590593
\(50\) 32.7198 0.0925455
\(51\) 193.761 0.532000
\(52\) 15.4390 0.0411732
\(53\) −577.436 −1.49655 −0.748273 0.663391i \(-0.769116\pi\)
−0.748273 + 0.663391i \(0.769116\pi\)
\(54\) 184.602 0.465208
\(55\) −368.855 −0.904299
\(56\) 94.8014 0.226221
\(57\) −840.811 −1.95383
\(58\) −125.474 −0.284062
\(59\) −447.008 −0.986365 −0.493183 0.869926i \(-0.664167\pi\)
−0.493183 + 0.869926i \(0.664167\pi\)
\(60\) 261.271 0.562166
\(61\) −354.178 −0.743407 −0.371703 0.928352i \(-0.621226\pi\)
−0.371703 + 0.928352i \(0.621226\pi\)
\(62\) −517.530 −1.06010
\(63\) −145.414 −0.290802
\(64\) 64.0000 0.125000
\(65\) 40.2304 0.0767687
\(66\) 443.534 0.827201
\(67\) −1006.32 −1.83495 −0.917476 0.397792i \(-0.869777\pi\)
−0.917476 + 0.397792i \(0.869777\pi\)
\(68\) 123.678 0.220560
\(69\) 0 0
\(70\) 247.030 0.421796
\(71\) 754.659 1.26143 0.630715 0.776014i \(-0.282762\pi\)
0.630715 + 0.776014i \(0.282762\pi\)
\(72\) −98.1686 −0.160684
\(73\) 707.721 1.13469 0.567346 0.823480i \(-0.307970\pi\)
0.567346 + 0.823480i \(0.307970\pi\)
\(74\) −654.381 −1.02798
\(75\) −102.522 −0.157843
\(76\) −536.688 −0.810031
\(77\) 419.359 0.620654
\(78\) −48.3755 −0.0702237
\(79\) −114.160 −0.162583 −0.0812914 0.996690i \(-0.525904\pi\)
−0.0812914 + 0.996690i \(0.525904\pi\)
\(80\) 166.769 0.233067
\(81\) −909.740 −1.24793
\(82\) 138.314 0.186271
\(83\) −258.777 −0.342223 −0.171112 0.985252i \(-0.554736\pi\)
−0.171112 + 0.985252i \(0.554736\pi\)
\(84\) −297.044 −0.385836
\(85\) 322.274 0.411242
\(86\) 595.175 0.746272
\(87\) 393.153 0.484487
\(88\) 283.107 0.342947
\(89\) −340.860 −0.405967 −0.202983 0.979182i \(-0.565064\pi\)
−0.202983 + 0.979182i \(0.565064\pi\)
\(90\) −255.804 −0.299601
\(91\) −45.7388 −0.0526893
\(92\) 0 0
\(93\) 1621.59 1.80808
\(94\) 1004.21 1.10187
\(95\) −1398.48 −1.51033
\(96\) −200.533 −0.213196
\(97\) 629.323 0.658743 0.329372 0.944200i \(-0.393163\pi\)
0.329372 + 0.944200i \(0.393163\pi\)
\(98\) 405.146 0.417612
\(99\) −434.254 −0.440850
\(100\) −65.4396 −0.0654396
\(101\) 1129.01 1.11229 0.556143 0.831087i \(-0.312281\pi\)
0.556143 + 0.831087i \(0.312281\pi\)
\(102\) −387.523 −0.376181
\(103\) −1110.76 −1.06258 −0.531291 0.847189i \(-0.678293\pi\)
−0.531291 + 0.847189i \(0.678293\pi\)
\(104\) −30.8780 −0.0291138
\(105\) −774.028 −0.719403
\(106\) 1154.87 1.05822
\(107\) −440.151 −0.397673 −0.198836 0.980033i \(-0.563716\pi\)
−0.198836 + 0.980033i \(0.563716\pi\)
\(108\) −369.205 −0.328951
\(109\) 537.373 0.472211 0.236105 0.971727i \(-0.424129\pi\)
0.236105 + 0.971727i \(0.424129\pi\)
\(110\) 737.710 0.639436
\(111\) 2050.39 1.75328
\(112\) −189.603 −0.159962
\(113\) −858.783 −0.714934 −0.357467 0.933926i \(-0.616360\pi\)
−0.357467 + 0.933926i \(0.616360\pi\)
\(114\) 1681.62 1.38156
\(115\) 0 0
\(116\) 250.949 0.200862
\(117\) 47.3633 0.0374251
\(118\) 894.017 0.697465
\(119\) −366.400 −0.282251
\(120\) −522.542 −0.397511
\(121\) −78.6617 −0.0590997
\(122\) 708.356 0.525668
\(123\) −433.383 −0.317698
\(124\) 1035.06 0.749606
\(125\) −1473.40 −1.05428
\(126\) 290.829 0.205628
\(127\) 2604.41 1.81971 0.909857 0.414921i \(-0.136191\pi\)
0.909857 + 0.414921i \(0.136191\pi\)
\(128\) −128.000 −0.0883883
\(129\) −1864.88 −1.27282
\(130\) −80.4608 −0.0542837
\(131\) −1530.41 −1.02071 −0.510354 0.859965i \(-0.670485\pi\)
−0.510354 + 0.859965i \(0.670485\pi\)
\(132\) −887.069 −0.584920
\(133\) 1589.96 1.03660
\(134\) 2012.64 1.29751
\(135\) −962.061 −0.613341
\(136\) −247.355 −0.155960
\(137\) 436.585 0.272262 0.136131 0.990691i \(-0.456533\pi\)
0.136131 + 0.990691i \(0.456533\pi\)
\(138\) 0 0
\(139\) 842.549 0.514130 0.257065 0.966394i \(-0.417245\pi\)
0.257065 + 0.966394i \(0.417245\pi\)
\(140\) −494.060 −0.298255
\(141\) −3146.51 −1.87932
\(142\) −1509.32 −0.891966
\(143\) −136.590 −0.0798760
\(144\) 196.337 0.113621
\(145\) 653.913 0.374514
\(146\) −1415.44 −0.802348
\(147\) −1269.46 −0.712266
\(148\) 1308.76 0.726889
\(149\) 2082.06 1.14476 0.572380 0.819989i \(-0.306020\pi\)
0.572380 + 0.819989i \(0.306020\pi\)
\(150\) 205.044 0.111612
\(151\) −1383.49 −0.745606 −0.372803 0.927911i \(-0.621603\pi\)
−0.372803 + 0.927911i \(0.621603\pi\)
\(152\) 1073.38 0.572778
\(153\) 379.414 0.200482
\(154\) −838.718 −0.438869
\(155\) 2697.12 1.39767
\(156\) 96.7511 0.0496557
\(157\) 16.0299 0.00814857 0.00407429 0.999992i \(-0.498703\pi\)
0.00407429 + 0.999992i \(0.498703\pi\)
\(158\) 228.321 0.114963
\(159\) −3618.60 −1.80486
\(160\) −333.538 −0.164803
\(161\) 0 0
\(162\) 1819.48 0.882419
\(163\) −740.637 −0.355897 −0.177948 0.984040i \(-0.556946\pi\)
−0.177948 + 0.984040i \(0.556946\pi\)
\(164\) −276.627 −0.131713
\(165\) −2311.49 −1.09060
\(166\) 517.555 0.241988
\(167\) −185.971 −0.0861727 −0.0430864 0.999071i \(-0.513719\pi\)
−0.0430864 + 0.999071i \(0.513719\pi\)
\(168\) 594.089 0.272827
\(169\) −2182.10 −0.993219
\(170\) −644.549 −0.290792
\(171\) −1646.43 −0.736292
\(172\) −1190.35 −0.527694
\(173\) 4409.37 1.93779 0.968896 0.247468i \(-0.0795984\pi\)
0.968896 + 0.247468i \(0.0795984\pi\)
\(174\) −786.305 −0.342584
\(175\) 193.868 0.0837430
\(176\) −566.214 −0.242500
\(177\) −2801.25 −1.18958
\(178\) 681.719 0.287062
\(179\) −3063.62 −1.27925 −0.639625 0.768687i \(-0.720911\pi\)
−0.639625 + 0.768687i \(0.720911\pi\)
\(180\) 511.608 0.211850
\(181\) −3179.95 −1.30588 −0.652938 0.757411i \(-0.726464\pi\)
−0.652938 + 0.757411i \(0.726464\pi\)
\(182\) 91.4775 0.0372569
\(183\) −2219.51 −0.896563
\(184\) 0 0
\(185\) 3410.32 1.35531
\(186\) −3243.19 −1.27851
\(187\) −1094.19 −0.427887
\(188\) −2008.41 −0.779142
\(189\) 1093.79 0.420959
\(190\) 2796.96 1.06796
\(191\) −1111.39 −0.421031 −0.210516 0.977590i \(-0.567514\pi\)
−0.210516 + 0.977590i \(0.567514\pi\)
\(192\) 401.066 0.150752
\(193\) 3834.50 1.43012 0.715061 0.699062i \(-0.246399\pi\)
0.715061 + 0.699062i \(0.246399\pi\)
\(194\) −1258.65 −0.465802
\(195\) 252.110 0.0925846
\(196\) −810.293 −0.295296
\(197\) 3454.23 1.24926 0.624628 0.780922i \(-0.285251\pi\)
0.624628 + 0.780922i \(0.285251\pi\)
\(198\) 868.507 0.311728
\(199\) 960.188 0.342040 0.171020 0.985268i \(-0.445294\pi\)
0.171020 + 0.985268i \(0.445294\pi\)
\(200\) 130.879 0.0462728
\(201\) −6306.28 −2.21299
\(202\) −2258.02 −0.786504
\(203\) −743.446 −0.257043
\(204\) 775.045 0.266000
\(205\) −720.826 −0.245584
\(206\) 2221.51 0.751359
\(207\) 0 0
\(208\) 61.7560 0.0205866
\(209\) 4748.13 1.57146
\(210\) 1548.06 0.508695
\(211\) 3439.42 1.12218 0.561088 0.827756i \(-0.310383\pi\)
0.561088 + 0.827756i \(0.310383\pi\)
\(212\) −2309.74 −0.748273
\(213\) 4729.20 1.52131
\(214\) 880.301 0.281197
\(215\) −3101.77 −0.983903
\(216\) 738.410 0.232604
\(217\) −3066.41 −0.959271
\(218\) −1074.75 −0.333903
\(219\) 4435.05 1.36846
\(220\) −1475.42 −0.452149
\(221\) 119.341 0.0363247
\(222\) −4100.78 −1.23976
\(223\) −2070.40 −0.621723 −0.310862 0.950455i \(-0.600618\pi\)
−0.310862 + 0.950455i \(0.600618\pi\)
\(224\) 379.206 0.113110
\(225\) −200.753 −0.0594825
\(226\) 1717.57 0.505535
\(227\) −672.154 −0.196531 −0.0982653 0.995160i \(-0.531329\pi\)
−0.0982653 + 0.995160i \(0.531329\pi\)
\(228\) −3363.24 −0.976913
\(229\) −1899.18 −0.548042 −0.274021 0.961724i \(-0.588354\pi\)
−0.274021 + 0.961724i \(0.588354\pi\)
\(230\) 0 0
\(231\) 2627.98 0.748521
\(232\) −501.897 −0.142031
\(233\) −2375.86 −0.668017 −0.334009 0.942570i \(-0.608401\pi\)
−0.334009 + 0.942570i \(0.608401\pi\)
\(234\) −94.7266 −0.0264636
\(235\) −5233.45 −1.45274
\(236\) −1788.03 −0.493183
\(237\) −715.404 −0.196078
\(238\) 732.800 0.199581
\(239\) −3173.27 −0.858837 −0.429418 0.903106i \(-0.641281\pi\)
−0.429418 + 0.903106i \(0.641281\pi\)
\(240\) 1045.08 0.281083
\(241\) −6620.09 −1.76945 −0.884725 0.466113i \(-0.845654\pi\)
−0.884725 + 0.466113i \(0.845654\pi\)
\(242\) 157.323 0.0417898
\(243\) −3208.90 −0.847124
\(244\) −1416.71 −0.371703
\(245\) −2111.43 −0.550590
\(246\) 866.765 0.224646
\(247\) −517.871 −0.133406
\(248\) −2070.12 −0.530052
\(249\) −1621.67 −0.412728
\(250\) 2946.80 0.745489
\(251\) 3556.87 0.894454 0.447227 0.894421i \(-0.352412\pi\)
0.447227 + 0.894421i \(0.352412\pi\)
\(252\) −581.658 −0.145401
\(253\) 0 0
\(254\) −5208.82 −1.28673
\(255\) 2019.59 0.495966
\(256\) 256.000 0.0625000
\(257\) −4655.56 −1.12998 −0.564992 0.825097i \(-0.691121\pi\)
−0.564992 + 0.825097i \(0.691121\pi\)
\(258\) 3729.76 0.900019
\(259\) −3877.27 −0.930199
\(260\) 160.922 0.0383844
\(261\) 769.852 0.182577
\(262\) 3060.82 0.721749
\(263\) 1537.77 0.360544 0.180272 0.983617i \(-0.442302\pi\)
0.180272 + 0.983617i \(0.442302\pi\)
\(264\) 1774.14 0.413601
\(265\) −6018.65 −1.39518
\(266\) −3179.92 −0.732984
\(267\) −2136.05 −0.489604
\(268\) −4025.29 −0.917476
\(269\) 2820.10 0.639199 0.319600 0.947553i \(-0.396452\pi\)
0.319600 + 0.947553i \(0.396452\pi\)
\(270\) 1924.12 0.433697
\(271\) −2811.85 −0.630288 −0.315144 0.949044i \(-0.602053\pi\)
−0.315144 + 0.949044i \(0.602053\pi\)
\(272\) 494.710 0.110280
\(273\) −286.629 −0.0635443
\(274\) −873.169 −0.192519
\(275\) 578.950 0.126953
\(276\) 0 0
\(277\) 4489.62 0.973845 0.486923 0.873445i \(-0.338119\pi\)
0.486923 + 0.873445i \(0.338119\pi\)
\(278\) −1685.10 −0.363545
\(279\) 3175.33 0.681369
\(280\) 988.121 0.210898
\(281\) −6627.18 −1.40692 −0.703460 0.710735i \(-0.748362\pi\)
−0.703460 + 0.710735i \(0.748362\pi\)
\(282\) 6293.03 1.32888
\(283\) −8092.99 −1.69992 −0.849962 0.526844i \(-0.823375\pi\)
−0.849962 + 0.526844i \(0.823375\pi\)
\(284\) 3018.64 0.630715
\(285\) −8763.82 −1.82149
\(286\) 273.181 0.0564808
\(287\) 819.521 0.168553
\(288\) −392.674 −0.0803422
\(289\) −3956.99 −0.805413
\(290\) −1307.83 −0.264821
\(291\) 3943.76 0.794458
\(292\) 2830.88 0.567346
\(293\) −543.785 −0.108424 −0.0542120 0.998529i \(-0.517265\pi\)
−0.0542120 + 0.998529i \(0.517265\pi\)
\(294\) 2538.92 0.503648
\(295\) −4659.19 −0.919555
\(296\) −2617.52 −0.513988
\(297\) 3266.39 0.638166
\(298\) −4164.13 −0.809468
\(299\) 0 0
\(300\) −410.088 −0.0789214
\(301\) 3526.47 0.675289
\(302\) 2766.97 0.527223
\(303\) 7075.13 1.34144
\(304\) −2146.75 −0.405015
\(305\) −3691.61 −0.693053
\(306\) −758.828 −0.141762
\(307\) 5451.41 1.01345 0.506724 0.862108i \(-0.330856\pi\)
0.506724 + 0.862108i \(0.330856\pi\)
\(308\) 1677.44 0.310327
\(309\) −6960.73 −1.28150
\(310\) −5394.25 −0.988299
\(311\) −180.570 −0.0329234 −0.0164617 0.999864i \(-0.505240\pi\)
−0.0164617 + 0.999864i \(0.505240\pi\)
\(312\) −193.502 −0.0351119
\(313\) 3596.62 0.649498 0.324749 0.945800i \(-0.394720\pi\)
0.324749 + 0.945800i \(0.394720\pi\)
\(314\) −32.0598 −0.00576191
\(315\) −1515.66 −0.271105
\(316\) −456.641 −0.0812914
\(317\) 8723.83 1.54568 0.772838 0.634604i \(-0.218837\pi\)
0.772838 + 0.634604i \(0.218837\pi\)
\(318\) 7237.19 1.27623
\(319\) −2220.17 −0.389672
\(320\) 667.076 0.116533
\(321\) −2758.28 −0.479601
\(322\) 0 0
\(323\) −4148.52 −0.714643
\(324\) −3638.96 −0.623964
\(325\) −63.1451 −0.0107774
\(326\) 1481.27 0.251657
\(327\) 3367.53 0.569495
\(328\) 553.255 0.0931353
\(329\) 5950.02 0.997067
\(330\) 4622.98 0.771172
\(331\) −2232.10 −0.370657 −0.185328 0.982677i \(-0.559335\pi\)
−0.185328 + 0.982677i \(0.559335\pi\)
\(332\) −1035.11 −0.171112
\(333\) 4014.98 0.660719
\(334\) 371.941 0.0609333
\(335\) −10488.9 −1.71066
\(336\) −1188.18 −0.192918
\(337\) 8186.87 1.32334 0.661672 0.749793i \(-0.269847\pi\)
0.661672 + 0.749793i \(0.269847\pi\)
\(338\) 4364.20 0.702312
\(339\) −5381.71 −0.862225
\(340\) 1289.10 0.205621
\(341\) −9157.28 −1.45424
\(342\) 3292.87 0.520637
\(343\) 6465.14 1.01774
\(344\) 2380.70 0.373136
\(345\) 0 0
\(346\) −8818.74 −1.37023
\(347\) 12226.6 1.89152 0.945758 0.324872i \(-0.105321\pi\)
0.945758 + 0.324872i \(0.105321\pi\)
\(348\) 1572.61 0.242244
\(349\) 2436.18 0.373655 0.186827 0.982393i \(-0.440179\pi\)
0.186827 + 0.982393i \(0.440179\pi\)
\(350\) −387.735 −0.0592152
\(351\) −356.260 −0.0541759
\(352\) 1132.43 0.171473
\(353\) −11761.8 −1.77342 −0.886708 0.462330i \(-0.847014\pi\)
−0.886708 + 0.462330i \(0.847014\pi\)
\(354\) 5602.50 0.841157
\(355\) 7865.86 1.17599
\(356\) −1363.44 −0.202983
\(357\) −2296.11 −0.340400
\(358\) 6127.25 0.904567
\(359\) 10480.8 1.54082 0.770408 0.637551i \(-0.220052\pi\)
0.770408 + 0.637551i \(0.220052\pi\)
\(360\) −1023.22 −0.149801
\(361\) 11143.1 1.62460
\(362\) 6359.90 0.923394
\(363\) −492.947 −0.0712754
\(364\) −182.955 −0.0263446
\(365\) 7376.62 1.05783
\(366\) 4439.03 0.633966
\(367\) −3780.54 −0.537718 −0.268859 0.963180i \(-0.586647\pi\)
−0.268859 + 0.963180i \(0.586647\pi\)
\(368\) 0 0
\(369\) −848.629 −0.119723
\(370\) −6820.65 −0.958348
\(371\) 6842.72 0.957564
\(372\) 6486.38 0.904040
\(373\) 4263.73 0.591870 0.295935 0.955208i \(-0.404369\pi\)
0.295935 + 0.955208i \(0.404369\pi\)
\(374\) 2188.37 0.302562
\(375\) −9233.32 −1.27148
\(376\) 4016.83 0.550937
\(377\) 242.150 0.0330805
\(378\) −2187.57 −0.297663
\(379\) 6290.45 0.852556 0.426278 0.904592i \(-0.359825\pi\)
0.426278 + 0.904592i \(0.359825\pi\)
\(380\) −5593.93 −0.755165
\(381\) 16320.9 2.19461
\(382\) 2222.77 0.297714
\(383\) 5684.88 0.758443 0.379221 0.925306i \(-0.376192\pi\)
0.379221 + 0.925306i \(0.376192\pi\)
\(384\) −802.133 −0.106598
\(385\) 4371.00 0.578615
\(386\) −7669.01 −1.01125
\(387\) −3651.72 −0.479657
\(388\) 2517.29 0.329372
\(389\) 645.659 0.0841547 0.0420774 0.999114i \(-0.486602\pi\)
0.0420774 + 0.999114i \(0.486602\pi\)
\(390\) −504.221 −0.0654672
\(391\) 0 0
\(392\) 1620.59 0.208806
\(393\) −9590.57 −1.23099
\(394\) −6908.45 −0.883358
\(395\) −1189.90 −0.151570
\(396\) −1737.01 −0.220425
\(397\) −7859.82 −0.993635 −0.496817 0.867855i \(-0.665498\pi\)
−0.496817 + 0.867855i \(0.665498\pi\)
\(398\) −1920.38 −0.241859
\(399\) 9963.76 1.25016
\(400\) −261.758 −0.0327198
\(401\) 2713.86 0.337965 0.168982 0.985619i \(-0.445952\pi\)
0.168982 + 0.985619i \(0.445952\pi\)
\(402\) 12612.6 1.56482
\(403\) 998.769 0.123455
\(404\) 4516.04 0.556143
\(405\) −9482.27 −1.16340
\(406\) 1486.89 0.181757
\(407\) −11578.7 −1.41016
\(408\) −1550.09 −0.188091
\(409\) 5061.05 0.611865 0.305933 0.952053i \(-0.401032\pi\)
0.305933 + 0.952053i \(0.401032\pi\)
\(410\) 1441.65 0.173654
\(411\) 2735.93 0.328354
\(412\) −4443.02 −0.531291
\(413\) 5297.13 0.631125
\(414\) 0 0
\(415\) −2697.25 −0.319043
\(416\) −123.512 −0.0145569
\(417\) 5279.97 0.620051
\(418\) −9496.26 −1.11119
\(419\) 15258.9 1.77911 0.889554 0.456829i \(-0.151015\pi\)
0.889554 + 0.456829i \(0.151015\pi\)
\(420\) −3096.11 −0.359702
\(421\) 2185.44 0.252997 0.126499 0.991967i \(-0.459626\pi\)
0.126499 + 0.991967i \(0.459626\pi\)
\(422\) −6878.83 −0.793498
\(423\) −6161.35 −0.708215
\(424\) 4619.49 0.529109
\(425\) −505.838 −0.0577335
\(426\) −9458.39 −1.07573
\(427\) 4197.07 0.475669
\(428\) −1760.60 −0.198836
\(429\) −855.966 −0.0963320
\(430\) 6203.54 0.695724
\(431\) 41.9648 0.00468997 0.00234498 0.999997i \(-0.499254\pi\)
0.00234498 + 0.999997i \(0.499254\pi\)
\(432\) −1476.82 −0.164476
\(433\) −12351.8 −1.37087 −0.685436 0.728133i \(-0.740388\pi\)
−0.685436 + 0.728133i \(0.740388\pi\)
\(434\) 6132.83 0.678307
\(435\) 4097.85 0.451671
\(436\) 2149.49 0.236105
\(437\) 0 0
\(438\) −8870.10 −0.967648
\(439\) −10231.9 −1.11239 −0.556197 0.831050i \(-0.687740\pi\)
−0.556197 + 0.831050i \(0.687740\pi\)
\(440\) 2950.84 0.319718
\(441\) −2485.79 −0.268415
\(442\) −238.682 −0.0256854
\(443\) −15181.0 −1.62815 −0.814073 0.580762i \(-0.802755\pi\)
−0.814073 + 0.580762i \(0.802755\pi\)
\(444\) 8201.57 0.876642
\(445\) −3552.80 −0.378469
\(446\) 4140.80 0.439625
\(447\) 13047.6 1.38060
\(448\) −758.411 −0.0799812
\(449\) −3772.38 −0.396502 −0.198251 0.980151i \(-0.563526\pi\)
−0.198251 + 0.980151i \(0.563526\pi\)
\(450\) 401.507 0.0420605
\(451\) 2447.35 0.255524
\(452\) −3435.13 −0.357467
\(453\) −8669.84 −0.899216
\(454\) 1344.31 0.138968
\(455\) −476.738 −0.0491204
\(456\) 6726.49 0.690782
\(457\) −5578.15 −0.570974 −0.285487 0.958383i \(-0.592155\pi\)
−0.285487 + 0.958383i \(0.592155\pi\)
\(458\) 3798.36 0.387524
\(459\) −2853.90 −0.290215
\(460\) 0 0
\(461\) −5688.78 −0.574735 −0.287367 0.957820i \(-0.592780\pi\)
−0.287367 + 0.957820i \(0.592780\pi\)
\(462\) −5255.96 −0.529285
\(463\) −13452.6 −1.35031 −0.675156 0.737675i \(-0.735924\pi\)
−0.675156 + 0.737675i \(0.735924\pi\)
\(464\) 1003.79 0.100431
\(465\) 16902.0 1.68561
\(466\) 4751.73 0.472360
\(467\) 20024.0 1.98416 0.992078 0.125625i \(-0.0400937\pi\)
0.992078 + 0.125625i \(0.0400937\pi\)
\(468\) 189.453 0.0187126
\(469\) 11925.1 1.17409
\(470\) 10466.9 1.02724
\(471\) 100.454 0.00982734
\(472\) 3576.07 0.348733
\(473\) 10531.1 1.02373
\(474\) 1430.81 0.138648
\(475\) 2195.04 0.212032
\(476\) −1465.60 −0.141125
\(477\) −7085.76 −0.680156
\(478\) 6346.55 0.607289
\(479\) 2821.08 0.269099 0.134550 0.990907i \(-0.457041\pi\)
0.134550 + 0.990907i \(0.457041\pi\)
\(480\) −2090.17 −0.198756
\(481\) 1262.87 0.119713
\(482\) 13240.2 1.25119
\(483\) 0 0
\(484\) −314.647 −0.0295499
\(485\) 6559.47 0.614124
\(486\) 6417.80 0.599007
\(487\) 3992.88 0.371529 0.185765 0.982594i \(-0.440524\pi\)
0.185765 + 0.982594i \(0.440524\pi\)
\(488\) 2833.42 0.262834
\(489\) −4641.32 −0.429219
\(490\) 4222.86 0.389326
\(491\) 3727.57 0.342613 0.171307 0.985218i \(-0.445201\pi\)
0.171307 + 0.985218i \(0.445201\pi\)
\(492\) −1733.53 −0.158849
\(493\) 1939.79 0.177209
\(494\) 1035.74 0.0943324
\(495\) −4526.25 −0.410989
\(496\) 4140.24 0.374803
\(497\) −8942.85 −0.807126
\(498\) 3243.34 0.291843
\(499\) 13195.1 1.18375 0.591877 0.806028i \(-0.298387\pi\)
0.591877 + 0.806028i \(0.298387\pi\)
\(500\) −5893.61 −0.527140
\(501\) −1165.42 −0.103926
\(502\) −7113.75 −0.632474
\(503\) −6456.21 −0.572302 −0.286151 0.958185i \(-0.592376\pi\)
−0.286151 + 0.958185i \(0.592376\pi\)
\(504\) 1163.32 0.102814
\(505\) 11767.7 1.03695
\(506\) 0 0
\(507\) −13674.5 −1.19784
\(508\) 10417.6 0.909857
\(509\) −8218.62 −0.715685 −0.357843 0.933782i \(-0.616488\pi\)
−0.357843 + 0.933782i \(0.616488\pi\)
\(510\) −4039.17 −0.350701
\(511\) −8386.62 −0.726032
\(512\) −512.000 −0.0441942
\(513\) 12384.2 1.06584
\(514\) 9311.12 0.799019
\(515\) −11577.5 −0.990610
\(516\) −7459.52 −0.636409
\(517\) 17768.6 1.51154
\(518\) 7754.53 0.657750
\(519\) 27632.0 2.33702
\(520\) −321.843 −0.0271418
\(521\) 826.499 0.0695001 0.0347501 0.999396i \(-0.488936\pi\)
0.0347501 + 0.999396i \(0.488936\pi\)
\(522\) −1539.70 −0.129102
\(523\) 9741.52 0.814469 0.407234 0.913324i \(-0.366493\pi\)
0.407234 + 0.913324i \(0.366493\pi\)
\(524\) −6121.64 −0.510354
\(525\) 1214.90 0.100996
\(526\) −3075.55 −0.254943
\(527\) 8000.86 0.661334
\(528\) −3548.27 −0.292460
\(529\) 0 0
\(530\) 12037.3 0.986541
\(531\) −5485.27 −0.448287
\(532\) 6359.85 0.518298
\(533\) −266.928 −0.0216922
\(534\) 4272.10 0.346202
\(535\) −4587.71 −0.370737
\(536\) 8050.57 0.648753
\(537\) −19198.7 −1.54280
\(538\) −5640.20 −0.451982
\(539\) 7168.74 0.572875
\(540\) −3848.24 −0.306670
\(541\) −5957.17 −0.473417 −0.236709 0.971581i \(-0.576069\pi\)
−0.236709 + 0.971581i \(0.576069\pi\)
\(542\) 5623.71 0.445681
\(543\) −19927.7 −1.57491
\(544\) −989.420 −0.0779798
\(545\) 5601.06 0.440226
\(546\) 573.259 0.0449326
\(547\) −9191.61 −0.718473 −0.359237 0.933247i \(-0.616963\pi\)
−0.359237 + 0.933247i \(0.616963\pi\)
\(548\) 1746.34 0.136131
\(549\) −4346.14 −0.337867
\(550\) −1157.90 −0.0897692
\(551\) −8417.57 −0.650818
\(552\) 0 0
\(553\) 1352.82 0.104028
\(554\) −8979.24 −0.688613
\(555\) 21371.4 1.63453
\(556\) 3370.20 0.257065
\(557\) −7063.48 −0.537323 −0.268662 0.963235i \(-0.586581\pi\)
−0.268662 + 0.963235i \(0.586581\pi\)
\(558\) −6350.65 −0.481800
\(559\) −1148.61 −0.0869073
\(560\) −1976.24 −0.149128
\(561\) −6856.90 −0.516040
\(562\) 13254.4 0.994842
\(563\) 95.8736 0.00717689 0.00358845 0.999994i \(-0.498858\pi\)
0.00358845 + 0.999994i \(0.498858\pi\)
\(564\) −12586.1 −0.939661
\(565\) −8951.15 −0.666509
\(566\) 16186.0 1.20203
\(567\) 10780.6 0.798486
\(568\) −6037.27 −0.445983
\(569\) 22463.8 1.65506 0.827531 0.561419i \(-0.189745\pi\)
0.827531 + 0.561419i \(0.189745\pi\)
\(570\) 17527.6 1.28799
\(571\) −854.824 −0.0626502 −0.0313251 0.999509i \(-0.509973\pi\)
−0.0313251 + 0.999509i \(0.509973\pi\)
\(572\) −546.362 −0.0399380
\(573\) −6964.68 −0.507772
\(574\) −1639.04 −0.119185
\(575\) 0 0
\(576\) 785.349 0.0568105
\(577\) −9001.17 −0.649434 −0.324717 0.945811i \(-0.605269\pi\)
−0.324717 + 0.945811i \(0.605269\pi\)
\(578\) 7913.98 0.569513
\(579\) 24029.6 1.72476
\(580\) 2615.65 0.187257
\(581\) 3066.56 0.218971
\(582\) −7887.52 −0.561766
\(583\) 20434.5 1.45165
\(584\) −5661.77 −0.401174
\(585\) 493.670 0.0348902
\(586\) 1087.57 0.0766674
\(587\) −3169.23 −0.222842 −0.111421 0.993773i \(-0.535540\pi\)
−0.111421 + 0.993773i \(0.535540\pi\)
\(588\) −5077.83 −0.356133
\(589\) −34719.0 −2.42882
\(590\) 9318.39 0.650224
\(591\) 21646.5 1.50663
\(592\) 5235.05 0.363444
\(593\) 163.723 0.0113378 0.00566889 0.999984i \(-0.498196\pi\)
0.00566889 + 0.999984i \(0.498196\pi\)
\(594\) −6532.78 −0.451251
\(595\) −3819.01 −0.263133
\(596\) 8328.25 0.572380
\(597\) 6017.17 0.412507
\(598\) 0 0
\(599\) 12468.7 0.850510 0.425255 0.905074i \(-0.360184\pi\)
0.425255 + 0.905074i \(0.360184\pi\)
\(600\) 820.176 0.0558059
\(601\) −6177.91 −0.419305 −0.209653 0.977776i \(-0.567233\pi\)
−0.209653 + 0.977776i \(0.567233\pi\)
\(602\) −7052.93 −0.477502
\(603\) −12348.6 −0.833956
\(604\) −5533.94 −0.372803
\(605\) −819.895 −0.0550967
\(606\) −14150.3 −0.948540
\(607\) 14563.5 0.973831 0.486915 0.873449i \(-0.338122\pi\)
0.486915 + 0.873449i \(0.338122\pi\)
\(608\) 4293.50 0.286389
\(609\) −4658.93 −0.309999
\(610\) 7383.23 0.490063
\(611\) −1938.00 −0.128319
\(612\) 1517.66 0.100241
\(613\) −11870.4 −0.782119 −0.391060 0.920365i \(-0.627891\pi\)
−0.391060 + 0.920365i \(0.627891\pi\)
\(614\) −10902.8 −0.716616
\(615\) −4517.17 −0.296179
\(616\) −3354.87 −0.219434
\(617\) 3913.16 0.255329 0.127665 0.991817i \(-0.459252\pi\)
0.127665 + 0.991817i \(0.459252\pi\)
\(618\) 13921.5 0.906154
\(619\) 8978.28 0.582985 0.291492 0.956573i \(-0.405848\pi\)
0.291492 + 0.956573i \(0.405848\pi\)
\(620\) 10788.5 0.698833
\(621\) 0 0
\(622\) 361.140 0.0232804
\(623\) 4039.25 0.259758
\(624\) 387.004 0.0248278
\(625\) −13312.4 −0.851991
\(626\) −7193.23 −0.459264
\(627\) 29754.9 1.89521
\(628\) 64.1196 0.00407429
\(629\) 10116.5 0.641291
\(630\) 3031.33 0.191700
\(631\) 1550.27 0.0978057 0.0489028 0.998804i \(-0.484428\pi\)
0.0489028 + 0.998804i \(0.484428\pi\)
\(632\) 913.282 0.0574817
\(633\) 21553.7 1.35337
\(634\) −17447.7 −1.09296
\(635\) 27145.9 1.69646
\(636\) −14474.4 −0.902432
\(637\) −781.882 −0.0486331
\(638\) 4440.33 0.275540
\(639\) 9260.48 0.573300
\(640\) −1334.15 −0.0824015
\(641\) 28259.7 1.74133 0.870663 0.491881i \(-0.163690\pi\)
0.870663 + 0.491881i \(0.163690\pi\)
\(642\) 5516.55 0.339129
\(643\) −17966.4 −1.10191 −0.550953 0.834537i \(-0.685735\pi\)
−0.550953 + 0.834537i \(0.685735\pi\)
\(644\) 0 0
\(645\) −19437.8 −1.18661
\(646\) 8297.03 0.505329
\(647\) 10168.8 0.617894 0.308947 0.951079i \(-0.400023\pi\)
0.308947 + 0.951079i \(0.400023\pi\)
\(648\) 7277.92 0.441209
\(649\) 15818.9 0.956774
\(650\) 126.290 0.00762079
\(651\) −19216.2 −1.15690
\(652\) −2962.55 −0.177948
\(653\) 15077.8 0.903580 0.451790 0.892124i \(-0.350786\pi\)
0.451790 + 0.892124i \(0.350786\pi\)
\(654\) −6735.07 −0.402694
\(655\) −15951.6 −0.951571
\(656\) −1106.51 −0.0658566
\(657\) 8684.50 0.515699
\(658\) −11900.0 −0.705033
\(659\) 9881.47 0.584108 0.292054 0.956402i \(-0.405661\pi\)
0.292054 + 0.956402i \(0.405661\pi\)
\(660\) −9245.97 −0.545301
\(661\) −19796.5 −1.16489 −0.582447 0.812869i \(-0.697905\pi\)
−0.582447 + 0.812869i \(0.697905\pi\)
\(662\) 4464.20 0.262094
\(663\) 747.871 0.0438083
\(664\) 2070.22 0.120994
\(665\) 16572.3 0.966383
\(666\) −8029.96 −0.467199
\(667\) 0 0
\(668\) −743.883 −0.0430864
\(669\) −12974.5 −0.749810
\(670\) 20977.9 1.20962
\(671\) 12533.8 0.721105
\(672\) 2376.35 0.136414
\(673\) −10472.6 −0.599833 −0.299917 0.953965i \(-0.596959\pi\)
−0.299917 + 0.953965i \(0.596959\pi\)
\(674\) −16373.7 −0.935746
\(675\) 1510.04 0.0861058
\(676\) −8728.41 −0.496610
\(677\) −13712.8 −0.778471 −0.389235 0.921138i \(-0.627261\pi\)
−0.389235 + 0.921138i \(0.627261\pi\)
\(678\) 10763.4 0.609685
\(679\) −7457.59 −0.421497
\(680\) −2578.20 −0.145396
\(681\) −4212.16 −0.237020
\(682\) 18314.6 1.02830
\(683\) 11812.1 0.661753 0.330876 0.943674i \(-0.392656\pi\)
0.330876 + 0.943674i \(0.392656\pi\)
\(684\) −6585.74 −0.368146
\(685\) 4550.55 0.253821
\(686\) −12930.3 −0.719651
\(687\) −11901.5 −0.660949
\(688\) −4761.40 −0.263847
\(689\) −2228.76 −0.123235
\(690\) 0 0
\(691\) −32460.7 −1.78707 −0.893533 0.448998i \(-0.851781\pi\)
−0.893533 + 0.448998i \(0.851781\pi\)
\(692\) 17637.5 0.968896
\(693\) 5145.98 0.282078
\(694\) −24453.1 −1.33750
\(695\) 8781.94 0.479306
\(696\) −3145.22 −0.171292
\(697\) −2138.29 −0.116203
\(698\) −4872.35 −0.264214
\(699\) −14888.7 −0.805642
\(700\) 775.471 0.0418715
\(701\) 11274.6 0.607467 0.303734 0.952757i \(-0.401767\pi\)
0.303734 + 0.952757i \(0.401767\pi\)
\(702\) 712.520 0.0383081
\(703\) −43899.8 −2.35521
\(704\) −2264.86 −0.121250
\(705\) −32796.3 −1.75203
\(706\) 23523.5 1.25399
\(707\) −13379.0 −0.711695
\(708\) −11205.0 −0.594788
\(709\) 15986.6 0.846814 0.423407 0.905940i \(-0.360834\pi\)
0.423407 + 0.905940i \(0.360834\pi\)
\(710\) −15731.7 −0.831550
\(711\) −1400.87 −0.0738913
\(712\) 2726.88 0.143531
\(713\) 0 0
\(714\) 4592.21 0.240699
\(715\) −1423.69 −0.0744657
\(716\) −12254.5 −0.639625
\(717\) −19885.8 −1.03577
\(718\) −20961.5 −1.08952
\(719\) 33562.3 1.74084 0.870420 0.492310i \(-0.163848\pi\)
0.870420 + 0.492310i \(0.163848\pi\)
\(720\) 2046.43 0.105925
\(721\) 13162.7 0.679893
\(722\) −22286.3 −1.14877
\(723\) −41485.9 −2.13399
\(724\) −12719.8 −0.652938
\(725\) −1026.37 −0.0525773
\(726\) 985.893 0.0503993
\(727\) 38677.7 1.97315 0.986573 0.163320i \(-0.0522203\pi\)
0.986573 + 0.163320i \(0.0522203\pi\)
\(728\) 365.910 0.0186285
\(729\) 4453.88 0.226280
\(730\) −14753.2 −0.748002
\(731\) −9201.22 −0.465553
\(732\) −8878.05 −0.448282
\(733\) 784.501 0.0395310 0.0197655 0.999805i \(-0.493708\pi\)
0.0197655 + 0.999805i \(0.493708\pi\)
\(734\) 7561.08 0.380224
\(735\) −13231.6 −0.664022
\(736\) 0 0
\(737\) 35612.1 1.77990
\(738\) 1697.26 0.0846571
\(739\) −38387.1 −1.91081 −0.955407 0.295292i \(-0.904583\pi\)
−0.955407 + 0.295292i \(0.904583\pi\)
\(740\) 13641.3 0.677654
\(741\) −3245.32 −0.160890
\(742\) −13685.4 −0.677100
\(743\) −13169.6 −0.650263 −0.325132 0.945669i \(-0.605409\pi\)
−0.325132 + 0.945669i \(0.605409\pi\)
\(744\) −12972.8 −0.639253
\(745\) 21701.5 1.06722
\(746\) −8527.46 −0.418515
\(747\) −3175.48 −0.155535
\(748\) −4376.75 −0.213944
\(749\) 5215.86 0.254451
\(750\) 18466.6 0.899075
\(751\) −6602.02 −0.320787 −0.160393 0.987053i \(-0.551276\pi\)
−0.160393 + 0.987053i \(0.551276\pi\)
\(752\) −8033.66 −0.389571
\(753\) 22289.7 1.07873
\(754\) −484.300 −0.0233914
\(755\) −14420.2 −0.695103
\(756\) 4375.14 0.210479
\(757\) −4781.72 −0.229583 −0.114792 0.993390i \(-0.536620\pi\)
−0.114792 + 0.993390i \(0.536620\pi\)
\(758\) −12580.9 −0.602848
\(759\) 0 0
\(760\) 11187.9 0.533982
\(761\) 6978.78 0.332432 0.166216 0.986089i \(-0.446845\pi\)
0.166216 + 0.986089i \(0.446845\pi\)
\(762\) −32641.9 −1.55183
\(763\) −6367.96 −0.302144
\(764\) −4445.54 −0.210516
\(765\) 3954.65 0.186903
\(766\) −11369.8 −0.536300
\(767\) −1725.34 −0.0812236
\(768\) 1604.27 0.0753762
\(769\) 17006.3 0.797480 0.398740 0.917064i \(-0.369448\pi\)
0.398740 + 0.917064i \(0.369448\pi\)
\(770\) −8742.00 −0.409143
\(771\) −29174.8 −1.36278
\(772\) 15338.0 0.715061
\(773\) −2000.60 −0.0930872 −0.0465436 0.998916i \(-0.514821\pi\)
−0.0465436 + 0.998916i \(0.514821\pi\)
\(774\) 7303.44 0.339169
\(775\) −4233.37 −0.196216
\(776\) −5034.59 −0.232901
\(777\) −24297.5 −1.12184
\(778\) −1291.32 −0.0595064
\(779\) 9278.91 0.426767
\(780\) 1008.44 0.0462923
\(781\) −26706.2 −1.22359
\(782\) 0 0
\(783\) −5790.72 −0.264295
\(784\) −3241.17 −0.147648
\(785\) 167.081 0.00759664
\(786\) 19181.1 0.870444
\(787\) −40270.2 −1.82399 −0.911994 0.410203i \(-0.865458\pi\)
−0.911994 + 0.410203i \(0.865458\pi\)
\(788\) 13816.9 0.624628
\(789\) 9636.70 0.434824
\(790\) 2379.80 0.107176
\(791\) 10176.7 0.457450
\(792\) 3474.03 0.155864
\(793\) −1367.04 −0.0612168
\(794\) 15719.6 0.702606
\(795\) −37716.8 −1.68261
\(796\) 3840.75 0.171020
\(797\) 23173.2 1.02991 0.514954 0.857218i \(-0.327809\pi\)
0.514954 + 0.857218i \(0.327809\pi\)
\(798\) −19927.5 −0.883993
\(799\) −15524.7 −0.687391
\(800\) 523.517 0.0231364
\(801\) −4182.71 −0.184505
\(802\) −5427.73 −0.238977
\(803\) −25045.1 −1.10065
\(804\) −25225.1 −1.10649
\(805\) 0 0
\(806\) −1997.54 −0.0872957
\(807\) 17672.6 0.770887
\(808\) −9032.09 −0.393252
\(809\) 21370.1 0.928719 0.464359 0.885647i \(-0.346285\pi\)
0.464359 + 0.885647i \(0.346285\pi\)
\(810\) 18964.5 0.822649
\(811\) −4718.19 −0.204289 −0.102144 0.994770i \(-0.532570\pi\)
−0.102144 + 0.994770i \(0.532570\pi\)
\(812\) −2973.79 −0.128521
\(813\) −17620.9 −0.760139
\(814\) 23157.5 0.997137
\(815\) −7719.70 −0.331791
\(816\) 3100.18 0.133000
\(817\) 39927.9 1.70979
\(818\) −10122.1 −0.432654
\(819\) −561.264 −0.0239464
\(820\) −2883.30 −0.122792
\(821\) −36800.8 −1.56438 −0.782190 0.623040i \(-0.785897\pi\)
−0.782190 + 0.623040i \(0.785897\pi\)
\(822\) −5471.86 −0.232181
\(823\) −19450.2 −0.823804 −0.411902 0.911228i \(-0.635135\pi\)
−0.411902 + 0.911228i \(0.635135\pi\)
\(824\) 8886.05 0.375680
\(825\) 3628.09 0.153108
\(826\) −10594.3 −0.446273
\(827\) 22924.2 0.963909 0.481954 0.876196i \(-0.339927\pi\)
0.481954 + 0.876196i \(0.339927\pi\)
\(828\) 0 0
\(829\) −4044.07 −0.169429 −0.0847143 0.996405i \(-0.526998\pi\)
−0.0847143 + 0.996405i \(0.526998\pi\)
\(830\) 5394.50 0.225598
\(831\) 28134.9 1.17448
\(832\) 247.024 0.0102933
\(833\) −6263.44 −0.260523
\(834\) −10559.9 −0.438443
\(835\) −1938.38 −0.0803360
\(836\) 18992.5 0.785730
\(837\) −23884.3 −0.986337
\(838\) −30517.8 −1.25802
\(839\) −27760.8 −1.14232 −0.571161 0.820838i \(-0.693507\pi\)
−0.571161 + 0.820838i \(0.693507\pi\)
\(840\) 6192.22 0.254347
\(841\) −20453.1 −0.838618
\(842\) −4370.88 −0.178896
\(843\) −41530.3 −1.69677
\(844\) 13757.7 0.561088
\(845\) −22744.2 −0.925945
\(846\) 12322.7 0.500784
\(847\) 932.155 0.0378149
\(848\) −9238.97 −0.374136
\(849\) −50716.1 −2.05014
\(850\) 1011.68 0.0408237
\(851\) 0 0
\(852\) 18916.8 0.760655
\(853\) −38562.3 −1.54789 −0.773943 0.633255i \(-0.781718\pi\)
−0.773943 + 0.633255i \(0.781718\pi\)
\(854\) −8394.14 −0.336348
\(855\) −17160.9 −0.686421
\(856\) 3521.20 0.140598
\(857\) −21000.4 −0.837061 −0.418530 0.908203i \(-0.637455\pi\)
−0.418530 + 0.908203i \(0.637455\pi\)
\(858\) 1711.93 0.0681170
\(859\) 1863.30 0.0740106 0.0370053 0.999315i \(-0.488218\pi\)
0.0370053 + 0.999315i \(0.488218\pi\)
\(860\) −12407.1 −0.491951
\(861\) 5135.66 0.203279
\(862\) −83.9297 −0.00331631
\(863\) −4775.67 −0.188373 −0.0941864 0.995555i \(-0.530025\pi\)
−0.0941864 + 0.995555i \(0.530025\pi\)
\(864\) 2953.64 0.116302
\(865\) 45959.1 1.80654
\(866\) 24703.5 0.969353
\(867\) −24797.1 −0.971344
\(868\) −12265.7 −0.479635
\(869\) 4039.95 0.157705
\(870\) −8195.70 −0.319380
\(871\) −3884.15 −0.151102
\(872\) −4298.98 −0.166952
\(873\) 7722.47 0.299388
\(874\) 0 0
\(875\) 17460.1 0.674581
\(876\) 17740.2 0.684230
\(877\) 23055.7 0.887726 0.443863 0.896095i \(-0.353608\pi\)
0.443863 + 0.896095i \(0.353608\pi\)
\(878\) 20463.8 0.786582
\(879\) −3407.72 −0.130762
\(880\) −5901.68 −0.226075
\(881\) 25666.1 0.981514 0.490757 0.871297i \(-0.336720\pi\)
0.490757 + 0.871297i \(0.336720\pi\)
\(882\) 4971.58 0.189798
\(883\) 12417.0 0.473232 0.236616 0.971603i \(-0.423962\pi\)
0.236616 + 0.971603i \(0.423962\pi\)
\(884\) 477.364 0.0181623
\(885\) −29197.6 −1.10900
\(886\) 30361.9 1.15127
\(887\) 9011.52 0.341124 0.170562 0.985347i \(-0.445442\pi\)
0.170562 + 0.985347i \(0.445442\pi\)
\(888\) −16403.1 −0.619880
\(889\) −30862.7 −1.16434
\(890\) 7105.60 0.267618
\(891\) 32194.2 1.21049
\(892\) −8281.60 −0.310862
\(893\) 67368.3 2.52452
\(894\) −26095.2 −0.976234
\(895\) −31932.3 −1.19260
\(896\) 1516.82 0.0565552
\(897\) 0 0
\(898\) 7544.76 0.280370
\(899\) 16234.2 0.602270
\(900\) −803.014 −0.0297413
\(901\) −17854.0 −0.660157
\(902\) −4894.70 −0.180683
\(903\) 22099.2 0.814412
\(904\) 6870.27 0.252767
\(905\) −33144.8 −1.21743
\(906\) 17339.7 0.635841
\(907\) −7820.42 −0.286299 −0.143149 0.989701i \(-0.545723\pi\)
−0.143149 + 0.989701i \(0.545723\pi\)
\(908\) −2688.62 −0.0982653
\(909\) 13854.2 0.505516
\(910\) 953.475 0.0347334
\(911\) 11062.1 0.402311 0.201155 0.979559i \(-0.435530\pi\)
0.201155 + 0.979559i \(0.435530\pi\)
\(912\) −13453.0 −0.488457
\(913\) 9157.72 0.331956
\(914\) 11156.3 0.403739
\(915\) −23134.1 −0.835836
\(916\) −7596.73 −0.274021
\(917\) 18135.6 0.653099
\(918\) 5707.79 0.205213
\(919\) 33508.3 1.20276 0.601381 0.798962i \(-0.294617\pi\)
0.601381 + 0.798962i \(0.294617\pi\)
\(920\) 0 0
\(921\) 34162.2 1.22224
\(922\) 11377.6 0.406399
\(923\) 2912.80 0.103874
\(924\) 10511.9 0.374261
\(925\) −5352.80 −0.190269
\(926\) 26905.2 0.954815
\(927\) −13630.2 −0.482927
\(928\) −2007.59 −0.0710154
\(929\) 10274.2 0.362847 0.181424 0.983405i \(-0.441929\pi\)
0.181424 + 0.983405i \(0.441929\pi\)
\(930\) −33803.9 −1.19191
\(931\) 27179.7 0.956796
\(932\) −9503.46 −0.334009
\(933\) −1131.57 −0.0397063
\(934\) −40048.0 −1.40301
\(935\) −11404.8 −0.398905
\(936\) −378.906 −0.0132318
\(937\) 20260.1 0.706369 0.353184 0.935554i \(-0.385099\pi\)
0.353184 + 0.935554i \(0.385099\pi\)
\(938\) −23850.2 −0.830209
\(939\) 22538.8 0.783307
\(940\) −20933.8 −0.726368
\(941\) 23960.4 0.830059 0.415030 0.909808i \(-0.363771\pi\)
0.415030 + 0.909808i \(0.363771\pi\)
\(942\) −200.908 −0.00694898
\(943\) 0 0
\(944\) −7152.14 −0.246591
\(945\) 11400.6 0.392446
\(946\) −21062.3 −0.723884
\(947\) −39377.3 −1.35121 −0.675603 0.737266i \(-0.736116\pi\)
−0.675603 + 0.737266i \(0.736116\pi\)
\(948\) −2861.62 −0.0980390
\(949\) 2731.63 0.0934377
\(950\) −4390.08 −0.149929
\(951\) 54669.3 1.86412
\(952\) 2931.20 0.0997907
\(953\) 31617.1 1.07469 0.537345 0.843363i \(-0.319427\pi\)
0.537345 + 0.843363i \(0.319427\pi\)
\(954\) 14171.5 0.480943
\(955\) −11584.0 −0.392514
\(956\) −12693.1 −0.429418
\(957\) −13913.0 −0.469953
\(958\) −5642.17 −0.190282
\(959\) −5173.61 −0.174207
\(960\) 4180.34 0.140542
\(961\) 37168.4 1.24764
\(962\) −2525.75 −0.0846501
\(963\) −5401.12 −0.180736
\(964\) −26480.4 −0.884725
\(965\) 39967.3 1.33326
\(966\) 0 0
\(967\) 43574.2 1.44907 0.724535 0.689238i \(-0.242055\pi\)
0.724535 + 0.689238i \(0.242055\pi\)
\(968\) 629.294 0.0208949
\(969\) −25997.3 −0.861873
\(970\) −13118.9 −0.434252
\(971\) −4745.31 −0.156832 −0.0784161 0.996921i \(-0.524986\pi\)
−0.0784161 + 0.996921i \(0.524986\pi\)
\(972\) −12835.6 −0.423562
\(973\) −9984.36 −0.328966
\(974\) −7985.76 −0.262711
\(975\) −395.709 −0.0129978
\(976\) −5666.84 −0.185852
\(977\) −3555.42 −0.116426 −0.0582128 0.998304i \(-0.518540\pi\)
−0.0582128 + 0.998304i \(0.518540\pi\)
\(978\) 9282.65 0.303503
\(979\) 12062.5 0.393788
\(980\) −8445.73 −0.275295
\(981\) 6594.14 0.214612
\(982\) −7455.15 −0.242264
\(983\) −36878.1 −1.19657 −0.598285 0.801283i \(-0.704151\pi\)
−0.598285 + 0.801283i \(0.704151\pi\)
\(984\) 3467.06 0.112323
\(985\) 36003.6 1.16464
\(986\) −3879.59 −0.125305
\(987\) 37286.8 1.20248
\(988\) −2071.48 −0.0667031
\(989\) 0 0
\(990\) 9052.50 0.290613
\(991\) −41492.7 −1.33003 −0.665014 0.746831i \(-0.731574\pi\)
−0.665014 + 0.746831i \(0.731574\pi\)
\(992\) −8280.49 −0.265026
\(993\) −13987.8 −0.447019
\(994\) 17885.7 0.570724
\(995\) 10008.1 0.318872
\(996\) −6486.68 −0.206364
\(997\) −54523.1 −1.73196 −0.865980 0.500079i \(-0.833304\pi\)
−0.865980 + 0.500079i \(0.833304\pi\)
\(998\) −26390.2 −0.837041
\(999\) −30200.1 −0.956445
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1058.4.a.t.1.13 15
23.7 odd 22 46.4.c.b.3.3 30
23.10 odd 22 46.4.c.b.31.3 yes 30
23.22 odd 2 1058.4.a.u.1.13 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
46.4.c.b.3.3 30 23.7 odd 22
46.4.c.b.31.3 yes 30 23.10 odd 22
1058.4.a.t.1.13 15 1.1 even 1 trivial
1058.4.a.u.1.13 15 23.22 odd 2