Properties

Label 1053.2.e.j.352.1
Level $1053$
Weight $2$
Character 1053.352
Analytic conductor $8.408$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1053,2,Mod(352,1053)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1053, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1053.352"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1,0,-3,5,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.40824733284\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{13})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 351)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 352.1
Root \(-0.651388 - 1.12824i\) of defining polynomial
Character \(\chi\) \(=\) 1053.352
Dual form 1053.2.e.j.703.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.651388 - 1.12824i) q^{2} +(0.151388 - 0.262211i) q^{4} +(2.15139 - 3.72631i) q^{5} +(0.500000 + 0.866025i) q^{7} -3.00000 q^{8} -5.60555 q^{10} +(-0.651388 - 1.12824i) q^{11} +(-0.500000 + 0.866025i) q^{13} +(0.651388 - 1.12824i) q^{14} +(1.65139 + 2.86029i) q^{16} -4.30278 q^{17} -5.30278 q^{19} +(-0.651388 - 1.12824i) q^{20} +(-0.848612 + 1.46984i) q^{22} +(1.95416 - 3.38471i) q^{23} +(-6.75694 - 11.7034i) q^{25} +1.30278 q^{26} +0.302776 q^{28} +(0.197224 + 0.341603i) q^{29} +(-3.60555 + 6.24500i) q^{31} +(-0.848612 + 1.46984i) q^{32} +(2.80278 + 4.85455i) q^{34} +4.30278 q^{35} +4.21110 q^{37} +(3.45416 + 5.98279i) q^{38} +(-6.45416 + 11.1789i) q^{40} +(4.50000 - 7.79423i) q^{41} +(-0.348612 - 0.603814i) q^{43} -0.394449 q^{44} -5.09167 q^{46} +(-0.454163 - 0.786634i) q^{47} +(3.00000 - 5.19615i) q^{49} +(-8.80278 + 15.2469i) q^{50} +(0.151388 + 0.262211i) q^{52} +12.9083 q^{53} -5.60555 q^{55} +(-1.50000 - 2.59808i) q^{56} +(0.256939 - 0.445032i) q^{58} +(1.50000 - 2.59808i) q^{59} +(-1.19722 - 2.07365i) q^{61} +9.39445 q^{62} +8.81665 q^{64} +(2.15139 + 3.72631i) q^{65} +(6.75694 - 11.7034i) q^{67} +(-0.651388 + 1.12824i) q^{68} +(-2.80278 - 4.85455i) q^{70} -13.8167 q^{71} -10.9083 q^{73} +(-2.74306 - 4.75112i) q^{74} +(-0.802776 + 1.39045i) q^{76} +(0.651388 - 1.12824i) q^{77} +(6.95416 + 12.0450i) q^{79} +14.2111 q^{80} -11.7250 q^{82} +(-0.197224 - 0.341603i) q^{83} +(-9.25694 + 16.0335i) q^{85} +(-0.454163 + 0.786634i) q^{86} +(1.95416 + 3.38471i) q^{88} -8.60555 q^{89} -1.00000 q^{91} +(-0.591673 - 1.02481i) q^{92} +(-0.591673 + 1.02481i) q^{94} +(-11.4083 + 19.7598i) q^{95} +(7.21110 + 12.4900i) q^{97} -7.81665 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 3 q^{4} + 5 q^{5} + 2 q^{7} - 12 q^{8} - 8 q^{10} + q^{11} - 2 q^{13} - q^{14} + 3 q^{16} - 10 q^{17} - 14 q^{19} + q^{20} - 7 q^{22} - 3 q^{23} - 9 q^{25} - 2 q^{26} - 6 q^{28} + 8 q^{29}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1053\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(730\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.651388 1.12824i −0.460601 0.797784i 0.538390 0.842696i \(-0.319033\pi\)
−0.998991 + 0.0449118i \(0.985699\pi\)
\(3\) 0 0
\(4\) 0.151388 0.262211i 0.0756939 0.131106i
\(5\) 2.15139 3.72631i 0.962130 1.66646i 0.244994 0.969525i \(-0.421214\pi\)
0.717136 0.696933i \(-0.245453\pi\)
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i 0.944911 0.327327i \(-0.106148\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) −3.00000 −1.06066
\(9\) 0 0
\(10\) −5.60555 −1.77263
\(11\) −0.651388 1.12824i −0.196401 0.340176i 0.750958 0.660350i \(-0.229592\pi\)
−0.947359 + 0.320174i \(0.896259\pi\)
\(12\) 0 0
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) 0.651388 1.12824i 0.174091 0.301534i
\(15\) 0 0
\(16\) 1.65139 + 2.86029i 0.412847 + 0.715072i
\(17\) −4.30278 −1.04358 −0.521788 0.853075i \(-0.674735\pi\)
−0.521788 + 0.853075i \(0.674735\pi\)
\(18\) 0 0
\(19\) −5.30278 −1.21654 −0.608270 0.793730i \(-0.708136\pi\)
−0.608270 + 0.793730i \(0.708136\pi\)
\(20\) −0.651388 1.12824i −0.145655 0.252281i
\(21\) 0 0
\(22\) −0.848612 + 1.46984i −0.180925 + 0.313371i
\(23\) 1.95416 3.38471i 0.407471 0.705761i −0.587134 0.809489i \(-0.699744\pi\)
0.994606 + 0.103729i \(0.0330773\pi\)
\(24\) 0 0
\(25\) −6.75694 11.7034i −1.35139 2.34067i
\(26\) 1.30278 0.255495
\(27\) 0 0
\(28\) 0.302776 0.0572192
\(29\) 0.197224 + 0.341603i 0.0366236 + 0.0634340i 0.883756 0.467948i \(-0.155006\pi\)
−0.847133 + 0.531382i \(0.821673\pi\)
\(30\) 0 0
\(31\) −3.60555 + 6.24500i −0.647576 + 1.12163i 0.336124 + 0.941818i \(0.390884\pi\)
−0.983700 + 0.179817i \(0.942449\pi\)
\(32\) −0.848612 + 1.46984i −0.150015 + 0.259833i
\(33\) 0 0
\(34\) 2.80278 + 4.85455i 0.480672 + 0.832548i
\(35\) 4.30278 0.727302
\(36\) 0 0
\(37\) 4.21110 0.692301 0.346150 0.938179i \(-0.387489\pi\)
0.346150 + 0.938179i \(0.387489\pi\)
\(38\) 3.45416 + 5.98279i 0.560339 + 0.970536i
\(39\) 0 0
\(40\) −6.45416 + 11.1789i −1.02049 + 1.76755i
\(41\) 4.50000 7.79423i 0.702782 1.21725i −0.264704 0.964330i \(-0.585274\pi\)
0.967486 0.252924i \(-0.0813924\pi\)
\(42\) 0 0
\(43\) −0.348612 0.603814i −0.0531629 0.0920808i 0.838219 0.545333i \(-0.183597\pi\)
−0.891382 + 0.453253i \(0.850264\pi\)
\(44\) −0.394449 −0.0594654
\(45\) 0 0
\(46\) −5.09167 −0.750726
\(47\) −0.454163 0.786634i −0.0662465 0.114742i 0.831000 0.556273i \(-0.187769\pi\)
−0.897246 + 0.441530i \(0.854436\pi\)
\(48\) 0 0
\(49\) 3.00000 5.19615i 0.428571 0.742307i
\(50\) −8.80278 + 15.2469i −1.24490 + 2.15623i
\(51\) 0 0
\(52\) 0.151388 + 0.262211i 0.0209937 + 0.0363622i
\(53\) 12.9083 1.77310 0.886548 0.462638i \(-0.153097\pi\)
0.886548 + 0.462638i \(0.153097\pi\)
\(54\) 0 0
\(55\) −5.60555 −0.755852
\(56\) −1.50000 2.59808i −0.200446 0.347183i
\(57\) 0 0
\(58\) 0.256939 0.445032i 0.0337378 0.0584355i
\(59\) 1.50000 2.59808i 0.195283 0.338241i −0.751710 0.659494i \(-0.770771\pi\)
0.946993 + 0.321253i \(0.104104\pi\)
\(60\) 0 0
\(61\) −1.19722 2.07365i −0.153289 0.265504i 0.779146 0.626843i \(-0.215653\pi\)
−0.932435 + 0.361339i \(0.882320\pi\)
\(62\) 9.39445 1.19310
\(63\) 0 0
\(64\) 8.81665 1.10208
\(65\) 2.15139 + 3.72631i 0.266847 + 0.462192i
\(66\) 0 0
\(67\) 6.75694 11.7034i 0.825491 1.42979i −0.0760516 0.997104i \(-0.524231\pi\)
0.901543 0.432689i \(-0.142435\pi\)
\(68\) −0.651388 + 1.12824i −0.0789924 + 0.136819i
\(69\) 0 0
\(70\) −2.80278 4.85455i −0.334996 0.580230i
\(71\) −13.8167 −1.63974 −0.819868 0.572553i \(-0.805953\pi\)
−0.819868 + 0.572553i \(0.805953\pi\)
\(72\) 0 0
\(73\) −10.9083 −1.27672 −0.638362 0.769737i \(-0.720388\pi\)
−0.638362 + 0.769737i \(0.720388\pi\)
\(74\) −2.74306 4.75112i −0.318874 0.552307i
\(75\) 0 0
\(76\) −0.802776 + 1.39045i −0.0920847 + 0.159495i
\(77\) 0.651388 1.12824i 0.0742325 0.128575i
\(78\) 0 0
\(79\) 6.95416 + 12.0450i 0.782405 + 1.35516i 0.930537 + 0.366197i \(0.119340\pi\)
−0.148133 + 0.988967i \(0.547326\pi\)
\(80\) 14.2111 1.58885
\(81\) 0 0
\(82\) −11.7250 −1.29481
\(83\) −0.197224 0.341603i −0.0216482 0.0374958i 0.854998 0.518631i \(-0.173558\pi\)
−0.876647 + 0.481135i \(0.840225\pi\)
\(84\) 0 0
\(85\) −9.25694 + 16.0335i −1.00406 + 1.73908i
\(86\) −0.454163 + 0.786634i −0.0489737 + 0.0848249i
\(87\) 0 0
\(88\) 1.95416 + 3.38471i 0.208315 + 0.360811i
\(89\) −8.60555 −0.912187 −0.456093 0.889932i \(-0.650752\pi\)
−0.456093 + 0.889932i \(0.650752\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) −0.591673 1.02481i −0.0616862 0.106844i
\(93\) 0 0
\(94\) −0.591673 + 1.02481i −0.0610264 + 0.105701i
\(95\) −11.4083 + 19.7598i −1.17047 + 2.02731i
\(96\) 0 0
\(97\) 7.21110 + 12.4900i 0.732177 + 1.26817i 0.955951 + 0.293526i \(0.0948287\pi\)
−0.223775 + 0.974641i \(0.571838\pi\)
\(98\) −7.81665 −0.789601
\(99\) 0 0
\(100\) −4.09167 −0.409167
\(101\) −5.40833 9.36750i −0.538149 0.932101i −0.999004 0.0446254i \(-0.985791\pi\)
0.460855 0.887475i \(-0.347543\pi\)
\(102\) 0 0
\(103\) −2.75694 + 4.77516i −0.271649 + 0.470510i −0.969284 0.245943i \(-0.920902\pi\)
0.697635 + 0.716453i \(0.254236\pi\)
\(104\) 1.50000 2.59808i 0.147087 0.254762i
\(105\) 0 0
\(106\) −8.40833 14.5636i −0.816689 1.41455i
\(107\) 9.90833 0.957874 0.478937 0.877849i \(-0.341022\pi\)
0.478937 + 0.877849i \(0.341022\pi\)
\(108\) 0 0
\(109\) 1.48612 0.142345 0.0711723 0.997464i \(-0.477326\pi\)
0.0711723 + 0.997464i \(0.477326\pi\)
\(110\) 3.65139 + 6.32439i 0.348146 + 0.603007i
\(111\) 0 0
\(112\) −1.65139 + 2.86029i −0.156041 + 0.270272i
\(113\) 1.50000 2.59808i 0.141108 0.244406i −0.786806 0.617200i \(-0.788267\pi\)
0.927914 + 0.372794i \(0.121600\pi\)
\(114\) 0 0
\(115\) −8.40833 14.5636i −0.784081 1.35807i
\(116\) 0.119429 0.0110887
\(117\) 0 0
\(118\) −3.90833 −0.359791
\(119\) −2.15139 3.72631i −0.197217 0.341591i
\(120\) 0 0
\(121\) 4.65139 8.05644i 0.422853 0.732404i
\(122\) −1.55971 + 2.70151i −0.141210 + 0.244583i
\(123\) 0 0
\(124\) 1.09167 + 1.89083i 0.0980351 + 0.169802i
\(125\) −36.6333 −3.27658
\(126\) 0 0
\(127\) 11.0000 0.976092 0.488046 0.872818i \(-0.337710\pi\)
0.488046 + 0.872818i \(0.337710\pi\)
\(128\) −4.04584 7.00759i −0.357605 0.619390i
\(129\) 0 0
\(130\) 2.80278 4.85455i 0.245820 0.425772i
\(131\) −7.10555 + 12.3072i −0.620815 + 1.07528i 0.368519 + 0.929620i \(0.379865\pi\)
−0.989334 + 0.145663i \(0.953469\pi\)
\(132\) 0 0
\(133\) −2.65139 4.59234i −0.229904 0.398206i
\(134\) −17.6056 −1.52089
\(135\) 0 0
\(136\) 12.9083 1.10688
\(137\) −3.90833 6.76942i −0.333911 0.578351i 0.649364 0.760478i \(-0.275035\pi\)
−0.983275 + 0.182127i \(0.941702\pi\)
\(138\) 0 0
\(139\) 7.01388 12.1484i 0.594909 1.03041i −0.398650 0.917103i \(-0.630521\pi\)
0.993560 0.113310i \(-0.0361454\pi\)
\(140\) 0.651388 1.12824i 0.0550523 0.0953534i
\(141\) 0 0
\(142\) 9.00000 + 15.5885i 0.755263 + 1.30815i
\(143\) 1.30278 0.108944
\(144\) 0 0
\(145\) 1.69722 0.140947
\(146\) 7.10555 + 12.3072i 0.588060 + 1.01855i
\(147\) 0 0
\(148\) 0.637510 1.10420i 0.0524030 0.0907646i
\(149\) 4.04584 7.00759i 0.331448 0.574085i −0.651348 0.758779i \(-0.725796\pi\)
0.982796 + 0.184695i \(0.0591296\pi\)
\(150\) 0 0
\(151\) −5.10555 8.84307i −0.415484 0.719639i 0.579995 0.814620i \(-0.303054\pi\)
−0.995479 + 0.0949807i \(0.969721\pi\)
\(152\) 15.9083 1.29034
\(153\) 0 0
\(154\) −1.69722 −0.136766
\(155\) 15.5139 + 26.8708i 1.24610 + 2.15832i
\(156\) 0 0
\(157\) 5.65139 9.78849i 0.451030 0.781207i −0.547420 0.836858i \(-0.684390\pi\)
0.998450 + 0.0556511i \(0.0177235\pi\)
\(158\) 9.05971 15.6919i 0.720752 1.24838i
\(159\) 0 0
\(160\) 3.65139 + 6.32439i 0.288668 + 0.499987i
\(161\) 3.90833 0.308019
\(162\) 0 0
\(163\) 22.7250 1.77996 0.889979 0.456002i \(-0.150719\pi\)
0.889979 + 0.456002i \(0.150719\pi\)
\(164\) −1.36249 2.35990i −0.106393 0.184277i
\(165\) 0 0
\(166\) −0.256939 + 0.445032i −0.0199423 + 0.0345411i
\(167\) −10.1056 + 17.5033i −0.781991 + 1.35445i 0.148789 + 0.988869i \(0.452462\pi\)
−0.930780 + 0.365579i \(0.880871\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 24.1194 1.84988
\(171\) 0 0
\(172\) −0.211103 −0.0160964
\(173\) 1.95416 + 3.38471i 0.148572 + 0.257335i 0.930700 0.365783i \(-0.119199\pi\)
−0.782128 + 0.623118i \(0.785866\pi\)
\(174\) 0 0
\(175\) 6.75694 11.7034i 0.510777 0.884691i
\(176\) 2.15139 3.72631i 0.162167 0.280881i
\(177\) 0 0
\(178\) 5.60555 + 9.70910i 0.420154 + 0.727728i
\(179\) −3.51388 −0.262640 −0.131320 0.991340i \(-0.541921\pi\)
−0.131320 + 0.991340i \(0.541921\pi\)
\(180\) 0 0
\(181\) −3.09167 −0.229802 −0.114901 0.993377i \(-0.536655\pi\)
−0.114901 + 0.993377i \(0.536655\pi\)
\(182\) 0.651388 + 1.12824i 0.0482841 + 0.0836305i
\(183\) 0 0
\(184\) −5.86249 + 10.1541i −0.432189 + 0.748572i
\(185\) 9.05971 15.6919i 0.666083 1.15369i
\(186\) 0 0
\(187\) 2.80278 + 4.85455i 0.204959 + 0.355000i
\(188\) −0.275019 −0.0200578
\(189\) 0 0
\(190\) 29.7250 2.15648
\(191\) −0.848612 1.46984i −0.0614034 0.106354i 0.833690 0.552233i \(-0.186224\pi\)
−0.895093 + 0.445880i \(0.852891\pi\)
\(192\) 0 0
\(193\) 5.65139 9.78849i 0.406796 0.704591i −0.587733 0.809055i \(-0.699979\pi\)
0.994529 + 0.104464i \(0.0333127\pi\)
\(194\) 9.39445 16.2717i 0.674482 1.16824i
\(195\) 0 0
\(196\) −0.908327 1.57327i −0.0648805 0.112376i
\(197\) −1.81665 −0.129431 −0.0647156 0.997904i \(-0.520614\pi\)
−0.0647156 + 0.997904i \(0.520614\pi\)
\(198\) 0 0
\(199\) 7.09167 0.502715 0.251358 0.967894i \(-0.419123\pi\)
0.251358 + 0.967894i \(0.419123\pi\)
\(200\) 20.2708 + 35.1101i 1.43336 + 2.48266i
\(201\) 0 0
\(202\) −7.04584 + 12.2037i −0.495743 + 0.858653i
\(203\) −0.197224 + 0.341603i −0.0138424 + 0.0239758i
\(204\) 0 0
\(205\) −19.3625 33.5368i −1.35233 2.34231i
\(206\) 7.18335 0.500487
\(207\) 0 0
\(208\) −3.30278 −0.229006
\(209\) 3.45416 + 5.98279i 0.238929 + 0.413838i
\(210\) 0 0
\(211\) −5.55971 + 9.62971i −0.382747 + 0.662936i −0.991454 0.130458i \(-0.958355\pi\)
0.608707 + 0.793395i \(0.291688\pi\)
\(212\) 1.95416 3.38471i 0.134212 0.232463i
\(213\) 0 0
\(214\) −6.45416 11.1789i −0.441198 0.764177i
\(215\) −3.00000 −0.204598
\(216\) 0 0
\(217\) −7.21110 −0.489522
\(218\) −0.968042 1.67670i −0.0655641 0.113560i
\(219\) 0 0
\(220\) −0.848612 + 1.46984i −0.0572134 + 0.0990966i
\(221\) 2.15139 3.72631i 0.144718 0.250659i
\(222\) 0 0
\(223\) 9.16527 + 15.8747i 0.613752 + 1.06305i 0.990602 + 0.136775i \(0.0436737\pi\)
−0.376851 + 0.926274i \(0.622993\pi\)
\(224\) −1.69722 −0.113401
\(225\) 0 0
\(226\) −3.90833 −0.259978
\(227\) −3.05971 5.29958i −0.203080 0.351746i 0.746439 0.665454i \(-0.231762\pi\)
−0.949519 + 0.313708i \(0.898429\pi\)
\(228\) 0 0
\(229\) 3.95416 6.84881i 0.261298 0.452582i −0.705289 0.708920i \(-0.749183\pi\)
0.966587 + 0.256338i \(0.0825160\pi\)
\(230\) −10.9542 + 18.9732i −0.722296 + 1.25105i
\(231\) 0 0
\(232\) −0.591673 1.02481i −0.0388452 0.0672819i
\(233\) 10.0278 0.656940 0.328470 0.944514i \(-0.393467\pi\)
0.328470 + 0.944514i \(0.393467\pi\)
\(234\) 0 0
\(235\) −3.90833 −0.254951
\(236\) −0.454163 0.786634i −0.0295635 0.0512055i
\(237\) 0 0
\(238\) −2.80278 + 4.85455i −0.181677 + 0.314674i
\(239\) 2.40833 4.17134i 0.155782 0.269822i −0.777562 0.628807i \(-0.783544\pi\)
0.933343 + 0.358985i \(0.116877\pi\)
\(240\) 0 0
\(241\) 5.25694 + 9.10529i 0.338629 + 0.586523i 0.984175 0.177198i \(-0.0567034\pi\)
−0.645546 + 0.763721i \(0.723370\pi\)
\(242\) −12.1194 −0.779066
\(243\) 0 0
\(244\) −0.724981 −0.0464121
\(245\) −12.9083 22.3579i −0.824683 1.42839i
\(246\) 0 0
\(247\) 2.65139 4.59234i 0.168704 0.292203i
\(248\) 10.8167 18.7350i 0.686858 1.18967i
\(249\) 0 0
\(250\) 23.8625 + 41.3310i 1.50920 + 2.61400i
\(251\) −0.908327 −0.0573331 −0.0286665 0.999589i \(-0.509126\pi\)
−0.0286665 + 0.999589i \(0.509126\pi\)
\(252\) 0 0
\(253\) −5.09167 −0.320111
\(254\) −7.16527 12.4106i −0.449589 0.778711i
\(255\) 0 0
\(256\) 3.54584 6.14157i 0.221615 0.383848i
\(257\) 3.65139 6.32439i 0.227767 0.394505i −0.729379 0.684110i \(-0.760191\pi\)
0.957146 + 0.289606i \(0.0935241\pi\)
\(258\) 0 0
\(259\) 2.10555 + 3.64692i 0.130833 + 0.226609i
\(260\) 1.30278 0.0807947
\(261\) 0 0
\(262\) 18.5139 1.14379
\(263\) −8.54584 14.8018i −0.526959 0.912720i −0.999506 0.0314144i \(-0.989999\pi\)
0.472548 0.881305i \(-0.343334\pi\)
\(264\) 0 0
\(265\) 27.7708 48.1005i 1.70595 2.95479i
\(266\) −3.45416 + 5.98279i −0.211788 + 0.366828i
\(267\) 0 0
\(268\) −2.04584 3.54349i −0.124969 0.216453i
\(269\) 16.9361 1.03261 0.516306 0.856404i \(-0.327307\pi\)
0.516306 + 0.856404i \(0.327307\pi\)
\(270\) 0 0
\(271\) 15.4222 0.936832 0.468416 0.883508i \(-0.344825\pi\)
0.468416 + 0.883508i \(0.344825\pi\)
\(272\) −7.10555 12.3072i −0.430837 0.746232i
\(273\) 0 0
\(274\) −5.09167 + 8.81904i −0.307599 + 0.532777i
\(275\) −8.80278 + 15.2469i −0.530827 + 0.919420i
\(276\) 0 0
\(277\) 8.90833 + 15.4297i 0.535249 + 0.927079i 0.999151 + 0.0411926i \(0.0131157\pi\)
−0.463902 + 0.885887i \(0.653551\pi\)
\(278\) −18.2750 −1.09606
\(279\) 0 0
\(280\) −12.9083 −0.771420
\(281\) −5.21110 9.02589i −0.310868 0.538440i 0.667682 0.744446i \(-0.267286\pi\)
−0.978551 + 0.206007i \(0.933953\pi\)
\(282\) 0 0
\(283\) 6.24306 10.8133i 0.371111 0.642784i −0.618625 0.785686i \(-0.712310\pi\)
0.989737 + 0.142902i \(0.0456434\pi\)
\(284\) −2.09167 + 3.62288i −0.124118 + 0.214979i
\(285\) 0 0
\(286\) −0.848612 1.46984i −0.0501795 0.0869134i
\(287\) 9.00000 0.531253
\(288\) 0 0
\(289\) 1.51388 0.0890517
\(290\) −1.10555 1.91487i −0.0649202 0.112445i
\(291\) 0 0
\(292\) −1.65139 + 2.86029i −0.0966402 + 0.167386i
\(293\) 9.31665 16.1369i 0.544285 0.942729i −0.454367 0.890815i \(-0.650134\pi\)
0.998652 0.0519141i \(-0.0165322\pi\)
\(294\) 0 0
\(295\) −6.45416 11.1789i −0.375776 0.650863i
\(296\) −12.6333 −0.734296
\(297\) 0 0
\(298\) −10.5416 −0.610660
\(299\) 1.95416 + 3.38471i 0.113012 + 0.195743i
\(300\) 0 0
\(301\) 0.348612 0.603814i 0.0200937 0.0348033i
\(302\) −6.65139 + 11.5205i −0.382744 + 0.662933i
\(303\) 0 0
\(304\) −8.75694 15.1675i −0.502245 0.869914i
\(305\) −10.3028 −0.589935
\(306\) 0 0
\(307\) 7.09167 0.404743 0.202372 0.979309i \(-0.435135\pi\)
0.202372 + 0.979309i \(0.435135\pi\)
\(308\) −0.197224 0.341603i −0.0112379 0.0194646i
\(309\) 0 0
\(310\) 20.2111 35.0067i 1.14791 1.98824i
\(311\) −3.45416 + 5.98279i −0.195868 + 0.339253i −0.947185 0.320689i \(-0.896086\pi\)
0.751317 + 0.659942i \(0.229419\pi\)
\(312\) 0 0
\(313\) −2.30278 3.98852i −0.130161 0.225445i 0.793578 0.608469i \(-0.208216\pi\)
−0.923738 + 0.383024i \(0.874883\pi\)
\(314\) −14.7250 −0.830979
\(315\) 0 0
\(316\) 4.21110 0.236893
\(317\) 0.0597147 + 0.103429i 0.00335391 + 0.00580915i 0.867697 0.497093i \(-0.165599\pi\)
−0.864344 + 0.502902i \(0.832266\pi\)
\(318\) 0 0
\(319\) 0.256939 0.445032i 0.0143858 0.0249170i
\(320\) 18.9680 32.8536i 1.06035 1.83657i
\(321\) 0 0
\(322\) −2.54584 4.40952i −0.141874 0.245733i
\(323\) 22.8167 1.26955
\(324\) 0 0
\(325\) 13.5139 0.749615
\(326\) −14.8028 25.6392i −0.819850 1.42002i
\(327\) 0 0
\(328\) −13.5000 + 23.3827i −0.745413 + 1.29109i
\(329\) 0.454163 0.786634i 0.0250388 0.0433685i
\(330\) 0 0
\(331\) −7.31665 12.6728i −0.402160 0.696561i 0.591827 0.806065i \(-0.298407\pi\)
−0.993986 + 0.109504i \(0.965074\pi\)
\(332\) −0.119429 −0.00655454
\(333\) 0 0
\(334\) 26.3305 1.44074
\(335\) −29.0736 50.3569i −1.58846 2.75129i
\(336\) 0 0
\(337\) −0.802776 + 1.39045i −0.0437300 + 0.0757425i −0.887062 0.461650i \(-0.847257\pi\)
0.843332 + 0.537393i \(0.180591\pi\)
\(338\) −0.651388 + 1.12824i −0.0354308 + 0.0613680i
\(339\) 0 0
\(340\) 2.80278 + 4.85455i 0.152002 + 0.263275i
\(341\) 9.39445 0.508738
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 1.04584 + 1.81144i 0.0563877 + 0.0976664i
\(345\) 0 0
\(346\) 2.54584 4.40952i 0.136865 0.237057i
\(347\) −7.50000 + 12.9904i −0.402621 + 0.697360i −0.994041 0.109003i \(-0.965234\pi\)
0.591420 + 0.806363i \(0.298567\pi\)
\(348\) 0 0
\(349\) −3.15139 5.45836i −0.168690 0.292180i 0.769270 0.638924i \(-0.220620\pi\)
−0.937960 + 0.346745i \(0.887287\pi\)
\(350\) −17.6056 −0.941056
\(351\) 0 0
\(352\) 2.21110 0.117852
\(353\) 1.89445 + 3.28128i 0.100831 + 0.174645i 0.912027 0.410129i \(-0.134516\pi\)
−0.811196 + 0.584774i \(0.801183\pi\)
\(354\) 0 0
\(355\) −29.7250 + 51.4852i −1.57764 + 2.73255i
\(356\) −1.30278 + 2.25647i −0.0690470 + 0.119593i
\(357\) 0 0
\(358\) 2.28890 + 3.96449i 0.120972 + 0.209530i
\(359\) 1.18335 0.0624546 0.0312273 0.999512i \(-0.490058\pi\)
0.0312273 + 0.999512i \(0.490058\pi\)
\(360\) 0 0
\(361\) 9.11943 0.479970
\(362\) 2.01388 + 3.48814i 0.105847 + 0.183333i
\(363\) 0 0
\(364\) −0.151388 + 0.262211i −0.00793488 + 0.0137436i
\(365\) −23.4680 + 40.6478i −1.22837 + 2.12761i
\(366\) 0 0
\(367\) −0.0138782 0.0240377i −0.000724436 0.00125476i 0.865663 0.500627i \(-0.166897\pi\)
−0.866387 + 0.499372i \(0.833564\pi\)
\(368\) 12.9083 0.672893
\(369\) 0 0
\(370\) −23.6056 −1.22719
\(371\) 6.45416 + 11.1789i 0.335083 + 0.580382i
\(372\) 0 0
\(373\) −10.0597 + 17.4239i −0.520872 + 0.902177i 0.478833 + 0.877906i \(0.341060\pi\)
−0.999705 + 0.0242713i \(0.992273\pi\)
\(374\) 3.65139 6.32439i 0.188809 0.327026i
\(375\) 0 0
\(376\) 1.36249 + 2.35990i 0.0702651 + 0.121703i
\(377\) −0.394449 −0.0203151
\(378\) 0 0
\(379\) −18.2111 −0.935442 −0.467721 0.883876i \(-0.654925\pi\)
−0.467721 + 0.883876i \(0.654925\pi\)
\(380\) 3.45416 + 5.98279i 0.177195 + 0.306910i
\(381\) 0 0
\(382\) −1.10555 + 1.91487i −0.0565649 + 0.0979733i
\(383\) 11.6056 20.1014i 0.593016 1.02713i −0.400808 0.916162i \(-0.631270\pi\)
0.993824 0.110972i \(-0.0353962\pi\)
\(384\) 0 0
\(385\) −2.80278 4.85455i −0.142843 0.247411i
\(386\) −14.7250 −0.749482
\(387\) 0 0
\(388\) 4.36669 0.221685
\(389\) 12.1194 + 20.9915i 0.614479 + 1.06431i 0.990476 + 0.137688i \(0.0439673\pi\)
−0.375996 + 0.926621i \(0.622699\pi\)
\(390\) 0 0
\(391\) −8.40833 + 14.5636i −0.425227 + 0.736515i
\(392\) −9.00000 + 15.5885i −0.454569 + 0.787336i
\(393\) 0 0
\(394\) 1.18335 + 2.04962i 0.0596161 + 0.103258i
\(395\) 59.8444 3.01110
\(396\) 0 0
\(397\) −22.6333 −1.13593 −0.567967 0.823052i \(-0.692270\pi\)
−0.567967 + 0.823052i \(0.692270\pi\)
\(398\) −4.61943 8.00109i −0.231551 0.401058i
\(399\) 0 0
\(400\) 22.3167 38.6536i 1.11583 1.93268i
\(401\) 16.3028 28.2372i 0.814122 1.41010i −0.0958350 0.995397i \(-0.530552\pi\)
0.909957 0.414703i \(-0.136115\pi\)
\(402\) 0 0
\(403\) −3.60555 6.24500i −0.179605 0.311086i
\(404\) −3.27502 −0.162938
\(405\) 0 0
\(406\) 0.513878 0.0255033
\(407\) −2.74306 4.75112i −0.135968 0.235504i
\(408\) 0 0
\(409\) −3.60555 + 6.24500i −0.178283 + 0.308795i −0.941293 0.337592i \(-0.890388\pi\)
0.763010 + 0.646387i \(0.223721\pi\)
\(410\) −25.2250 + 43.6909i −1.24577 + 2.15774i
\(411\) 0 0
\(412\) 0.834734 + 1.44580i 0.0411244 + 0.0712295i
\(413\) 3.00000 0.147620
\(414\) 0 0
\(415\) −1.69722 −0.0833135
\(416\) −0.848612 1.46984i −0.0416066 0.0720648i
\(417\) 0 0
\(418\) 4.50000 7.79423i 0.220102 0.381228i
\(419\) 12.3944 21.4678i 0.605508 1.04877i −0.386462 0.922305i \(-0.626303\pi\)
0.991971 0.126466i \(-0.0403635\pi\)
\(420\) 0 0
\(421\) −16.9083 29.2861i −0.824061 1.42732i −0.902634 0.430408i \(-0.858370\pi\)
0.0785731 0.996908i \(-0.474964\pi\)
\(422\) 14.4861 0.705173
\(423\) 0 0
\(424\) −38.7250 −1.88065
\(425\) 29.0736 + 50.3569i 1.41028 + 2.44267i
\(426\) 0 0
\(427\) 1.19722 2.07365i 0.0579377 0.100351i
\(428\) 1.50000 2.59808i 0.0725052 0.125583i
\(429\) 0 0
\(430\) 1.95416 + 3.38471i 0.0942381 + 0.163225i
\(431\) −28.8167 −1.38805 −0.694025 0.719951i \(-0.744164\pi\)
−0.694025 + 0.719951i \(0.744164\pi\)
\(432\) 0 0
\(433\) −9.88057 −0.474830 −0.237415 0.971408i \(-0.576300\pi\)
−0.237415 + 0.971408i \(0.576300\pi\)
\(434\) 4.69722 + 8.13583i 0.225474 + 0.390532i
\(435\) 0 0
\(436\) 0.224981 0.389678i 0.0107746 0.0186622i
\(437\) −10.3625 + 17.9484i −0.495705 + 0.858586i
\(438\) 0 0
\(439\) 14.0000 + 24.2487i 0.668184 + 1.15733i 0.978412 + 0.206666i \(0.0662612\pi\)
−0.310228 + 0.950662i \(0.600405\pi\)
\(440\) 16.8167 0.801703
\(441\) 0 0
\(442\) −5.60555 −0.266629
\(443\) 11.0139 + 19.0766i 0.523285 + 0.906356i 0.999633 + 0.0270994i \(0.00862706\pi\)
−0.476348 + 0.879257i \(0.658040\pi\)
\(444\) 0 0
\(445\) −18.5139 + 32.0670i −0.877642 + 1.52012i
\(446\) 11.9403 20.6812i 0.565389 0.979282i
\(447\) 0 0
\(448\) 4.40833 + 7.63545i 0.208274 + 0.360741i
\(449\) −29.6056 −1.39717 −0.698586 0.715526i \(-0.746187\pi\)
−0.698586 + 0.715526i \(0.746187\pi\)
\(450\) 0 0
\(451\) −11.7250 −0.552108
\(452\) −0.454163 0.786634i −0.0213621 0.0370002i
\(453\) 0 0
\(454\) −3.98612 + 6.90417i −0.187078 + 0.324029i
\(455\) −2.15139 + 3.72631i −0.100859 + 0.174692i
\(456\) 0 0
\(457\) −17.5000 30.3109i −0.818615 1.41788i −0.906702 0.421771i \(-0.861409\pi\)
0.0880870 0.996113i \(-0.471925\pi\)
\(458\) −10.3028 −0.481417
\(459\) 0 0
\(460\) −5.09167 −0.237400
\(461\) 13.1653 + 22.8029i 0.613168 + 1.06204i 0.990703 + 0.136042i \(0.0434383\pi\)
−0.377535 + 0.925995i \(0.623228\pi\)
\(462\) 0 0
\(463\) 11.2569 19.4976i 0.523154 0.906130i −0.476483 0.879184i \(-0.658088\pi\)
0.999637 0.0269460i \(-0.00857820\pi\)
\(464\) −0.651388 + 1.12824i −0.0302399 + 0.0523771i
\(465\) 0 0
\(466\) −6.53196 11.3137i −0.302587 0.524096i
\(467\) 16.8167 0.778182 0.389091 0.921199i \(-0.372789\pi\)
0.389091 + 0.921199i \(0.372789\pi\)
\(468\) 0 0
\(469\) 13.5139 0.624013
\(470\) 2.54584 + 4.40952i 0.117431 + 0.203396i
\(471\) 0 0
\(472\) −4.50000 + 7.79423i −0.207129 + 0.358758i
\(473\) −0.454163 + 0.786634i −0.0208825 + 0.0361695i
\(474\) 0 0
\(475\) 35.8305 + 62.0603i 1.64402 + 2.84752i
\(476\) −1.30278 −0.0597126
\(477\) 0 0
\(478\) −6.27502 −0.287013
\(479\) 8.86249 + 15.3503i 0.404938 + 0.701372i 0.994314 0.106486i \(-0.0339599\pi\)
−0.589377 + 0.807858i \(0.700627\pi\)
\(480\) 0 0
\(481\) −2.10555 + 3.64692i −0.0960049 + 0.166285i
\(482\) 6.84861 11.8621i 0.311946 0.540306i
\(483\) 0 0
\(484\) −1.40833 2.43929i −0.0640149 0.110877i
\(485\) 62.0555 2.81780
\(486\) 0 0
\(487\) 42.4222 1.92233 0.961167 0.275968i \(-0.0889984\pi\)
0.961167 + 0.275968i \(0.0889984\pi\)
\(488\) 3.59167 + 6.22096i 0.162587 + 0.281610i
\(489\) 0 0
\(490\) −16.8167 + 29.1273i −0.759699 + 1.31584i
\(491\) −19.9542 + 34.5616i −0.900519 + 1.55974i −0.0736967 + 0.997281i \(0.523480\pi\)
−0.826822 + 0.562464i \(0.809854\pi\)
\(492\) 0 0
\(493\) −0.848612 1.46984i −0.0382196 0.0661982i
\(494\) −6.90833 −0.310820
\(495\) 0 0
\(496\) −23.8167 −1.06940
\(497\) −6.90833 11.9656i −0.309881 0.536729i
\(498\) 0 0
\(499\) −8.44029 + 14.6190i −0.377839 + 0.654436i −0.990748 0.135717i \(-0.956666\pi\)
0.612909 + 0.790154i \(0.289999\pi\)
\(500\) −5.54584 + 9.60567i −0.248017 + 0.429579i
\(501\) 0 0
\(502\) 0.591673 + 1.02481i 0.0264077 + 0.0457394i
\(503\) 4.02776 0.179589 0.0897944 0.995960i \(-0.471379\pi\)
0.0897944 + 0.995960i \(0.471379\pi\)
\(504\) 0 0
\(505\) −46.5416 −2.07108
\(506\) 3.31665 + 5.74461i 0.147443 + 0.255379i
\(507\) 0 0
\(508\) 1.66527 2.88433i 0.0738842 0.127971i
\(509\) −9.51388 + 16.4785i −0.421695 + 0.730398i −0.996105 0.0881700i \(-0.971898\pi\)
0.574410 + 0.818568i \(0.305231\pi\)
\(510\) 0 0
\(511\) −5.45416 9.44689i −0.241278 0.417906i
\(512\) −25.4222 −1.12351
\(513\) 0 0
\(514\) −9.51388 −0.419639
\(515\) 11.8625 + 20.5464i 0.522724 + 0.905384i
\(516\) 0 0
\(517\) −0.591673 + 1.02481i −0.0260218 + 0.0450710i
\(518\) 2.74306 4.75112i 0.120523 0.208752i
\(519\) 0 0
\(520\) −6.45416 11.1789i −0.283034 0.490229i
\(521\) −32.4500 −1.42166 −0.710829 0.703365i \(-0.751680\pi\)
−0.710829 + 0.703365i \(0.751680\pi\)
\(522\) 0 0
\(523\) 5.90833 0.258353 0.129177 0.991622i \(-0.458767\pi\)
0.129177 + 0.991622i \(0.458767\pi\)
\(524\) 2.15139 + 3.72631i 0.0939838 + 0.162785i
\(525\) 0 0
\(526\) −11.1333 + 19.2835i −0.485435 + 0.840799i
\(527\) 15.5139 26.8708i 0.675795 1.17051i
\(528\) 0 0
\(529\) 3.86249 + 6.69003i 0.167934 + 0.290871i
\(530\) −72.3583 −3.14304
\(531\) 0 0
\(532\) −1.60555 −0.0696095
\(533\) 4.50000 + 7.79423i 0.194917 + 0.337606i
\(534\) 0 0
\(535\) 21.3167 36.9215i 0.921599 1.59626i
\(536\) −20.2708 + 35.1101i −0.875566 + 1.51652i
\(537\) 0 0
\(538\) −11.0320 19.1079i −0.475621 0.823801i
\(539\) −7.81665 −0.336687
\(540\) 0 0
\(541\) −32.3028 −1.38880 −0.694402 0.719587i \(-0.744331\pi\)
−0.694402 + 0.719587i \(0.744331\pi\)
\(542\) −10.0458 17.3999i −0.431506 0.747390i
\(543\) 0 0
\(544\) 3.65139 6.32439i 0.156552 0.271156i
\(545\) 3.19722 5.53776i 0.136954 0.237211i
\(546\) 0 0
\(547\) 18.7569 + 32.4880i 0.801989 + 1.38909i 0.918305 + 0.395873i \(0.129558\pi\)
−0.116316 + 0.993212i \(0.537109\pi\)
\(548\) −2.36669 −0.101100
\(549\) 0 0
\(550\) 22.9361 0.977998
\(551\) −1.04584 1.81144i −0.0445541 0.0771700i
\(552\) 0 0
\(553\) −6.95416 + 12.0450i −0.295721 + 0.512204i
\(554\) 11.6056 20.1014i 0.493073 0.854027i
\(555\) 0 0
\(556\) −2.12363 3.67824i −0.0900620 0.155992i
\(557\) 12.6333 0.535290 0.267645 0.963518i \(-0.413754\pi\)
0.267645 + 0.963518i \(0.413754\pi\)
\(558\) 0 0
\(559\) 0.697224 0.0294894
\(560\) 7.10555 + 12.3072i 0.300264 + 0.520073i
\(561\) 0 0
\(562\) −6.78890 + 11.7587i −0.286372 + 0.496011i
\(563\) 9.31665 16.1369i 0.392650 0.680090i −0.600148 0.799889i \(-0.704892\pi\)
0.992798 + 0.119799i \(0.0382250\pi\)
\(564\) 0 0
\(565\) −6.45416 11.1789i −0.271529 0.470301i
\(566\) −16.2666 −0.683737
\(567\) 0 0
\(568\) 41.4500 1.73920
\(569\) 13.6194 + 23.5895i 0.570956 + 0.988925i 0.996468 + 0.0839723i \(0.0267607\pi\)
−0.425512 + 0.904953i \(0.639906\pi\)
\(570\) 0 0
\(571\) 9.81665 17.0029i 0.410814 0.711551i −0.584165 0.811635i \(-0.698578\pi\)
0.994979 + 0.100084i \(0.0319112\pi\)
\(572\) 0.197224 0.341603i 0.00824636 0.0142831i
\(573\) 0 0
\(574\) −5.86249 10.1541i −0.244696 0.423825i
\(575\) −52.8167 −2.20261
\(576\) 0 0
\(577\) −3.09167 −0.128708 −0.0643540 0.997927i \(-0.520499\pi\)
−0.0643540 + 0.997927i \(0.520499\pi\)
\(578\) −0.986122 1.70801i −0.0410173 0.0710440i
\(579\) 0 0
\(580\) 0.256939 0.445032i 0.0106688 0.0184789i
\(581\) 0.197224 0.341603i 0.00818225 0.0141721i
\(582\) 0 0
\(583\) −8.40833 14.5636i −0.348237 0.603165i
\(584\) 32.7250 1.35417
\(585\) 0 0
\(586\) −24.2750 −1.00279
\(587\) −9.05971 15.6919i −0.373934 0.647673i 0.616232 0.787564i \(-0.288658\pi\)
−0.990167 + 0.139891i \(0.955325\pi\)
\(588\) 0 0
\(589\) 19.1194 33.1158i 0.787802 1.36451i
\(590\) −8.40833 + 14.5636i −0.346165 + 0.599576i
\(591\) 0 0
\(592\) 6.95416 + 12.0450i 0.285814 + 0.495045i
\(593\) 24.1194 0.990466 0.495233 0.868760i \(-0.335083\pi\)
0.495233 + 0.868760i \(0.335083\pi\)
\(594\) 0 0
\(595\) −18.5139 −0.758995
\(596\) −1.22498 2.12173i −0.0501772 0.0869094i
\(597\) 0 0
\(598\) 2.54584 4.40952i 0.104107 0.180319i
\(599\) −3.11943 + 5.40301i −0.127456 + 0.220761i −0.922690 0.385542i \(-0.874015\pi\)
0.795234 + 0.606303i \(0.207348\pi\)
\(600\) 0 0
\(601\) −7.65139 13.2526i −0.312107 0.540585i 0.666712 0.745316i \(-0.267701\pi\)
−0.978818 + 0.204731i \(0.934368\pi\)
\(602\) −0.908327 −0.0370206
\(603\) 0 0
\(604\) −3.09167 −0.125798
\(605\) −20.0139 34.6651i −0.813680 1.40933i
\(606\) 0 0
\(607\) 12.9542 22.4373i 0.525793 0.910701i −0.473755 0.880657i \(-0.657102\pi\)
0.999549 0.0300441i \(-0.00956479\pi\)
\(608\) 4.50000 7.79423i 0.182499 0.316098i
\(609\) 0 0
\(610\) 6.71110 + 11.6240i 0.271725 + 0.470641i
\(611\) 0.908327 0.0367470
\(612\) 0 0
\(613\) −11.4222 −0.461339 −0.230669 0.973032i \(-0.574092\pi\)
−0.230669 + 0.973032i \(0.574092\pi\)
\(614\) −4.61943 8.00109i −0.186425 0.322898i
\(615\) 0 0
\(616\) −1.95416 + 3.38471i −0.0787355 + 0.136374i
\(617\) 2.34861 4.06792i 0.0945516 0.163768i −0.814870 0.579644i \(-0.803192\pi\)
0.909421 + 0.415876i \(0.136525\pi\)
\(618\) 0 0
\(619\) 1.60555 + 2.78090i 0.0645326 + 0.111774i 0.896487 0.443071i \(-0.146111\pi\)
−0.831954 + 0.554845i \(0.812778\pi\)
\(620\) 9.39445 0.377290
\(621\) 0 0
\(622\) 9.00000 0.360867
\(623\) −4.30278 7.45263i −0.172387 0.298583i
\(624\) 0 0
\(625\) −45.0278 + 77.9904i −1.80111 + 3.11961i
\(626\) −3.00000 + 5.19615i −0.119904 + 0.207680i
\(627\) 0 0
\(628\) −1.71110 2.96372i −0.0682804 0.118265i
\(629\) −18.1194 −0.722469
\(630\) 0 0
\(631\) −30.4500 −1.21219 −0.606097 0.795391i \(-0.707266\pi\)
−0.606097 + 0.795391i \(0.707266\pi\)
\(632\) −20.8625 36.1349i −0.829865 1.43737i
\(633\) 0 0
\(634\) 0.0777949 0.134745i 0.00308963 0.00535140i
\(635\) 23.6653 40.9894i 0.939127 1.62662i
\(636\) 0 0
\(637\) 3.00000 + 5.19615i 0.118864 + 0.205879i
\(638\) −0.669468 −0.0265045
\(639\) 0 0
\(640\) −34.8167 −1.37625
\(641\) 14.6056 + 25.2976i 0.576885 + 0.999193i 0.995834 + 0.0911839i \(0.0290651\pi\)
−0.418949 + 0.908010i \(0.637602\pi\)
\(642\) 0 0
\(643\) −15.4083 + 26.6880i −0.607645 + 1.05247i 0.383982 + 0.923340i \(0.374552\pi\)
−0.991627 + 0.129132i \(0.958781\pi\)
\(644\) 0.591673 1.02481i 0.0233152 0.0403831i
\(645\) 0 0
\(646\) −14.8625 25.7426i −0.584757 1.01283i
\(647\) −3.51388 −0.138145 −0.0690724 0.997612i \(-0.522004\pi\)
−0.0690724 + 0.997612i \(0.522004\pi\)
\(648\) 0 0
\(649\) −3.90833 −0.153415
\(650\) −8.80278 15.2469i −0.345273 0.598031i
\(651\) 0 0
\(652\) 3.44029 5.95875i 0.134732 0.233363i
\(653\) −5.09167 + 8.81904i −0.199253 + 0.345116i −0.948286 0.317416i \(-0.897185\pi\)
0.749034 + 0.662532i \(0.230518\pi\)
\(654\) 0 0
\(655\) 30.5736 + 52.9550i 1.19461 + 2.06912i
\(656\) 29.7250 1.16057
\(657\) 0 0
\(658\) −1.18335 −0.0461316
\(659\) −1.10555 1.91487i −0.0430662 0.0745928i 0.843689 0.536833i \(-0.180379\pi\)
−0.886755 + 0.462240i \(0.847046\pi\)
\(660\) 0 0
\(661\) 12.1056 20.9674i 0.470851 0.815539i −0.528593 0.848876i \(-0.677280\pi\)
0.999444 + 0.0333370i \(0.0106135\pi\)
\(662\) −9.53196 + 16.5098i −0.370470 + 0.641673i
\(663\) 0 0
\(664\) 0.591673 + 1.02481i 0.0229614 + 0.0397703i
\(665\) −22.8167 −0.884792
\(666\) 0 0
\(667\) 1.54163 0.0596923
\(668\) 3.05971 + 5.29958i 0.118384 + 0.205047i
\(669\) 0 0
\(670\) −37.8764 + 65.6038i −1.46329 + 2.53450i
\(671\) −1.55971 + 2.70151i −0.0602121 + 0.104290i
\(672\) 0 0
\(673\) −13.5139 23.4067i −0.520922 0.902263i −0.999704 0.0243292i \(-0.992255\pi\)
0.478782 0.877934i \(-0.341078\pi\)
\(674\) 2.09167 0.0805682
\(675\) 0 0
\(676\) −0.302776 −0.0116452
\(677\) −0.197224 0.341603i −0.00757995 0.0131289i 0.862211 0.506550i \(-0.169079\pi\)
−0.869790 + 0.493421i \(0.835746\pi\)
\(678\) 0 0
\(679\) −7.21110 + 12.4900i −0.276737 + 0.479322i
\(680\) 27.7708 48.1005i 1.06496 1.84457i
\(681\) 0 0
\(682\) −6.11943 10.5992i −0.234325 0.405863i
\(683\) 35.4500 1.35646 0.678228 0.734852i \(-0.262748\pi\)
0.678228 + 0.734852i \(0.262748\pi\)
\(684\) 0 0
\(685\) −33.6333 −1.28506
\(686\) −8.46804 14.6671i −0.323311 0.559992i
\(687\) 0 0
\(688\) 1.15139 1.99426i 0.0438962 0.0760305i
\(689\) −6.45416 + 11.1789i −0.245884 + 0.425884i
\(690\) 0 0
\(691\) −19.1194 33.1158i −0.727337 1.25979i −0.958005 0.286753i \(-0.907424\pi\)
0.230667 0.973033i \(-0.425909\pi\)
\(692\) 1.18335 0.0449841
\(693\) 0 0
\(694\) 19.5416 0.741790
\(695\) −30.1791 52.2718i −1.14476 1.98278i
\(696\) 0 0
\(697\) −19.3625 + 33.5368i −0.733407 + 1.27030i
\(698\) −4.10555 + 7.11102i −0.155397 + 0.269156i
\(699\) 0 0
\(700\) −2.04584 3.54349i −0.0773254 0.133931i
\(701\) −35.8444 −1.35382 −0.676912 0.736064i \(-0.736682\pi\)
−0.676912 + 0.736064i \(0.736682\pi\)
\(702\) 0 0
\(703\) −22.3305 −0.842212
\(704\) −5.74306 9.94727i −0.216450 0.374902i
\(705\) 0 0
\(706\) 2.46804 4.27477i 0.0928860 0.160883i
\(707\) 5.40833 9.36750i 0.203401 0.352301i
\(708\) 0 0
\(709\) 18.7569 + 32.4880i 0.704432 + 1.22011i 0.966896 + 0.255170i \(0.0821314\pi\)
−0.262465 + 0.964942i \(0.584535\pi\)
\(710\) 77.4500 2.90665
\(711\) 0 0
\(712\) 25.8167 0.967520
\(713\) 14.0917 + 24.4075i 0.527737 + 0.914068i
\(714\) 0 0
\(715\) 2.80278 4.85455i 0.104818 0.181550i
\(716\) −0.531958 + 0.921379i −0.0198802 + 0.0344335i
\(717\) 0 0
\(718\) −0.770817 1.33509i −0.0287666 0.0498253i
\(719\) 1.81665 0.0677498 0.0338749 0.999426i \(-0.489215\pi\)
0.0338749 + 0.999426i \(0.489215\pi\)
\(720\) 0 0
\(721\) −5.51388 −0.205348
\(722\) −5.94029 10.2889i −0.221075 0.382912i
\(723\) 0 0
\(724\) −0.468042 + 0.810672i −0.0173946 + 0.0301284i
\(725\) 2.66527 4.61638i 0.0989855 0.171448i
\(726\) 0 0
\(727\) −3.40833 5.90340i −0.126408 0.218945i 0.795875 0.605462i \(-0.207011\pi\)
−0.922282 + 0.386517i \(0.873678\pi\)
\(728\) 3.00000 0.111187
\(729\) 0 0
\(730\) 61.1472 2.26316
\(731\) 1.50000 + 2.59808i 0.0554795 + 0.0960933i
\(732\) 0 0
\(733\) −1.39445 + 2.41526i −0.0515051 + 0.0892095i −0.890629 0.454732i \(-0.849735\pi\)
0.839123 + 0.543941i \(0.183069\pi\)
\(734\) −0.0180802 + 0.0313158i −0.000667351 + 0.00115589i
\(735\) 0 0
\(736\) 3.31665 + 5.74461i 0.122253 + 0.211749i
\(737\) −17.6056 −0.648509
\(738\) 0 0
\(739\) 41.9083 1.54162 0.770811 0.637063i \(-0.219851\pi\)
0.770811 + 0.637063i \(0.219851\pi\)
\(740\) −2.74306 4.75112i −0.100837 0.174655i
\(741\) 0 0
\(742\) 8.40833 14.5636i 0.308679 0.534648i
\(743\) 2.54584 4.40952i 0.0933977 0.161770i −0.815541 0.578699i \(-0.803561\pi\)
0.908939 + 0.416930i \(0.136894\pi\)
\(744\) 0 0
\(745\) −17.4083 30.1521i −0.637792 1.10469i
\(746\) 26.2111 0.959657
\(747\) 0 0
\(748\) 1.69722 0.0620567
\(749\) 4.95416 + 8.58086i 0.181021 + 0.313538i
\(750\) 0 0
\(751\) 16.2708 28.1819i 0.593731 1.02837i −0.399994 0.916518i \(-0.630988\pi\)
0.993725 0.111854i \(-0.0356788\pi\)
\(752\) 1.50000 2.59808i 0.0546994 0.0947421i
\(753\) 0 0
\(754\) 0.256939 + 0.445032i 0.00935717 + 0.0162071i
\(755\) −43.9361 −1.59900
\(756\) 0 0
\(757\) 15.9361 0.579207 0.289603 0.957147i \(-0.406477\pi\)
0.289603 + 0.957147i \(0.406477\pi\)
\(758\) 11.8625 + 20.5464i 0.430865 + 0.746280i
\(759\) 0 0
\(760\) 34.2250 59.2794i 1.24147 2.15029i
\(761\) −14.2111 + 24.6144i −0.515152 + 0.892270i 0.484693 + 0.874684i \(0.338931\pi\)
−0.999845 + 0.0175854i \(0.994402\pi\)
\(762\) 0 0
\(763\) 0.743061 + 1.28702i 0.0269006 + 0.0465932i
\(764\) −0.513878 −0.0185915
\(765\) 0 0
\(766\) −30.2389 −1.09257
\(767\) 1.50000 + 2.59808i 0.0541619 + 0.0938111i
\(768\) 0 0
\(769\) 7.01388 12.1484i 0.252927 0.438082i −0.711403 0.702784i \(-0.751940\pi\)
0.964330 + 0.264702i \(0.0852734\pi\)
\(770\) −3.65139 + 6.32439i −0.131587 + 0.227915i
\(771\) 0 0
\(772\) −1.71110 2.96372i −0.0615839 0.106666i
\(773\) 11.4861 0.413127 0.206564 0.978433i \(-0.433772\pi\)
0.206564 + 0.978433i \(0.433772\pi\)
\(774\) 0 0
\(775\) 97.4500 3.50051
\(776\) −21.6333 37.4700i −0.776590 1.34509i
\(777\) 0 0
\(778\) 15.7889 27.3472i 0.566059 0.980444i
\(779\) −23.8625 + 41.3310i −0.854962 + 1.48084i
\(780\) 0 0
\(781\) 9.00000 + 15.5885i 0.322045 + 0.557799i
\(782\) 21.9083 0.783440
\(783\) 0 0
\(784\) 19.8167 0.707738
\(785\) −24.3167 42.1177i −0.867899 1.50324i
\(786\) 0 0
\(787\) −21.0139 + 36.3971i −0.749064 + 1.29742i 0.199208 + 0.979957i \(0.436163\pi\)
−0.948272 + 0.317459i \(0.897170\pi\)
\(788\) −0.275019 + 0.476347i −0.00979716 + 0.0169692i
\(789\) 0 0
\(790\) −38.9819 67.5187i −1.38691 2.40221i
\(791\) 3.00000 0.106668
\(792\) 0 0
\(793\) 2.39445 0.0850294
\(794\) 14.7431 + 25.5357i 0.523212 + 0.906229i
\(795\) 0 0
\(796\) 1.07359 1.85952i 0.0380525 0.0659088i
\(797\) −18.1972 + 31.5185i −0.644579 + 1.11644i 0.339820 + 0.940491i \(0.389634\pi\)
−0.984399 + 0.175953i \(0.943699\pi\)
\(798\) 0 0
\(799\) 1.95416 + 3.38471i 0.0691333 + 0.119742i
\(800\) 22.9361 0.810913
\(801\) 0 0
\(802\) −42.4777 −1.49994
\(803\) 7.10555 + 12.3072i 0.250749 + 0.434311i
\(804\) 0 0
\(805\) 8.40833 14.5636i 0.296355 0.513301i
\(806\) −4.69722 + 8.13583i −0.165453 + 0.286572i
\(807\) 0 0
\(808\) 16.2250 + 28.1025i 0.570793 + 0.988642i
\(809\) 43.5416 1.53084 0.765421 0.643530i \(-0.222531\pi\)
0.765421 + 0.643530i \(0.222531\pi\)
\(810\) 0 0
\(811\) −32.8167 −1.15235 −0.576174 0.817327i \(-0.695455\pi\)
−0.576174 + 0.817327i \(0.695455\pi\)
\(812\) 0.0597147 + 0.103429i 0.00209558 + 0.00362964i
\(813\) 0 0
\(814\) −3.57359 + 6.18964i −0.125254 + 0.216947i
\(815\) 48.8902 84.6804i 1.71255 2.96622i
\(816\) 0 0
\(817\) 1.84861 + 3.20189i 0.0646748 + 0.112020i
\(818\) 9.39445 0.328469
\(819\) 0 0
\(820\) −11.7250 −0.409454
\(821\) −4.30278 7.45263i −0.150168 0.260098i 0.781121 0.624379i \(-0.214648\pi\)
−0.931289 + 0.364281i \(0.881315\pi\)
\(822\) 0 0
\(823\) −5.89445 + 10.2095i −0.205468 + 0.355880i −0.950282 0.311392i \(-0.899205\pi\)
0.744814 + 0.667272i \(0.232538\pi\)
\(824\) 8.27082 14.3255i 0.288128 0.499052i
\(825\) 0 0
\(826\) −1.95416 3.38471i −0.0679940 0.117769i
\(827\) −23.6056 −0.820845 −0.410423 0.911895i \(-0.634619\pi\)
−0.410423 + 0.911895i \(0.634619\pi\)
\(828\) 0 0
\(829\) 17.6333 0.612430 0.306215 0.951962i \(-0.400937\pi\)
0.306215 + 0.951962i \(0.400937\pi\)
\(830\) 1.10555 + 1.91487i 0.0383742 + 0.0664661i
\(831\) 0 0
\(832\) −4.40833 + 7.63545i −0.152831 + 0.264711i
\(833\) −12.9083 + 22.3579i −0.447247 + 0.774655i
\(834\) 0 0
\(835\) 43.4819 + 75.3129i 1.50475 + 2.60631i
\(836\) 2.09167 0.0723420
\(837\) 0 0
\(838\) −32.2944 −1.11559
\(839\) 16.0458 + 27.7922i 0.553964 + 0.959493i 0.997983 + 0.0634763i \(0.0202187\pi\)
−0.444020 + 0.896017i \(0.646448\pi\)
\(840\) 0 0
\(841\) 14.4222 24.9800i 0.497317 0.861379i
\(842\) −22.0278 + 38.1532i −0.759127 + 1.31485i
\(843\) 0 0
\(844\) 1.68335 + 2.91564i 0.0579432 + 0.100361i
\(845\) −4.30278 −0.148020
\(846\) 0 0
\(847\) 9.30278 0.319647
\(848\) 21.3167 + 36.9215i 0.732017 + 1.26789i
\(849\) 0 0
\(850\) 37.8764 65.6038i 1.29915 2.25019i
\(851\) 8.22918 14.2534i 0.282093 0.488599i
\(852\) 0 0
\(853\) 17.0597 + 29.5483i 0.584114 + 1.01171i 0.994985 + 0.100021i \(0.0318910\pi\)
−0.410872 + 0.911693i \(0.634776\pi\)
\(854\) −3.11943 −0.106745
\(855\) 0 0
\(856\) −29.7250 −1.01598
\(857\) −15.5736 26.9743i −0.531984 0.921423i −0.999303 0.0373342i \(-0.988113\pi\)
0.467319 0.884089i \(-0.345220\pi\)
\(858\) 0 0
\(859\) −4.19722 + 7.26981i −0.143207 + 0.248043i −0.928703 0.370825i \(-0.879075\pi\)
0.785495 + 0.618868i \(0.212408\pi\)
\(860\) −0.454163 + 0.786634i −0.0154868 + 0.0268240i
\(861\) 0 0
\(862\) 18.7708 + 32.5120i 0.639337 + 1.10736i
\(863\) 21.3944 0.728276 0.364138 0.931345i \(-0.381364\pi\)
0.364138 + 0.931345i \(0.381364\pi\)
\(864\) 0 0
\(865\) 16.8167 0.571783
\(866\) 6.43608 + 11.1476i 0.218707 + 0.378812i
\(867\) 0 0
\(868\) −1.09167 + 1.89083i −0.0370538 + 0.0641791i
\(869\) 9.05971 15.6919i 0.307330 0.532311i
\(870\) 0 0
\(871\) 6.75694 + 11.7034i 0.228950 + 0.396553i
\(872\) −4.45837 −0.150979
\(873\) 0 0
\(874\) 27.0000 0.913289
\(875\) −18.3167 31.7254i −0.619216 1.07251i
\(876\) 0 0
\(877\) −1.31665 + 2.28051i −0.0444602 + 0.0770074i −0.887399 0.461002i \(-0.847490\pi\)
0.842939 + 0.538009i \(0.180823\pi\)
\(878\) 18.2389 31.5906i 0.615532 1.06613i
\(879\) 0 0
\(880\) −9.25694 16.0335i −0.312051 0.540489i
\(881\) −19.9722 −0.672882 −0.336441 0.941705i \(-0.609223\pi\)
−0.336441 + 0.941705i \(0.609223\pi\)
\(882\) 0 0
\(883\) −17.6972 −0.595559 −0.297780 0.954635i \(-0.596246\pi\)
−0.297780 + 0.954635i \(0.596246\pi\)
\(884\) −0.651388 1.12824i −0.0219085 0.0379467i
\(885\) 0 0
\(886\) 14.3486 24.8525i 0.482051 0.834937i
\(887\) −0.591673 + 1.02481i −0.0198664 + 0.0344097i −0.875788 0.482696i \(-0.839657\pi\)
0.855921 + 0.517106i \(0.172991\pi\)
\(888\) 0 0
\(889\) 5.50000 + 9.52628i 0.184464 + 0.319501i
\(890\) 48.2389 1.61697
\(891\) 0 0
\(892\) 5.55004 0.185829
\(893\) 2.40833 + 4.17134i 0.0805916 + 0.139589i
\(894\) 0 0
\(895\) −7.55971 + 13.0938i −0.252693 + 0.437678i
\(896\) 4.04584 7.00759i 0.135162 0.234107i
\(897\) 0 0
\(898\) 19.2847 + 33.4021i 0.643539 + 1.11464i
\(899\) −2.84441 −0.0948664
\(900\) 0 0
\(901\) −55.5416 −1.85036
\(902\) 7.63751 + 13.2286i 0.254301 + 0.440463i
\(903\) 0 0
\(904\) −4.50000 + 7.79423i −0.149668 + 0.259232i
\(905\) −6.65139 + 11.5205i −0.221100 + 0.382956i
\(906\) 0 0
\(907\) −7.39445 12.8076i −0.245529 0.425268i 0.716751 0.697329i \(-0.245628\pi\)
−0.962280 + 0.272061i \(0.912295\pi\)
\(908\) −1.85281 −0.0614878
\(909\) 0 0
\(910\) 5.60555 0.185822
\(911\) 1.83473 + 3.17785i 0.0607874 + 0.105287i 0.894818 0.446432i \(-0.147305\pi\)
−0.834030 + 0.551719i \(0.813972\pi\)
\(912\) 0 0
\(913\) −0.256939 + 0.445032i −0.00850344 + 0.0147284i
\(914\) −22.7986 + 39.4883i −0.754110 + 1.30616i
\(915\) 0 0
\(916\) −1.19722 2.07365i −0.0395574 0.0685154i
\(917\) −14.2111 −0.469292
\(918\) 0 0
\(919\) 8.78890 0.289919 0.144959 0.989438i \(-0.453695\pi\)
0.144959 + 0.989438i \(0.453695\pi\)
\(920\) 25.2250 + 43.6909i 0.831643 + 1.44045i
\(921\) 0 0
\(922\) 17.1514 29.7071i 0.564851 0.978350i
\(923\) 6.90833 11.9656i 0.227390 0.393852i
\(924\) 0 0
\(925\) −28.4542 49.2841i −0.935567 1.62045i
\(926\) −29.3305 −0.963861
\(927\) 0 0
\(928\) −0.669468 −0.0219764
\(929\) 9.59167 + 16.6133i 0.314693 + 0.545064i 0.979372 0.202065i \(-0.0647652\pi\)
−0.664680 + 0.747129i \(0.731432\pi\)
\(930\) 0 0
\(931\) −15.9083 + 27.5540i −0.521374 + 0.903047i
\(932\) 1.51808 2.62939i 0.0497264 0.0861286i
\(933\) 0 0
\(934\) −10.9542 18.9732i −0.358431 0.620821i
\(935\) 24.1194 0.788790
\(936\) 0 0
\(937\) 57.5416 1.87980 0.939902 0.341445i \(-0.110916\pi\)
0.939902 + 0.341445i \(0.110916\pi\)
\(938\) −8.80278 15.2469i −0.287421 0.497827i
\(939\) 0 0
\(940\) −0.591673 + 1.02481i −0.0192982 + 0.0334255i
\(941\) −15.5139 + 26.8708i −0.505738 + 0.875964i 0.494240 + 0.869326i \(0.335446\pi\)
−0.999978 + 0.00663836i \(0.997887\pi\)
\(942\) 0 0
\(943\) −17.5875 30.4624i −0.572727 0.991992i
\(944\) 9.90833 0.322489
\(945\) 0 0
\(946\) 1.18335 0.0384739
\(947\) 24.3167 + 42.1177i 0.790185 + 1.36864i 0.925852 + 0.377886i \(0.123349\pi\)
−0.135667 + 0.990754i \(0.543318\pi\)
\(948\) 0 0
\(949\) 5.45416 9.44689i 0.177050 0.306659i
\(950\) 46.6791 80.8506i 1.51447 2.62314i
\(951\) 0 0
\(952\) 6.45416 + 11.1789i 0.209181 + 0.362311i
\(953\) 30.0000 0.971795 0.485898 0.874016i \(-0.338493\pi\)
0.485898 + 0.874016i \(0.338493\pi\)
\(954\) 0 0
\(955\) −7.30278 −0.236312
\(956\) −0.729183 1.26298i −0.0235835 0.0408477i
\(957\) 0 0
\(958\) 11.5458 19.9980i 0.373029 0.646105i
\(959\) 3.90833 6.76942i 0.126206 0.218596i
\(960\) 0 0
\(961\) −10.5000 18.1865i −0.338710 0.586662i
\(962\) 5.48612 0.176880
\(963\) 0 0
\(964\) 3.18335 0.102529
\(965\) −24.3167 42.1177i −0.782781 1.35582i
\(966\) 0 0
\(967\) −1.90833 + 3.30532i −0.0613677 + 0.106292i −0.895077 0.445912i \(-0.852880\pi\)
0.833709 + 0.552204i \(0.186213\pi\)
\(968\) −13.9542 + 24.1693i −0.448504 + 0.776831i
\(969\) 0 0
\(970\) −40.4222 70.0133i −1.29788 2.24799i
\(971\) −42.0000 −1.34784 −0.673922 0.738802i \(-0.735392\pi\)
−0.673922 + 0.738802i \(0.735392\pi\)
\(972\) 0 0
\(973\) 14.0278 0.449709
\(974\) −27.6333 47.8623i −0.885428 1.53361i
\(975\) 0 0
\(976\) 3.95416 6.84881i 0.126570 0.219225i
\(977\) 5.09167 8.81904i 0.162897 0.282146i −0.773009 0.634395i \(-0.781249\pi\)
0.935906 + 0.352249i \(0.114583\pi\)
\(978\) 0 0
\(979\) 5.60555 + 9.70910i 0.179154 + 0.310304i
\(980\) −7.81665 −0.249694
\(981\) 0 0
\(982\) 51.9916 1.65912
\(983\) −21.5139 37.2631i −0.686186 1.18851i −0.973062 0.230542i \(-0.925950\pi\)
0.286876 0.957968i \(-0.407383\pi\)
\(984\) 0 0
\(985\) −3.90833 + 6.76942i −0.124530 + 0.215692i
\(986\) −1.10555 + 1.91487i −0.0352079 + 0.0609819i
\(987\) 0 0
\(988\) −0.802776 1.39045i −0.0255397 0.0442360i
\(989\) −2.72498 −0.0866493
\(990\) 0 0
\(991\) −11.4222 −0.362838 −0.181419 0.983406i \(-0.558069\pi\)
−0.181419 + 0.983406i \(0.558069\pi\)
\(992\) −6.11943 10.5992i −0.194292 0.336524i
\(993\) 0 0
\(994\) −9.00000 + 15.5885i −0.285463 + 0.494436i
\(995\) 15.2569 26.4258i 0.483677 0.837754i
\(996\) 0 0
\(997\) 22.6653 + 39.2574i 0.717816 + 1.24329i 0.961863 + 0.273531i \(0.0881915\pi\)
−0.244047 + 0.969763i \(0.578475\pi\)
\(998\) 21.9916 0.696132
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1053.2.e.j.352.1 4
3.2 odd 2 1053.2.e.f.352.2 4
9.2 odd 6 1053.2.e.f.703.2 4
9.4 even 3 351.2.a.b.1.2 2
9.5 odd 6 351.2.a.d.1.1 yes 2
9.7 even 3 inner 1053.2.e.j.703.1 4
36.23 even 6 5616.2.a.bz.1.2 2
36.31 odd 6 5616.2.a.bi.1.1 2
45.4 even 6 8775.2.a.bd.1.1 2
45.14 odd 6 8775.2.a.w.1.2 2
117.77 odd 6 4563.2.a.i.1.2 2
117.103 even 6 4563.2.a.q.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
351.2.a.b.1.2 2 9.4 even 3
351.2.a.d.1.1 yes 2 9.5 odd 6
1053.2.e.f.352.2 4 3.2 odd 2
1053.2.e.f.703.2 4 9.2 odd 6
1053.2.e.j.352.1 4 1.1 even 1 trivial
1053.2.e.j.703.1 4 9.7 even 3 inner
4563.2.a.i.1.2 2 117.77 odd 6
4563.2.a.q.1.1 2 117.103 even 6
5616.2.a.bi.1.1 2 36.31 odd 6
5616.2.a.bz.1.2 2 36.23 even 6
8775.2.a.w.1.2 2 45.14 odd 6
8775.2.a.bd.1.1 2 45.4 even 6