Properties

Label 1053.2.e.j
Level $1053$
Weight $2$
Character orbit 1053.e
Analytic conductor $8.408$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1053,2,Mod(352,1053)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1053, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1053.352"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1,0,-3,5,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.40824733284\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{13})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 351)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{3} + \beta_{2} + \beta_1 - 1) q^{4} + (\beta_{3} - 3 \beta_{2} + \beta_1 - 1) q^{5} + (\beta_{2} + 1) q^{7} - 3 q^{8} + ( - 2 \beta_{3} - 1) q^{10} + \beta_1 q^{11} + \beta_{2} q^{13}+ \cdots + ( - 6 \beta_{3} + 6) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 3 q^{4} + 5 q^{5} + 2 q^{7} - 12 q^{8} - 8 q^{10} + q^{11} - 2 q^{13} - q^{14} + 3 q^{16} - 10 q^{17} - 14 q^{19} + q^{20} - 7 q^{22} - 3 q^{23} - 9 q^{25} - 2 q^{26} - 6 q^{28} + 8 q^{29}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 4\nu^{2} - 4\nu - 3 ) / 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 7 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 3\beta_{2} + \beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{3} - 7 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1053\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(730\)
\(\chi(n)\) \(\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
352.1
−0.651388 1.12824i
1.15139 + 1.99426i
−0.651388 + 1.12824i
1.15139 1.99426i
−0.651388 1.12824i 0 0.151388 0.262211i 2.15139 3.72631i 0 0.500000 + 0.866025i −3.00000 0 −5.60555
352.2 1.15139 + 1.99426i 0 −1.65139 + 2.86029i 0.348612 0.603814i 0 0.500000 + 0.866025i −3.00000 0 1.60555
703.1 −0.651388 + 1.12824i 0 0.151388 + 0.262211i 2.15139 + 3.72631i 0 0.500000 0.866025i −3.00000 0 −5.60555
703.2 1.15139 1.99426i 0 −1.65139 2.86029i 0.348612 + 0.603814i 0 0.500000 0.866025i −3.00000 0 1.60555
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1053.2.e.j 4
3.b odd 2 1 1053.2.e.f 4
9.c even 3 1 351.2.a.b 2
9.c even 3 1 inner 1053.2.e.j 4
9.d odd 6 1 351.2.a.d yes 2
9.d odd 6 1 1053.2.e.f 4
36.f odd 6 1 5616.2.a.bi 2
36.h even 6 1 5616.2.a.bz 2
45.h odd 6 1 8775.2.a.w 2
45.j even 6 1 8775.2.a.bd 2
117.n odd 6 1 4563.2.a.i 2
117.t even 6 1 4563.2.a.q 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
351.2.a.b 2 9.c even 3 1
351.2.a.d yes 2 9.d odd 6 1
1053.2.e.f 4 3.b odd 2 1
1053.2.e.f 4 9.d odd 6 1
1053.2.e.j 4 1.a even 1 1 trivial
1053.2.e.j 4 9.c even 3 1 inner
4563.2.a.i 2 117.n odd 6 1
4563.2.a.q 2 117.t even 6 1
5616.2.a.bi 2 36.f odd 6 1
5616.2.a.bz 2 36.h even 6 1
8775.2.a.w 2 45.h odd 6 1
8775.2.a.bd 2 45.j even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1053, [\chi])\):

\( T_{2}^{4} - T_{2}^{3} + 4T_{2}^{2} + 3T_{2} + 9 \) Copy content Toggle raw display
\( T_{5}^{4} - 5T_{5}^{3} + 22T_{5}^{2} - 15T_{5} + 9 \) Copy content Toggle raw display
\( T_{7}^{2} - T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{3} + 4 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 5 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - T^{3} + 4 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$13$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 5 T + 3)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 7 T + 9)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 3 T^{3} + \cdots + 729 \) Copy content Toggle raw display
$29$ \( T^{4} - 8 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$31$ \( T^{4} + 52T^{2} + 2704 \) Copy content Toggle raw display
$37$ \( (T^{2} + 6 T - 43)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 9 T + 81)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 5 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$47$ \( T^{4} - 9 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$53$ \( (T^{2} - 15 T + 27)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 12 T^{3} + \cdots + 529 \) Copy content Toggle raw display
$67$ \( T^{4} - 9 T^{3} + \cdots + 3721 \) Copy content Toggle raw display
$71$ \( (T^{2} + 6 T - 108)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 11 T + 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - 17 T^{3} + \cdots + 1849 \) Copy content Toggle raw display
$83$ \( T^{4} + 8 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$89$ \( (T^{2} + 10 T + 12)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 208 T^{2} + 43264 \) Copy content Toggle raw display
show more
show less