Properties

Label 1053.2.a.n
Level $1053$
Weight $2$
Character orbit 1053.a
Self dual yes
Analytic conductor $8.408$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1053,2,Mod(1,1053)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1053, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1053.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,14,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.40824733284\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.316689813504.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 15x^{6} + 68x^{4} - 87x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 2) q^{4} + ( - \beta_{7} + \beta_1) q^{5} + ( - \beta_{6} + 1) q^{7} + ( - \beta_{4} + \beta_{3} + 2 \beta_1) q^{8} + ( - \beta_{5} + \beta_{2} + 3) q^{10} + ( - 2 \beta_{4} - 2 \beta_{3} + \beta_1) q^{11}+ \cdots + ( - \beta_{7} + 7 \beta_{4} + 5 \beta_{3}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 14 q^{4} + 6 q^{7} + 22 q^{10} - 8 q^{13} + 30 q^{16} + 10 q^{22} + 18 q^{25} + 14 q^{28} - 2 q^{31} - 18 q^{34} + 26 q^{37} + 34 q^{40} + 44 q^{43} - 28 q^{46} + 2 q^{49} - 14 q^{52} + 18 q^{55}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 15x^{6} + 68x^{4} - 87x^{2} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{7} + 10\nu^{5} - 18\nu^{3} - 23\nu ) / 10 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} + 10\nu^{5} - 28\nu^{3} + 37\nu ) / 10 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{4} - 7\nu^{2} + 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} - 10\nu^{4} + 24\nu^{2} - 11 ) / 2 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{7} + 15\nu^{5} - 63\nu^{3} + 52\nu ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{4} + \beta_{3} + 6\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} + 7\beta_{2} + 24 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{7} - 9\beta_{4} + 7\beta_{3} + 39\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 2\beta_{6} + 10\beta_{5} + 46\beta_{2} + 155 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 10\beta_{7} - 72\beta_{4} + 42\beta_{3} + 259\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.61501
−2.51527
−1.19641
−0.635374
0.635374
1.19641
2.51527
2.61501
−2.61501 0 4.83829 −1.12586 0 −1.63517 −7.42216 0 2.94412
1.2 −2.51527 0 4.32660 −2.22119 0 4.09627 −5.85205 0 5.58691
1.3 −1.19641 0 −0.568591 −3.67961 0 −1.89868 3.07310 0 4.40234
1.4 −0.635374 0 −1.59630 3.04290 0 2.43758 2.28499 0 −1.93338
1.5 0.635374 0 −1.59630 −3.04290 0 2.43758 −2.28499 0 −1.93338
1.6 1.19641 0 −0.568591 3.67961 0 −1.89868 −3.07310 0 4.40234
1.7 2.51527 0 4.32660 2.22119 0 4.09627 5.85205 0 5.58691
1.8 2.61501 0 4.83829 1.12586 0 −1.63517 7.42216 0 2.94412
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1053.2.a.n 8
3.b odd 2 1 inner 1053.2.a.n 8
9.c even 3 2 1053.2.e.s 16
9.d odd 6 2 1053.2.e.s 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1053.2.a.n 8 1.a even 1 1 trivial
1053.2.a.n 8 3.b odd 2 1 inner
1053.2.e.s 16 9.c even 3 2
1053.2.e.s 16 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} - 15T_{2}^{6} + 68T_{2}^{4} - 87T_{2}^{2} + 25 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1053))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 15 T^{6} + \cdots + 25 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} - 29 T^{6} + \cdots + 784 \) Copy content Toggle raw display
$7$ \( (T^{4} - 3 T^{3} - 10 T^{2} + \cdots + 31)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} - 91 T^{6} + \cdots + 17689 \) Copy content Toggle raw display
$13$ \( (T + 1)^{8} \) Copy content Toggle raw display
$17$ \( T^{8} - 54 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$19$ \( (T^{4} - 28 T^{2} + 12 T + 7)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} - 61 T^{6} + \cdots + 40000 \) Copy content Toggle raw display
$29$ \( T^{8} - 103 T^{6} + \cdots + 85849 \) Copy content Toggle raw display
$31$ \( (T^{4} + T^{3} - 79 T^{2} + \cdots + 100)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - 13 T^{3} + \cdots + 64)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} - 273 T^{6} + \cdots + 3136 \) Copy content Toggle raw display
$43$ \( (T^{4} - 22 T^{3} + \cdots - 2276)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} - 110 T^{6} + \cdots + 3136 \) Copy content Toggle raw display
$53$ \( T^{8} - 250 T^{6} + \cdots + 2704 \) Copy content Toggle raw display
$59$ \( T^{8} - 144 T^{6} + \cdots + 182329 \) Copy content Toggle raw display
$61$ \( (T^{4} + T^{3} - 124 T^{2} + \cdots - 1091)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 31 T^{3} + \cdots - 2396)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} - 256 T^{6} + \cdots + 436921 \) Copy content Toggle raw display
$73$ \( (T^{4} - 181 T^{2} + \cdots + 304)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 24 T^{3} + \cdots - 356)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} - 288 T^{6} + \cdots + 7070281 \) Copy content Toggle raw display
$89$ \( T^{8} - 545 T^{6} + \cdots + 23541904 \) Copy content Toggle raw display
$97$ \( (T^{4} + 2 T^{3} + \cdots + 544)^{2} \) Copy content Toggle raw display
show more
show less