Properties

Label 1053.2.a.j.1.4
Level $1053$
Weight $2$
Character 1053.1
Self dual yes
Analytic conductor $8.408$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1053,2,Mod(1,1053)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1053.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1053, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-2,0,4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.40824733284\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.403137.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 6x^{2} + 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 117)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.13107\) of defining polynomial
Character \(\chi\) \(=\) 1053.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.13107 q^{2} -0.720682 q^{4} -2.38757 q^{5} +4.08809 q^{7} -3.07728 q^{8} -2.70051 q^{10} -3.85439 q^{11} +1.00000 q^{13} +4.62391 q^{14} -2.03925 q^{16} -2.15906 q^{17} -0.284952 q^{19} +1.72068 q^{20} -4.35959 q^{22} -3.58961 q^{23} +0.700513 q^{25} +1.13107 q^{26} -2.94621 q^{28} -2.97719 q^{29} -10.0198 q^{31} +3.84802 q^{32} -2.44204 q^{34} -9.76061 q^{35} -7.86324 q^{37} -0.322300 q^{38} +7.34724 q^{40} -5.57508 q^{41} -2.82330 q^{43} +2.77779 q^{44} -4.06010 q^{46} +8.42079 q^{47} +9.71246 q^{49} +0.792328 q^{50} -0.720682 q^{52} +4.34724 q^{53} +9.20266 q^{55} -12.5802 q^{56} -3.36741 q^{58} -9.58656 q^{59} -7.68666 q^{61} -11.3330 q^{62} +8.43089 q^{64} -2.38757 q^{65} +1.46153 q^{67} +1.55599 q^{68} -11.0399 q^{70} +8.81244 q^{71} +15.7860 q^{73} -8.89387 q^{74} +0.205360 q^{76} -15.7571 q^{77} +9.82962 q^{79} +4.86887 q^{80} -6.30580 q^{82} -0.672933 q^{83} +5.15491 q^{85} -3.19335 q^{86} +11.8611 q^{88} -3.26322 q^{89} +4.08809 q^{91} +2.58697 q^{92} +9.52450 q^{94} +0.680343 q^{95} -8.87777 q^{97} +10.9855 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 4 q^{4} - q^{5} - 2 q^{7} - 12 q^{8} - 2 q^{10} - 11 q^{11} + 5 q^{13} + 5 q^{14} + 10 q^{16} - 7 q^{17} + 3 q^{19} + q^{20} - 7 q^{22} - 18 q^{23} - 8 q^{25} - 2 q^{26} - 19 q^{28} - 4 q^{29}+ \cdots + 39 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.13107 0.799787 0.399893 0.916562i \(-0.369047\pi\)
0.399893 + 0.916562i \(0.369047\pi\)
\(3\) 0 0
\(4\) −0.720682 −0.360341
\(5\) −2.38757 −1.06776 −0.533878 0.845562i \(-0.679266\pi\)
−0.533878 + 0.845562i \(0.679266\pi\)
\(6\) 0 0
\(7\) 4.08809 1.54515 0.772576 0.634922i \(-0.218968\pi\)
0.772576 + 0.634922i \(0.218968\pi\)
\(8\) −3.07728 −1.08798
\(9\) 0 0
\(10\) −2.70051 −0.853977
\(11\) −3.85439 −1.16214 −0.581072 0.813852i \(-0.697366\pi\)
−0.581072 + 0.813852i \(0.697366\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 4.62391 1.23579
\(15\) 0 0
\(16\) −2.03925 −0.509813
\(17\) −2.15906 −0.523648 −0.261824 0.965116i \(-0.584324\pi\)
−0.261824 + 0.965116i \(0.584324\pi\)
\(18\) 0 0
\(19\) −0.284952 −0.0653724 −0.0326862 0.999466i \(-0.510406\pi\)
−0.0326862 + 0.999466i \(0.510406\pi\)
\(20\) 1.72068 0.384756
\(21\) 0 0
\(22\) −4.35959 −0.929467
\(23\) −3.58961 −0.748486 −0.374243 0.927331i \(-0.622097\pi\)
−0.374243 + 0.927331i \(0.622097\pi\)
\(24\) 0 0
\(25\) 0.700513 0.140103
\(26\) 1.13107 0.221821
\(27\) 0 0
\(28\) −2.94621 −0.556781
\(29\) −2.97719 −0.552850 −0.276425 0.961036i \(-0.589150\pi\)
−0.276425 + 0.961036i \(0.589150\pi\)
\(30\) 0 0
\(31\) −10.0198 −1.79960 −0.899801 0.436300i \(-0.856289\pi\)
−0.899801 + 0.436300i \(0.856289\pi\)
\(32\) 3.84802 0.680241
\(33\) 0 0
\(34\) −2.44204 −0.418807
\(35\) −9.76061 −1.64984
\(36\) 0 0
\(37\) −7.86324 −1.29271 −0.646354 0.763038i \(-0.723707\pi\)
−0.646354 + 0.763038i \(0.723707\pi\)
\(38\) −0.322300 −0.0522840
\(39\) 0 0
\(40\) 7.34724 1.16170
\(41\) −5.57508 −0.870681 −0.435340 0.900266i \(-0.643372\pi\)
−0.435340 + 0.900266i \(0.643372\pi\)
\(42\) 0 0
\(43\) −2.82330 −0.430550 −0.215275 0.976553i \(-0.569065\pi\)
−0.215275 + 0.976553i \(0.569065\pi\)
\(44\) 2.77779 0.418768
\(45\) 0 0
\(46\) −4.06010 −0.598629
\(47\) 8.42079 1.22830 0.614149 0.789190i \(-0.289499\pi\)
0.614149 + 0.789190i \(0.289499\pi\)
\(48\) 0 0
\(49\) 9.71246 1.38749
\(50\) 0.792328 0.112052
\(51\) 0 0
\(52\) −0.720682 −0.0999406
\(53\) 4.34724 0.597139 0.298569 0.954388i \(-0.403491\pi\)
0.298569 + 0.954388i \(0.403491\pi\)
\(54\) 0 0
\(55\) 9.20266 1.24089
\(56\) −12.5802 −1.68110
\(57\) 0 0
\(58\) −3.36741 −0.442162
\(59\) −9.58656 −1.24806 −0.624032 0.781399i \(-0.714507\pi\)
−0.624032 + 0.781399i \(0.714507\pi\)
\(60\) 0 0
\(61\) −7.68666 −0.984175 −0.492088 0.870546i \(-0.663766\pi\)
−0.492088 + 0.870546i \(0.663766\pi\)
\(62\) −11.3330 −1.43930
\(63\) 0 0
\(64\) 8.43089 1.05386
\(65\) −2.38757 −0.296142
\(66\) 0 0
\(67\) 1.46153 0.178555 0.0892773 0.996007i \(-0.471544\pi\)
0.0892773 + 0.996007i \(0.471544\pi\)
\(68\) 1.55599 0.188692
\(69\) 0 0
\(70\) −11.0399 −1.31952
\(71\) 8.81244 1.04584 0.522922 0.852381i \(-0.324842\pi\)
0.522922 + 0.852381i \(0.324842\pi\)
\(72\) 0 0
\(73\) 15.7860 1.84761 0.923806 0.382860i \(-0.125061\pi\)
0.923806 + 0.382860i \(0.125061\pi\)
\(74\) −8.89387 −1.03389
\(75\) 0 0
\(76\) 0.205360 0.0235564
\(77\) −15.7571 −1.79569
\(78\) 0 0
\(79\) 9.82962 1.10592 0.552959 0.833208i \(-0.313499\pi\)
0.552959 + 0.833208i \(0.313499\pi\)
\(80\) 4.86887 0.544356
\(81\) 0 0
\(82\) −6.30580 −0.696359
\(83\) −0.672933 −0.0738640 −0.0369320 0.999318i \(-0.511758\pi\)
−0.0369320 + 0.999318i \(0.511758\pi\)
\(84\) 0 0
\(85\) 5.15491 0.559128
\(86\) −3.19335 −0.344348
\(87\) 0 0
\(88\) 11.8611 1.26439
\(89\) −3.26322 −0.345901 −0.172951 0.984931i \(-0.555330\pi\)
−0.172951 + 0.984931i \(0.555330\pi\)
\(90\) 0 0
\(91\) 4.08809 0.428548
\(92\) 2.58697 0.269710
\(93\) 0 0
\(94\) 9.52450 0.982377
\(95\) 0.680343 0.0698018
\(96\) 0 0
\(97\) −8.87777 −0.901401 −0.450701 0.892675i \(-0.648826\pi\)
−0.450701 + 0.892675i \(0.648826\pi\)
\(98\) 10.9855 1.10970
\(99\) 0 0
\(100\) −0.504847 −0.0504847
\(101\) −12.1870 −1.21265 −0.606325 0.795217i \(-0.707357\pi\)
−0.606325 + 0.795217i \(0.707357\pi\)
\(102\) 0 0
\(103\) −12.7337 −1.25469 −0.627346 0.778741i \(-0.715859\pi\)
−0.627346 + 0.778741i \(0.715859\pi\)
\(104\) −3.07728 −0.301752
\(105\) 0 0
\(106\) 4.91703 0.477584
\(107\) −6.83490 −0.660755 −0.330378 0.943849i \(-0.607176\pi\)
−0.330378 + 0.943849i \(0.607176\pi\)
\(108\) 0 0
\(109\) −9.06573 −0.868340 −0.434170 0.900831i \(-0.642958\pi\)
−0.434170 + 0.900831i \(0.642958\pi\)
\(110\) 10.4088 0.992444
\(111\) 0 0
\(112\) −8.33665 −0.787739
\(113\) 13.2336 1.24492 0.622458 0.782653i \(-0.286134\pi\)
0.622458 + 0.782653i \(0.286134\pi\)
\(114\) 0 0
\(115\) 8.57047 0.799200
\(116\) 2.14561 0.199214
\(117\) 0 0
\(118\) −10.8431 −0.998185
\(119\) −8.82641 −0.809116
\(120\) 0 0
\(121\) 3.85636 0.350578
\(122\) −8.69414 −0.787131
\(123\) 0 0
\(124\) 7.22106 0.648471
\(125\) 10.2653 0.918161
\(126\) 0 0
\(127\) 18.9491 1.68146 0.840732 0.541451i \(-0.182125\pi\)
0.840732 + 0.541451i \(0.182125\pi\)
\(128\) 1.83987 0.162623
\(129\) 0 0
\(130\) −2.70051 −0.236851
\(131\) 17.5627 1.53446 0.767229 0.641374i \(-0.221635\pi\)
0.767229 + 0.641374i \(0.221635\pi\)
\(132\) 0 0
\(133\) −1.16491 −0.101010
\(134\) 1.65310 0.142806
\(135\) 0 0
\(136\) 6.64402 0.569720
\(137\) 0.766194 0.0654604 0.0327302 0.999464i \(-0.489580\pi\)
0.0327302 + 0.999464i \(0.489580\pi\)
\(138\) 0 0
\(139\) 14.5425 1.23348 0.616739 0.787168i \(-0.288453\pi\)
0.616739 + 0.787168i \(0.288453\pi\)
\(140\) 7.03430 0.594507
\(141\) 0 0
\(142\) 9.96748 0.836452
\(143\) −3.85439 −0.322321
\(144\) 0 0
\(145\) 7.10826 0.590309
\(146\) 17.8551 1.47770
\(147\) 0 0
\(148\) 5.66689 0.465816
\(149\) −2.52439 −0.206806 −0.103403 0.994640i \(-0.532973\pi\)
−0.103403 + 0.994640i \(0.532973\pi\)
\(150\) 0 0
\(151\) −6.21020 −0.505379 −0.252690 0.967547i \(-0.581315\pi\)
−0.252690 + 0.967547i \(0.581315\pi\)
\(152\) 0.876876 0.0711241
\(153\) 0 0
\(154\) −17.8224 −1.43617
\(155\) 23.9229 1.92154
\(156\) 0 0
\(157\) −2.67857 −0.213773 −0.106886 0.994271i \(-0.534088\pi\)
−0.106886 + 0.994271i \(0.534088\pi\)
\(158\) 11.1180 0.884499
\(159\) 0 0
\(160\) −9.18744 −0.726331
\(161\) −14.6746 −1.15652
\(162\) 0 0
\(163\) −0.158596 −0.0124222 −0.00621109 0.999981i \(-0.501977\pi\)
−0.00621109 + 0.999981i \(0.501977\pi\)
\(164\) 4.01786 0.313742
\(165\) 0 0
\(166\) −0.761134 −0.0590755
\(167\) 10.7146 0.829119 0.414560 0.910022i \(-0.363936\pi\)
0.414560 + 0.910022i \(0.363936\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 5.83056 0.447183
\(171\) 0 0
\(172\) 2.03470 0.155145
\(173\) 10.1673 0.773008 0.386504 0.922288i \(-0.373683\pi\)
0.386504 + 0.922288i \(0.373683\pi\)
\(174\) 0 0
\(175\) 2.86376 0.216480
\(176\) 7.86009 0.592476
\(177\) 0 0
\(178\) −3.69093 −0.276647
\(179\) −6.34718 −0.474411 −0.237205 0.971460i \(-0.576231\pi\)
−0.237205 + 0.971460i \(0.576231\pi\)
\(180\) 0 0
\(181\) −7.20318 −0.535408 −0.267704 0.963501i \(-0.586265\pi\)
−0.267704 + 0.963501i \(0.586265\pi\)
\(182\) 4.62391 0.342747
\(183\) 0 0
\(184\) 11.0462 0.814340
\(185\) 18.7741 1.38030
\(186\) 0 0
\(187\) 8.32185 0.608554
\(188\) −6.06871 −0.442606
\(189\) 0 0
\(190\) 0.769516 0.0558265
\(191\) −3.63551 −0.263056 −0.131528 0.991312i \(-0.541988\pi\)
−0.131528 + 0.991312i \(0.541988\pi\)
\(192\) 0 0
\(193\) 3.91260 0.281635 0.140818 0.990036i \(-0.455027\pi\)
0.140818 + 0.990036i \(0.455027\pi\)
\(194\) −10.0414 −0.720929
\(195\) 0 0
\(196\) −6.99959 −0.499971
\(197\) −6.56674 −0.467861 −0.233930 0.972253i \(-0.575159\pi\)
−0.233930 + 0.972253i \(0.575159\pi\)
\(198\) 0 0
\(199\) −1.95403 −0.138517 −0.0692587 0.997599i \(-0.522063\pi\)
−0.0692587 + 0.997599i \(0.522063\pi\)
\(200\) −2.15567 −0.152429
\(201\) 0 0
\(202\) −13.7843 −0.969862
\(203\) −12.1710 −0.854237
\(204\) 0 0
\(205\) 13.3109 0.929674
\(206\) −14.4027 −1.00349
\(207\) 0 0
\(208\) −2.03925 −0.141397
\(209\) 1.09832 0.0759721
\(210\) 0 0
\(211\) −20.2167 −1.39177 −0.695887 0.718152i \(-0.744988\pi\)
−0.695887 + 0.718152i \(0.744988\pi\)
\(212\) −3.13297 −0.215174
\(213\) 0 0
\(214\) −7.73075 −0.528463
\(215\) 6.74085 0.459722
\(216\) 0 0
\(217\) −40.9617 −2.78066
\(218\) −10.2540 −0.694487
\(219\) 0 0
\(220\) −6.63219 −0.447142
\(221\) −2.15906 −0.145234
\(222\) 0 0
\(223\) 6.25697 0.418997 0.209499 0.977809i \(-0.432817\pi\)
0.209499 + 0.977809i \(0.432817\pi\)
\(224\) 15.7311 1.05108
\(225\) 0 0
\(226\) 14.9682 0.995667
\(227\) −7.24083 −0.480591 −0.240295 0.970700i \(-0.577244\pi\)
−0.240295 + 0.970700i \(0.577244\pi\)
\(228\) 0 0
\(229\) −2.27151 −0.150106 −0.0750530 0.997180i \(-0.523913\pi\)
−0.0750530 + 0.997180i \(0.523913\pi\)
\(230\) 9.69379 0.639190
\(231\) 0 0
\(232\) 9.16164 0.601491
\(233\) 13.9715 0.915303 0.457651 0.889132i \(-0.348691\pi\)
0.457651 + 0.889132i \(0.348691\pi\)
\(234\) 0 0
\(235\) −20.1053 −1.31152
\(236\) 6.90886 0.449729
\(237\) 0 0
\(238\) −9.98328 −0.647120
\(239\) −26.5289 −1.71601 −0.858007 0.513638i \(-0.828297\pi\)
−0.858007 + 0.513638i \(0.828297\pi\)
\(240\) 0 0
\(241\) −4.00110 −0.257733 −0.128867 0.991662i \(-0.541134\pi\)
−0.128867 + 0.991662i \(0.541134\pi\)
\(242\) 4.36181 0.280388
\(243\) 0 0
\(244\) 5.53963 0.354639
\(245\) −23.1892 −1.48150
\(246\) 0 0
\(247\) −0.284952 −0.0181310
\(248\) 30.8336 1.95794
\(249\) 0 0
\(250\) 11.6108 0.734333
\(251\) −3.96080 −0.250003 −0.125002 0.992157i \(-0.539894\pi\)
−0.125002 + 0.992157i \(0.539894\pi\)
\(252\) 0 0
\(253\) 13.8358 0.869848
\(254\) 21.4328 1.34481
\(255\) 0 0
\(256\) −14.7808 −0.923797
\(257\) −13.2460 −0.826262 −0.413131 0.910672i \(-0.635565\pi\)
−0.413131 + 0.910672i \(0.635565\pi\)
\(258\) 0 0
\(259\) −32.1456 −1.99743
\(260\) 1.72068 0.106712
\(261\) 0 0
\(262\) 19.8646 1.22724
\(263\) −5.28821 −0.326085 −0.163043 0.986619i \(-0.552131\pi\)
−0.163043 + 0.986619i \(0.552131\pi\)
\(264\) 0 0
\(265\) −10.3794 −0.637598
\(266\) −1.31759 −0.0807867
\(267\) 0 0
\(268\) −1.05330 −0.0643406
\(269\) 8.01270 0.488543 0.244271 0.969707i \(-0.421451\pi\)
0.244271 + 0.969707i \(0.421451\pi\)
\(270\) 0 0
\(271\) −15.9840 −0.970956 −0.485478 0.874249i \(-0.661354\pi\)
−0.485478 + 0.874249i \(0.661354\pi\)
\(272\) 4.40286 0.266963
\(273\) 0 0
\(274\) 0.866619 0.0523543
\(275\) −2.70005 −0.162819
\(276\) 0 0
\(277\) −6.29126 −0.378005 −0.189003 0.981977i \(-0.560525\pi\)
−0.189003 + 0.981977i \(0.560525\pi\)
\(278\) 16.4486 0.986520
\(279\) 0 0
\(280\) 30.0361 1.79500
\(281\) −16.9846 −1.01322 −0.506609 0.862176i \(-0.669101\pi\)
−0.506609 + 0.862176i \(0.669101\pi\)
\(282\) 0 0
\(283\) 27.4731 1.63310 0.816552 0.577271i \(-0.195883\pi\)
0.816552 + 0.577271i \(0.195883\pi\)
\(284\) −6.35096 −0.376860
\(285\) 0 0
\(286\) −4.35959 −0.257788
\(287\) −22.7914 −1.34533
\(288\) 0 0
\(289\) −12.3385 −0.725793
\(290\) 8.03993 0.472121
\(291\) 0 0
\(292\) −11.3767 −0.665771
\(293\) 27.8646 1.62787 0.813934 0.580958i \(-0.197322\pi\)
0.813934 + 0.580958i \(0.197322\pi\)
\(294\) 0 0
\(295\) 22.8886 1.33263
\(296\) 24.1974 1.40644
\(297\) 0 0
\(298\) −2.85526 −0.165401
\(299\) −3.58961 −0.207593
\(300\) 0 0
\(301\) −11.5419 −0.665265
\(302\) −7.02417 −0.404196
\(303\) 0 0
\(304\) 0.581089 0.0333277
\(305\) 18.3525 1.05086
\(306\) 0 0
\(307\) 15.3680 0.877096 0.438548 0.898708i \(-0.355493\pi\)
0.438548 + 0.898708i \(0.355493\pi\)
\(308\) 11.3559 0.647060
\(309\) 0 0
\(310\) 27.0585 1.53682
\(311\) 11.2747 0.639328 0.319664 0.947531i \(-0.396430\pi\)
0.319664 + 0.947531i \(0.396430\pi\)
\(312\) 0 0
\(313\) −10.8202 −0.611591 −0.305796 0.952097i \(-0.598922\pi\)
−0.305796 + 0.952097i \(0.598922\pi\)
\(314\) −3.02964 −0.170973
\(315\) 0 0
\(316\) −7.08403 −0.398508
\(317\) 16.4467 0.923741 0.461871 0.886947i \(-0.347178\pi\)
0.461871 + 0.886947i \(0.347178\pi\)
\(318\) 0 0
\(319\) 11.4753 0.642491
\(320\) −20.1294 −1.12527
\(321\) 0 0
\(322\) −16.5980 −0.924973
\(323\) 0.615227 0.0342321
\(324\) 0 0
\(325\) 0.700513 0.0388575
\(326\) −0.179383 −0.00993509
\(327\) 0 0
\(328\) 17.1561 0.947286
\(329\) 34.4249 1.89791
\(330\) 0 0
\(331\) 5.72219 0.314520 0.157260 0.987557i \(-0.449734\pi\)
0.157260 + 0.987557i \(0.449734\pi\)
\(332\) 0.484971 0.0266162
\(333\) 0 0
\(334\) 12.1189 0.663119
\(335\) −3.48952 −0.190653
\(336\) 0 0
\(337\) −4.75171 −0.258842 −0.129421 0.991590i \(-0.541312\pi\)
−0.129421 + 0.991590i \(0.541312\pi\)
\(338\) 1.13107 0.0615221
\(339\) 0 0
\(340\) −3.71505 −0.201477
\(341\) 38.6201 2.09140
\(342\) 0 0
\(343\) 11.0888 0.598737
\(344\) 8.68810 0.468431
\(345\) 0 0
\(346\) 11.5000 0.618242
\(347\) −10.9315 −0.586831 −0.293416 0.955985i \(-0.594792\pi\)
−0.293416 + 0.955985i \(0.594792\pi\)
\(348\) 0 0
\(349\) −26.1070 −1.39748 −0.698739 0.715377i \(-0.746255\pi\)
−0.698739 + 0.715377i \(0.746255\pi\)
\(350\) 3.23911 0.173138
\(351\) 0 0
\(352\) −14.8318 −0.790538
\(353\) 11.4952 0.611828 0.305914 0.952059i \(-0.401038\pi\)
0.305914 + 0.952059i \(0.401038\pi\)
\(354\) 0 0
\(355\) −21.0404 −1.11671
\(356\) 2.35175 0.124642
\(357\) 0 0
\(358\) −7.17910 −0.379427
\(359\) −7.42296 −0.391769 −0.195884 0.980627i \(-0.562758\pi\)
−0.195884 + 0.980627i \(0.562758\pi\)
\(360\) 0 0
\(361\) −18.9188 −0.995726
\(362\) −8.14729 −0.428212
\(363\) 0 0
\(364\) −2.94621 −0.154423
\(365\) −37.6903 −1.97280
\(366\) 0 0
\(367\) −5.99150 −0.312754 −0.156377 0.987697i \(-0.549981\pi\)
−0.156377 + 0.987697i \(0.549981\pi\)
\(368\) 7.32013 0.381588
\(369\) 0 0
\(370\) 21.2348 1.10394
\(371\) 17.7719 0.922670
\(372\) 0 0
\(373\) 26.7177 1.38339 0.691696 0.722189i \(-0.256864\pi\)
0.691696 + 0.722189i \(0.256864\pi\)
\(374\) 9.41259 0.486714
\(375\) 0 0
\(376\) −25.9131 −1.33637
\(377\) −2.97719 −0.153333
\(378\) 0 0
\(379\) −17.3941 −0.893474 −0.446737 0.894665i \(-0.647414\pi\)
−0.446737 + 0.894665i \(0.647414\pi\)
\(380\) −0.490311 −0.0251524
\(381\) 0 0
\(382\) −4.11201 −0.210389
\(383\) −34.6143 −1.76871 −0.884354 0.466817i \(-0.845401\pi\)
−0.884354 + 0.466817i \(0.845401\pi\)
\(384\) 0 0
\(385\) 37.6213 1.91736
\(386\) 4.42543 0.225248
\(387\) 0 0
\(388\) 6.39805 0.324812
\(389\) −35.7442 −1.81230 −0.906152 0.422953i \(-0.860994\pi\)
−0.906152 + 0.422953i \(0.860994\pi\)
\(390\) 0 0
\(391\) 7.75017 0.391943
\(392\) −29.8880 −1.50957
\(393\) 0 0
\(394\) −7.42744 −0.374189
\(395\) −23.4689 −1.18085
\(396\) 0 0
\(397\) 13.6734 0.686246 0.343123 0.939290i \(-0.388515\pi\)
0.343123 + 0.939290i \(0.388515\pi\)
\(398\) −2.21014 −0.110784
\(399\) 0 0
\(400\) −1.42852 −0.0714262
\(401\) 33.5863 1.67722 0.838610 0.544732i \(-0.183369\pi\)
0.838610 + 0.544732i \(0.183369\pi\)
\(402\) 0 0
\(403\) −10.0198 −0.499120
\(404\) 8.78294 0.436967
\(405\) 0 0
\(406\) −13.7662 −0.683207
\(407\) 30.3080 1.50231
\(408\) 0 0
\(409\) 2.93454 0.145103 0.0725517 0.997365i \(-0.476886\pi\)
0.0725517 + 0.997365i \(0.476886\pi\)
\(410\) 15.0556 0.743541
\(411\) 0 0
\(412\) 9.17697 0.452117
\(413\) −39.1907 −1.92845
\(414\) 0 0
\(415\) 1.60668 0.0788687
\(416\) 3.84802 0.188665
\(417\) 0 0
\(418\) 1.24227 0.0607615
\(419\) 8.53329 0.416879 0.208439 0.978035i \(-0.433162\pi\)
0.208439 + 0.978035i \(0.433162\pi\)
\(420\) 0 0
\(421\) −21.8479 −1.06480 −0.532401 0.846492i \(-0.678710\pi\)
−0.532401 + 0.846492i \(0.678710\pi\)
\(422\) −22.8665 −1.11312
\(423\) 0 0
\(424\) −13.3777 −0.649677
\(425\) −1.51245 −0.0733644
\(426\) 0 0
\(427\) −31.4237 −1.52070
\(428\) 4.92579 0.238097
\(429\) 0 0
\(430\) 7.62437 0.367680
\(431\) −35.1630 −1.69374 −0.846872 0.531797i \(-0.821517\pi\)
−0.846872 + 0.531797i \(0.821517\pi\)
\(432\) 0 0
\(433\) 24.9431 1.19869 0.599344 0.800491i \(-0.295428\pi\)
0.599344 + 0.800491i \(0.295428\pi\)
\(434\) −46.3305 −2.22393
\(435\) 0 0
\(436\) 6.53351 0.312898
\(437\) 1.02287 0.0489303
\(438\) 0 0
\(439\) 13.5269 0.645602 0.322801 0.946467i \(-0.395376\pi\)
0.322801 + 0.946467i \(0.395376\pi\)
\(440\) −28.3191 −1.35006
\(441\) 0 0
\(442\) −2.44204 −0.116156
\(443\) −33.4576 −1.58962 −0.794808 0.606860i \(-0.792429\pi\)
−0.794808 + 0.606860i \(0.792429\pi\)
\(444\) 0 0
\(445\) 7.79119 0.369338
\(446\) 7.07706 0.335109
\(447\) 0 0
\(448\) 34.4662 1.62838
\(449\) 7.63995 0.360552 0.180276 0.983616i \(-0.442301\pi\)
0.180276 + 0.983616i \(0.442301\pi\)
\(450\) 0 0
\(451\) 21.4885 1.01186
\(452\) −9.53724 −0.448594
\(453\) 0 0
\(454\) −8.18988 −0.384370
\(455\) −9.76061 −0.457585
\(456\) 0 0
\(457\) 14.1313 0.661034 0.330517 0.943800i \(-0.392777\pi\)
0.330517 + 0.943800i \(0.392777\pi\)
\(458\) −2.56924 −0.120053
\(459\) 0 0
\(460\) −6.17658 −0.287985
\(461\) 4.62819 0.215556 0.107778 0.994175i \(-0.465626\pi\)
0.107778 + 0.994175i \(0.465626\pi\)
\(462\) 0 0
\(463\) 17.8864 0.831254 0.415627 0.909535i \(-0.363562\pi\)
0.415627 + 0.909535i \(0.363562\pi\)
\(464\) 6.07124 0.281850
\(465\) 0 0
\(466\) 15.8027 0.732047
\(467\) 16.6357 0.769808 0.384904 0.922957i \(-0.374235\pi\)
0.384904 + 0.922957i \(0.374235\pi\)
\(468\) 0 0
\(469\) 5.97488 0.275894
\(470\) −22.7404 −1.04894
\(471\) 0 0
\(472\) 29.5005 1.35787
\(473\) 10.8821 0.500361
\(474\) 0 0
\(475\) −0.199612 −0.00915884
\(476\) 6.36103 0.291557
\(477\) 0 0
\(478\) −30.0061 −1.37245
\(479\) −37.6745 −1.72139 −0.860695 0.509120i \(-0.829971\pi\)
−0.860695 + 0.509120i \(0.829971\pi\)
\(480\) 0 0
\(481\) −7.86324 −0.358533
\(482\) −4.52552 −0.206132
\(483\) 0 0
\(484\) −2.77921 −0.126328
\(485\) 21.1963 0.962476
\(486\) 0 0
\(487\) −34.2388 −1.55151 −0.775754 0.631035i \(-0.782630\pi\)
−0.775754 + 0.631035i \(0.782630\pi\)
\(488\) 23.6540 1.07077
\(489\) 0 0
\(490\) −26.2286 −1.18489
\(491\) −29.9151 −1.35005 −0.675024 0.737796i \(-0.735867\pi\)
−0.675024 + 0.737796i \(0.735867\pi\)
\(492\) 0 0
\(493\) 6.42791 0.289499
\(494\) −0.322300 −0.0145010
\(495\) 0 0
\(496\) 20.4328 0.917461
\(497\) 36.0260 1.61599
\(498\) 0 0
\(499\) −20.9583 −0.938223 −0.469111 0.883139i \(-0.655426\pi\)
−0.469111 + 0.883139i \(0.655426\pi\)
\(500\) −7.39805 −0.330851
\(501\) 0 0
\(502\) −4.47994 −0.199949
\(503\) 21.1599 0.943473 0.471737 0.881739i \(-0.343627\pi\)
0.471737 + 0.881739i \(0.343627\pi\)
\(504\) 0 0
\(505\) 29.0973 1.29481
\(506\) 15.6492 0.695693
\(507\) 0 0
\(508\) −13.6563 −0.605900
\(509\) −3.02989 −0.134298 −0.0671488 0.997743i \(-0.521390\pi\)
−0.0671488 + 0.997743i \(0.521390\pi\)
\(510\) 0 0
\(511\) 64.5346 2.85484
\(512\) −20.3978 −0.901464
\(513\) 0 0
\(514\) −14.9821 −0.660833
\(515\) 30.4027 1.33970
\(516\) 0 0
\(517\) −32.4570 −1.42746
\(518\) −36.3589 −1.59752
\(519\) 0 0
\(520\) 7.34724 0.322198
\(521\) 12.5546 0.550026 0.275013 0.961441i \(-0.411318\pi\)
0.275013 + 0.961441i \(0.411318\pi\)
\(522\) 0 0
\(523\) −8.54696 −0.373733 −0.186866 0.982385i \(-0.559833\pi\)
−0.186866 + 0.982385i \(0.559833\pi\)
\(524\) −12.6571 −0.552928
\(525\) 0 0
\(526\) −5.98134 −0.260799
\(527\) 21.6332 0.942358
\(528\) 0 0
\(529\) −10.1147 −0.439769
\(530\) −11.7398 −0.509943
\(531\) 0 0
\(532\) 0.839528 0.0363981
\(533\) −5.57508 −0.241483
\(534\) 0 0
\(535\) 16.3188 0.705525
\(536\) −4.49755 −0.194264
\(537\) 0 0
\(538\) 9.06292 0.390730
\(539\) −37.4356 −1.61247
\(540\) 0 0
\(541\) −4.74799 −0.204132 −0.102066 0.994778i \(-0.532545\pi\)
−0.102066 + 0.994778i \(0.532545\pi\)
\(542\) −18.0790 −0.776558
\(543\) 0 0
\(544\) −8.30810 −0.356207
\(545\) 21.6451 0.927175
\(546\) 0 0
\(547\) −1.95559 −0.0836149 −0.0418074 0.999126i \(-0.513312\pi\)
−0.0418074 + 0.999126i \(0.513312\pi\)
\(548\) −0.552182 −0.0235881
\(549\) 0 0
\(550\) −3.05395 −0.130221
\(551\) 0.848355 0.0361411
\(552\) 0 0
\(553\) 40.1843 1.70881
\(554\) −7.11586 −0.302324
\(555\) 0 0
\(556\) −10.4805 −0.444473
\(557\) −26.8657 −1.13833 −0.569167 0.822222i \(-0.692734\pi\)
−0.569167 + 0.822222i \(0.692734\pi\)
\(558\) 0 0
\(559\) −2.82330 −0.119413
\(560\) 19.9044 0.841113
\(561\) 0 0
\(562\) −19.2108 −0.810359
\(563\) −41.8681 −1.76453 −0.882265 0.470753i \(-0.843982\pi\)
−0.882265 + 0.470753i \(0.843982\pi\)
\(564\) 0 0
\(565\) −31.5963 −1.32927
\(566\) 31.0740 1.30614
\(567\) 0 0
\(568\) −27.1183 −1.13786
\(569\) 26.3435 1.10438 0.552188 0.833720i \(-0.313793\pi\)
0.552188 + 0.833720i \(0.313793\pi\)
\(570\) 0 0
\(571\) 2.71518 0.113627 0.0568133 0.998385i \(-0.481906\pi\)
0.0568133 + 0.998385i \(0.481906\pi\)
\(572\) 2.77779 0.116145
\(573\) 0 0
\(574\) −25.7787 −1.07598
\(575\) −2.51457 −0.104865
\(576\) 0 0
\(577\) −16.4988 −0.686855 −0.343427 0.939179i \(-0.611588\pi\)
−0.343427 + 0.939179i \(0.611588\pi\)
\(578\) −13.9557 −0.580480
\(579\) 0 0
\(580\) −5.12279 −0.212712
\(581\) −2.75101 −0.114131
\(582\) 0 0
\(583\) −16.7560 −0.693961
\(584\) −48.5780 −2.01017
\(585\) 0 0
\(586\) 31.5168 1.30195
\(587\) −36.5046 −1.50671 −0.753353 0.657616i \(-0.771565\pi\)
−0.753353 + 0.657616i \(0.771565\pi\)
\(588\) 0 0
\(589\) 2.85515 0.117644
\(590\) 25.8886 1.06582
\(591\) 0 0
\(592\) 16.0351 0.659040
\(593\) −6.45481 −0.265067 −0.132534 0.991178i \(-0.542311\pi\)
−0.132534 + 0.991178i \(0.542311\pi\)
\(594\) 0 0
\(595\) 21.0737 0.863938
\(596\) 1.81928 0.0745207
\(597\) 0 0
\(598\) −4.06010 −0.166030
\(599\) 32.5887 1.33154 0.665770 0.746157i \(-0.268103\pi\)
0.665770 + 0.746157i \(0.268103\pi\)
\(600\) 0 0
\(601\) 4.35546 0.177663 0.0888315 0.996047i \(-0.471687\pi\)
0.0888315 + 0.996047i \(0.471687\pi\)
\(602\) −13.0547 −0.532070
\(603\) 0 0
\(604\) 4.47558 0.182109
\(605\) −9.20735 −0.374332
\(606\) 0 0
\(607\) −1.38827 −0.0563480 −0.0281740 0.999603i \(-0.508969\pi\)
−0.0281740 + 0.999603i \(0.508969\pi\)
\(608\) −1.09650 −0.0444690
\(609\) 0 0
\(610\) 20.7579 0.840463
\(611\) 8.42079 0.340669
\(612\) 0 0
\(613\) −17.9268 −0.724056 −0.362028 0.932167i \(-0.617916\pi\)
−0.362028 + 0.932167i \(0.617916\pi\)
\(614\) 17.3822 0.701490
\(615\) 0 0
\(616\) 48.4890 1.95368
\(617\) 15.8744 0.639080 0.319540 0.947573i \(-0.396472\pi\)
0.319540 + 0.947573i \(0.396472\pi\)
\(618\) 0 0
\(619\) 14.0537 0.564865 0.282432 0.959287i \(-0.408859\pi\)
0.282432 + 0.959287i \(0.408859\pi\)
\(620\) −17.2408 −0.692408
\(621\) 0 0
\(622\) 12.7524 0.511326
\(623\) −13.3403 −0.534470
\(624\) 0 0
\(625\) −28.0118 −1.12047
\(626\) −12.2383 −0.489142
\(627\) 0 0
\(628\) 1.93039 0.0770311
\(629\) 16.9772 0.676924
\(630\) 0 0
\(631\) 3.10018 0.123416 0.0617081 0.998094i \(-0.480345\pi\)
0.0617081 + 0.998094i \(0.480345\pi\)
\(632\) −30.2485 −1.20322
\(633\) 0 0
\(634\) 18.6024 0.738796
\(635\) −45.2425 −1.79539
\(636\) 0 0
\(637\) 9.71246 0.384822
\(638\) 12.9793 0.513856
\(639\) 0 0
\(640\) −4.39284 −0.173642
\(641\) 5.47888 0.216403 0.108201 0.994129i \(-0.465491\pi\)
0.108201 + 0.994129i \(0.465491\pi\)
\(642\) 0 0
\(643\) 21.8354 0.861104 0.430552 0.902566i \(-0.358319\pi\)
0.430552 + 0.902566i \(0.358319\pi\)
\(644\) 10.5758 0.416743
\(645\) 0 0
\(646\) 0.695864 0.0273784
\(647\) 0.921997 0.0362474 0.0181237 0.999836i \(-0.494231\pi\)
0.0181237 + 0.999836i \(0.494231\pi\)
\(648\) 0 0
\(649\) 36.9504 1.45043
\(650\) 0.792328 0.0310777
\(651\) 0 0
\(652\) 0.114297 0.00447622
\(653\) 4.46161 0.174596 0.0872981 0.996182i \(-0.472177\pi\)
0.0872981 + 0.996182i \(0.472177\pi\)
\(654\) 0 0
\(655\) −41.9322 −1.63843
\(656\) 11.3690 0.443885
\(657\) 0 0
\(658\) 38.9370 1.51792
\(659\) 10.1177 0.394129 0.197065 0.980391i \(-0.436859\pi\)
0.197065 + 0.980391i \(0.436859\pi\)
\(660\) 0 0
\(661\) 49.9834 1.94413 0.972065 0.234711i \(-0.0754143\pi\)
0.972065 + 0.234711i \(0.0754143\pi\)
\(662\) 6.47219 0.251549
\(663\) 0 0
\(664\) 2.07080 0.0803628
\(665\) 2.78130 0.107854
\(666\) 0 0
\(667\) 10.6869 0.413800
\(668\) −7.72181 −0.298766
\(669\) 0 0
\(670\) −3.94689 −0.152482
\(671\) 29.6274 1.14375
\(672\) 0 0
\(673\) 28.4054 1.09495 0.547474 0.836823i \(-0.315590\pi\)
0.547474 + 0.836823i \(0.315590\pi\)
\(674\) −5.37452 −0.207019
\(675\) 0 0
\(676\) −0.720682 −0.0277185
\(677\) 46.1800 1.77484 0.887421 0.460959i \(-0.152495\pi\)
0.887421 + 0.460959i \(0.152495\pi\)
\(678\) 0 0
\(679\) −36.2931 −1.39280
\(680\) −15.8631 −0.608322
\(681\) 0 0
\(682\) 43.6820 1.67267
\(683\) −6.42699 −0.245922 −0.122961 0.992412i \(-0.539239\pi\)
−0.122961 + 0.992412i \(0.539239\pi\)
\(684\) 0 0
\(685\) −1.82935 −0.0698957
\(686\) 12.5422 0.478862
\(687\) 0 0
\(688\) 5.75743 0.219500
\(689\) 4.34724 0.165617
\(690\) 0 0
\(691\) −34.3429 −1.30647 −0.653233 0.757157i \(-0.726588\pi\)
−0.653233 + 0.757157i \(0.726588\pi\)
\(692\) −7.32741 −0.278546
\(693\) 0 0
\(694\) −12.3642 −0.469340
\(695\) −34.7213 −1.31705
\(696\) 0 0
\(697\) 12.0369 0.455930
\(698\) −29.5289 −1.11768
\(699\) 0 0
\(700\) −2.06386 −0.0780065
\(701\) −9.36636 −0.353763 −0.176881 0.984232i \(-0.556601\pi\)
−0.176881 + 0.984232i \(0.556601\pi\)
\(702\) 0 0
\(703\) 2.24064 0.0845074
\(704\) −32.4960 −1.22474
\(705\) 0 0
\(706\) 13.0019 0.489332
\(707\) −49.8214 −1.87373
\(708\) 0 0
\(709\) 1.85819 0.0697859 0.0348929 0.999391i \(-0.488891\pi\)
0.0348929 + 0.999391i \(0.488891\pi\)
\(710\) −23.7981 −0.893127
\(711\) 0 0
\(712\) 10.0419 0.376334
\(713\) 35.9671 1.34698
\(714\) 0 0
\(715\) 9.20266 0.344160
\(716\) 4.57430 0.170950
\(717\) 0 0
\(718\) −8.39588 −0.313331
\(719\) 39.6078 1.47712 0.738561 0.674186i \(-0.235506\pi\)
0.738561 + 0.674186i \(0.235506\pi\)
\(720\) 0 0
\(721\) −52.0566 −1.93869
\(722\) −21.3985 −0.796369
\(723\) 0 0
\(724\) 5.19120 0.192929
\(725\) −2.08556 −0.0774557
\(726\) 0 0
\(727\) −23.8623 −0.885004 −0.442502 0.896768i \(-0.645909\pi\)
−0.442502 + 0.896768i \(0.645909\pi\)
\(728\) −12.5802 −0.466253
\(729\) 0 0
\(730\) −42.6303 −1.57782
\(731\) 6.09567 0.225457
\(732\) 0 0
\(733\) −29.6604 −1.09553 −0.547767 0.836631i \(-0.684522\pi\)
−0.547767 + 0.836631i \(0.684522\pi\)
\(734\) −6.77681 −0.250137
\(735\) 0 0
\(736\) −13.8129 −0.509151
\(737\) −5.63333 −0.207506
\(738\) 0 0
\(739\) −5.87088 −0.215964 −0.107982 0.994153i \(-0.534439\pi\)
−0.107982 + 0.994153i \(0.534439\pi\)
\(740\) −13.5301 −0.497377
\(741\) 0 0
\(742\) 20.1012 0.737939
\(743\) 9.08073 0.333140 0.166570 0.986030i \(-0.446731\pi\)
0.166570 + 0.986030i \(0.446731\pi\)
\(744\) 0 0
\(745\) 6.02717 0.220819
\(746\) 30.2196 1.10642
\(747\) 0 0
\(748\) −5.99741 −0.219287
\(749\) −27.9417 −1.02097
\(750\) 0 0
\(751\) −54.1040 −1.97428 −0.987142 0.159844i \(-0.948901\pi\)
−0.987142 + 0.159844i \(0.948901\pi\)
\(752\) −17.1721 −0.626203
\(753\) 0 0
\(754\) −3.36741 −0.122634
\(755\) 14.8273 0.539621
\(756\) 0 0
\(757\) 42.6779 1.55116 0.775578 0.631252i \(-0.217459\pi\)
0.775578 + 0.631252i \(0.217459\pi\)
\(758\) −19.6739 −0.714589
\(759\) 0 0
\(760\) −2.09361 −0.0759431
\(761\) 1.91050 0.0692557 0.0346278 0.999400i \(-0.488975\pi\)
0.0346278 + 0.999400i \(0.488975\pi\)
\(762\) 0 0
\(763\) −37.0615 −1.34172
\(764\) 2.62005 0.0947899
\(765\) 0 0
\(766\) −39.1512 −1.41459
\(767\) −9.58656 −0.346151
\(768\) 0 0
\(769\) −20.3581 −0.734132 −0.367066 0.930195i \(-0.619638\pi\)
−0.367066 + 0.930195i \(0.619638\pi\)
\(770\) 42.5523 1.53348
\(771\) 0 0
\(772\) −2.81974 −0.101485
\(773\) 37.6497 1.35417 0.677083 0.735906i \(-0.263244\pi\)
0.677083 + 0.735906i \(0.263244\pi\)
\(774\) 0 0
\(775\) −7.01897 −0.252129
\(776\) 27.3194 0.980709
\(777\) 0 0
\(778\) −40.4292 −1.44946
\(779\) 1.58863 0.0569185
\(780\) 0 0
\(781\) −33.9666 −1.21542
\(782\) 8.76598 0.313471
\(783\) 0 0
\(784\) −19.8062 −0.707363
\(785\) 6.39528 0.228257
\(786\) 0 0
\(787\) −33.5826 −1.19709 −0.598545 0.801089i \(-0.704254\pi\)
−0.598545 + 0.801089i \(0.704254\pi\)
\(788\) 4.73253 0.168589
\(789\) 0 0
\(790\) −26.5450 −0.944429
\(791\) 54.1002 1.92358
\(792\) 0 0
\(793\) −7.68666 −0.272961
\(794\) 15.4655 0.548851
\(795\) 0 0
\(796\) 1.40823 0.0499135
\(797\) 7.08855 0.251089 0.125545 0.992088i \(-0.459932\pi\)
0.125545 + 0.992088i \(0.459932\pi\)
\(798\) 0 0
\(799\) −18.1810 −0.643196
\(800\) 2.69559 0.0953035
\(801\) 0 0
\(802\) 37.9885 1.34142
\(803\) −60.8455 −2.14719
\(804\) 0 0
\(805\) 35.0368 1.23489
\(806\) −11.3330 −0.399190
\(807\) 0 0
\(808\) 37.5028 1.31934
\(809\) 9.32644 0.327900 0.163950 0.986469i \(-0.447576\pi\)
0.163950 + 0.986469i \(0.447576\pi\)
\(810\) 0 0
\(811\) −11.0677 −0.388638 −0.194319 0.980938i \(-0.562250\pi\)
−0.194319 + 0.980938i \(0.562250\pi\)
\(812\) 8.77142 0.307817
\(813\) 0 0
\(814\) 34.2805 1.20153
\(815\) 0.378659 0.0132638
\(816\) 0 0
\(817\) 0.804506 0.0281461
\(818\) 3.31916 0.116052
\(819\) 0 0
\(820\) −9.59293 −0.335000
\(821\) 29.2074 1.01934 0.509672 0.860369i \(-0.329767\pi\)
0.509672 + 0.860369i \(0.329767\pi\)
\(822\) 0 0
\(823\) 12.0246 0.419151 0.209576 0.977792i \(-0.432792\pi\)
0.209576 + 0.977792i \(0.432792\pi\)
\(824\) 39.1852 1.36508
\(825\) 0 0
\(826\) −44.3274 −1.54235
\(827\) −19.0243 −0.661540 −0.330770 0.943711i \(-0.607308\pi\)
−0.330770 + 0.943711i \(0.607308\pi\)
\(828\) 0 0
\(829\) 30.3433 1.05387 0.526934 0.849906i \(-0.323342\pi\)
0.526934 + 0.849906i \(0.323342\pi\)
\(830\) 1.81726 0.0630782
\(831\) 0 0
\(832\) 8.43089 0.292288
\(833\) −20.9697 −0.726558
\(834\) 0 0
\(835\) −25.5819 −0.885297
\(836\) −0.791537 −0.0273759
\(837\) 0 0
\(838\) 9.65175 0.333414
\(839\) −6.03470 −0.208341 −0.104171 0.994559i \(-0.533219\pi\)
−0.104171 + 0.994559i \(0.533219\pi\)
\(840\) 0 0
\(841\) −20.1364 −0.694357
\(842\) −24.7115 −0.851615
\(843\) 0 0
\(844\) 14.5698 0.501513
\(845\) −2.38757 −0.0821351
\(846\) 0 0
\(847\) 15.7651 0.541697
\(848\) −8.86512 −0.304429
\(849\) 0 0
\(850\) −1.71068 −0.0586759
\(851\) 28.2260 0.967574
\(852\) 0 0
\(853\) −23.7192 −0.812130 −0.406065 0.913844i \(-0.633099\pi\)
−0.406065 + 0.913844i \(0.633099\pi\)
\(854\) −35.5424 −1.21624
\(855\) 0 0
\(856\) 21.0329 0.718890
\(857\) 29.4814 1.00707 0.503533 0.863976i \(-0.332033\pi\)
0.503533 + 0.863976i \(0.332033\pi\)
\(858\) 0 0
\(859\) −28.5939 −0.975610 −0.487805 0.872953i \(-0.662202\pi\)
−0.487805 + 0.872953i \(0.662202\pi\)
\(860\) −4.85801 −0.165657
\(861\) 0 0
\(862\) −39.7718 −1.35463
\(863\) −48.3938 −1.64734 −0.823672 0.567066i \(-0.808078\pi\)
−0.823672 + 0.567066i \(0.808078\pi\)
\(864\) 0 0
\(865\) −24.2753 −0.825384
\(866\) 28.2124 0.958696
\(867\) 0 0
\(868\) 29.5203 1.00199
\(869\) −37.8872 −1.28524
\(870\) 0 0
\(871\) 1.46153 0.0495222
\(872\) 27.8978 0.944739
\(873\) 0 0
\(874\) 1.15693 0.0391338
\(875\) 41.9656 1.41870
\(876\) 0 0
\(877\) −26.5517 −0.896588 −0.448294 0.893886i \(-0.647968\pi\)
−0.448294 + 0.893886i \(0.647968\pi\)
\(878\) 15.2998 0.516344
\(879\) 0 0
\(880\) −18.7665 −0.632620
\(881\) 14.6581 0.493843 0.246921 0.969036i \(-0.420581\pi\)
0.246921 + 0.969036i \(0.420581\pi\)
\(882\) 0 0
\(883\) −37.2159 −1.25241 −0.626207 0.779657i \(-0.715394\pi\)
−0.626207 + 0.779657i \(0.715394\pi\)
\(884\) 1.55599 0.0523337
\(885\) 0 0
\(886\) −37.8428 −1.27135
\(887\) 2.62329 0.0880816 0.0440408 0.999030i \(-0.485977\pi\)
0.0440408 + 0.999030i \(0.485977\pi\)
\(888\) 0 0
\(889\) 77.4657 2.59812
\(890\) 8.81238 0.295392
\(891\) 0 0
\(892\) −4.50928 −0.150982
\(893\) −2.39952 −0.0802968
\(894\) 0 0
\(895\) 15.1544 0.506555
\(896\) 7.52157 0.251278
\(897\) 0 0
\(898\) 8.64132 0.288364
\(899\) 29.8307 0.994910
\(900\) 0 0
\(901\) −9.38593 −0.312691
\(902\) 24.3050 0.809269
\(903\) 0 0
\(904\) −40.7236 −1.35445
\(905\) 17.1981 0.571685
\(906\) 0 0
\(907\) −35.4590 −1.17740 −0.588698 0.808353i \(-0.700359\pi\)
−0.588698 + 0.808353i \(0.700359\pi\)
\(908\) 5.21834 0.173177
\(909\) 0 0
\(910\) −11.0399 −0.365970
\(911\) 54.8208 1.81629 0.908147 0.418652i \(-0.137497\pi\)
0.908147 + 0.418652i \(0.137497\pi\)
\(912\) 0 0
\(913\) 2.59375 0.0858406
\(914\) 15.9835 0.528686
\(915\) 0 0
\(916\) 1.63704 0.0540893
\(917\) 71.7977 2.37097
\(918\) 0 0
\(919\) 23.5096 0.775511 0.387755 0.921762i \(-0.373251\pi\)
0.387755 + 0.921762i \(0.373251\pi\)
\(920\) −26.3737 −0.869516
\(921\) 0 0
\(922\) 5.23480 0.172399
\(923\) 8.81244 0.290065
\(924\) 0 0
\(925\) −5.50830 −0.181112
\(926\) 20.2308 0.664826
\(927\) 0 0
\(928\) −11.4563 −0.376071
\(929\) 35.5388 1.16599 0.582994 0.812476i \(-0.301881\pi\)
0.582994 + 0.812476i \(0.301881\pi\)
\(930\) 0 0
\(931\) −2.76758 −0.0907038
\(932\) −10.0690 −0.329821
\(933\) 0 0
\(934\) 18.8161 0.615682
\(935\) −19.8690 −0.649787
\(936\) 0 0
\(937\) 29.5466 0.965246 0.482623 0.875828i \(-0.339684\pi\)
0.482623 + 0.875828i \(0.339684\pi\)
\(938\) 6.75800 0.220656
\(939\) 0 0
\(940\) 14.4895 0.472595
\(941\) 4.96214 0.161761 0.0808806 0.996724i \(-0.474227\pi\)
0.0808806 + 0.996724i \(0.474227\pi\)
\(942\) 0 0
\(943\) 20.0124 0.651692
\(944\) 19.5494 0.636280
\(945\) 0 0
\(946\) 12.3084 0.400182
\(947\) −25.9473 −0.843173 −0.421587 0.906788i \(-0.638527\pi\)
−0.421587 + 0.906788i \(0.638527\pi\)
\(948\) 0 0
\(949\) 15.7860 0.512436
\(950\) −0.225775 −0.00732512
\(951\) 0 0
\(952\) 27.1613 0.880304
\(953\) −17.5273 −0.567765 −0.283883 0.958859i \(-0.591623\pi\)
−0.283883 + 0.958859i \(0.591623\pi\)
\(954\) 0 0
\(955\) 8.68005 0.280880
\(956\) 19.1189 0.618350
\(957\) 0 0
\(958\) −42.6124 −1.37675
\(959\) 3.13227 0.101146
\(960\) 0 0
\(961\) 69.3956 2.23857
\(962\) −8.89387 −0.286750
\(963\) 0 0
\(964\) 2.88352 0.0928719
\(965\) −9.34164 −0.300718
\(966\) 0 0
\(967\) 37.6528 1.21083 0.605417 0.795909i \(-0.293007\pi\)
0.605417 + 0.795909i \(0.293007\pi\)
\(968\) −11.8671 −0.381423
\(969\) 0 0
\(970\) 23.9745 0.769776
\(971\) −4.27036 −0.137042 −0.0685211 0.997650i \(-0.521828\pi\)
−0.0685211 + 0.997650i \(0.521828\pi\)
\(972\) 0 0
\(973\) 59.4510 1.90591
\(974\) −38.7265 −1.24088
\(975\) 0 0
\(976\) 15.6750 0.501746
\(977\) −4.25996 −0.136288 −0.0681440 0.997675i \(-0.521708\pi\)
−0.0681440 + 0.997675i \(0.521708\pi\)
\(978\) 0 0
\(979\) 12.5778 0.401987
\(980\) 16.7121 0.533847
\(981\) 0 0
\(982\) −33.8360 −1.07975
\(983\) 1.11606 0.0355968 0.0177984 0.999842i \(-0.494334\pi\)
0.0177984 + 0.999842i \(0.494334\pi\)
\(984\) 0 0
\(985\) 15.6786 0.499561
\(986\) 7.27042 0.231537
\(987\) 0 0
\(988\) 0.205360 0.00653336
\(989\) 10.1346 0.322261
\(990\) 0 0
\(991\) −25.3057 −0.803862 −0.401931 0.915670i \(-0.631661\pi\)
−0.401931 + 0.915670i \(0.631661\pi\)
\(992\) −38.5563 −1.22416
\(993\) 0 0
\(994\) 40.7479 1.29245
\(995\) 4.66539 0.147903
\(996\) 0 0
\(997\) 16.6418 0.527052 0.263526 0.964652i \(-0.415114\pi\)
0.263526 + 0.964652i \(0.415114\pi\)
\(998\) −23.7053 −0.750378
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1053.2.a.j.1.4 5
3.2 odd 2 1053.2.a.k.1.2 5
9.2 odd 6 117.2.e.b.40.4 10
9.4 even 3 351.2.e.b.235.2 10
9.5 odd 6 117.2.e.b.79.4 yes 10
9.7 even 3 351.2.e.b.118.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.e.b.40.4 10 9.2 odd 6
117.2.e.b.79.4 yes 10 9.5 odd 6
351.2.e.b.118.2 10 9.7 even 3
351.2.e.b.235.2 10 9.4 even 3
1053.2.a.j.1.4 5 1.1 even 1 trivial
1053.2.a.k.1.2 5 3.2 odd 2