Properties

Label 1053.2.a.g
Level $1053$
Weight $2$
Character orbit 1053.a
Self dual yes
Analytic conductor $8.408$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1053,2,Mod(1,1053)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1053, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1053.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,6,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.40824733284\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + \beta_1 + 2) q^{4} + ( - \beta_{2} - \beta_1 - 1) q^{5} + (\beta_{2} + \beta_1) q^{7} + (2 \beta_1 + 3) q^{8} + ( - 3 \beta_1 - 3) q^{10} + \beta_1 q^{11} + q^{13} + (2 \beta_1 + 3) q^{14}+ \cdots + (3 \beta_{2} + 6) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{4} - 3 q^{5} + 9 q^{8} - 9 q^{10} + 3 q^{13} + 9 q^{14} + 12 q^{16} - 6 q^{17} + 15 q^{19} - 30 q^{20} + 12 q^{22} + 3 q^{23} + 12 q^{25} + 24 q^{28} + 3 q^{31} + 18 q^{32} - 3 q^{34} - 24 q^{35}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 6x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.14510
−0.523976
2.66908
−2.14510 0 2.60147 −1.60147 0 0.601466 −1.29021 0 3.43531
1.2 −0.523976 0 −1.72545 2.72545 0 −3.72545 1.95205 0 −1.42807
1.3 2.66908 0 5.12398 −4.12398 0 3.12398 8.33816 0 −11.0072
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1053.2.a.g 3
3.b odd 2 1 1053.2.a.h yes 3
9.c even 3 2 1053.2.e.o 6
9.d odd 6 2 1053.2.e.n 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1053.2.a.g 3 1.a even 1 1 trivial
1053.2.a.h yes 3 3.b odd 2 1
1053.2.e.n 6 9.d odd 6 2
1053.2.e.o 6 9.c even 3 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 6T_{2} - 3 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1053))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 6T - 3 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 3 T^{2} + \cdots - 18 \) Copy content Toggle raw display
$7$ \( T^{3} - 12T + 7 \) Copy content Toggle raw display
$11$ \( T^{3} - 6T - 3 \) Copy content Toggle raw display
$13$ \( (T - 1)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 6 T^{2} + \cdots - 6 \) Copy content Toggle raw display
$19$ \( (T - 5)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 3 T^{2} + \cdots - 48 \) Copy content Toggle raw display
$29$ \( T^{3} - 6T - 3 \) Copy content Toggle raw display
$31$ \( T^{3} - 3 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$37$ \( T^{3} + 3 T^{2} + \cdots + 28 \) Copy content Toggle raw display
$41$ \( T^{3} - 3 T^{2} + \cdots - 12 \) Copy content Toggle raw display
$43$ \( T^{3} - 6 T^{2} + \cdots + 46 \) Copy content Toggle raw display
$47$ \( T^{3} + 6 T^{2} + \cdots - 144 \) Copy content Toggle raw display
$53$ \( T^{3} - 9 T^{2} + \cdots + 108 \) Copy content Toggle raw display
$59$ \( T^{3} - 9 T^{2} + \cdots + 453 \) Copy content Toggle raw display
$61$ \( T^{3} + 12 T^{2} + \cdots - 1367 \) Copy content Toggle raw display
$67$ \( T^{3} - 15 T^{2} + \cdots + 1468 \) Copy content Toggle raw display
$71$ \( T^{3} - 3 T^{2} + \cdots + 3 \) Copy content Toggle raw display
$73$ \( T^{3} - 12 T^{2} + \cdots + 652 \) Copy content Toggle raw display
$79$ \( T^{3} + 6 T^{2} + \cdots + 166 \) Copy content Toggle raw display
$83$ \( T^{3} - 3 T^{2} + \cdots - 441 \) Copy content Toggle raw display
$89$ \( T^{3} + 3 T^{2} + \cdots - 138 \) Copy content Toggle raw display
$97$ \( (T - 8)^{3} \) Copy content Toggle raw display
show more
show less