Properties

Label 1050.4.a.l.1.1
Level $1050$
Weight $4$
Character 1050.1
Self dual yes
Analytic conductor $61.952$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,4,Mod(1,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1050.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-2,3,4,0,-6,7,-8,9,0,16,12,-58] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.9520055060\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1050.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +3.00000 q^{3} +4.00000 q^{4} -6.00000 q^{6} +7.00000 q^{7} -8.00000 q^{8} +9.00000 q^{9} +16.0000 q^{11} +12.0000 q^{12} -58.0000 q^{13} -14.0000 q^{14} +16.0000 q^{16} -34.0000 q^{17} -18.0000 q^{18} +64.0000 q^{19} +21.0000 q^{21} -32.0000 q^{22} +16.0000 q^{23} -24.0000 q^{24} +116.000 q^{26} +27.0000 q^{27} +28.0000 q^{28} +62.0000 q^{29} +60.0000 q^{31} -32.0000 q^{32} +48.0000 q^{33} +68.0000 q^{34} +36.0000 q^{36} -150.000 q^{37} -128.000 q^{38} -174.000 q^{39} +474.000 q^{41} -42.0000 q^{42} +292.000 q^{43} +64.0000 q^{44} -32.0000 q^{46} -240.000 q^{47} +48.0000 q^{48} +49.0000 q^{49} -102.000 q^{51} -232.000 q^{52} +662.000 q^{53} -54.0000 q^{54} -56.0000 q^{56} +192.000 q^{57} -124.000 q^{58} -324.000 q^{59} -514.000 q^{61} -120.000 q^{62} +63.0000 q^{63} +64.0000 q^{64} -96.0000 q^{66} +372.000 q^{67} -136.000 q^{68} +48.0000 q^{69} -412.000 q^{71} -72.0000 q^{72} +770.000 q^{73} +300.000 q^{74} +256.000 q^{76} +112.000 q^{77} +348.000 q^{78} -560.000 q^{79} +81.0000 q^{81} -948.000 q^{82} +852.000 q^{83} +84.0000 q^{84} -584.000 q^{86} +186.000 q^{87} -128.000 q^{88} +1466.00 q^{89} -406.000 q^{91} +64.0000 q^{92} +180.000 q^{93} +480.000 q^{94} -96.0000 q^{96} +178.000 q^{97} -98.0000 q^{98} +144.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 3.00000 0.577350
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −6.00000 −0.408248
\(7\) 7.00000 0.377964
\(8\) −8.00000 −0.353553
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 16.0000 0.438562 0.219281 0.975662i \(-0.429629\pi\)
0.219281 + 0.975662i \(0.429629\pi\)
\(12\) 12.0000 0.288675
\(13\) −58.0000 −1.23741 −0.618704 0.785624i \(-0.712342\pi\)
−0.618704 + 0.785624i \(0.712342\pi\)
\(14\) −14.0000 −0.267261
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −34.0000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) −18.0000 −0.235702
\(19\) 64.0000 0.772769 0.386384 0.922338i \(-0.373724\pi\)
0.386384 + 0.922338i \(0.373724\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) −32.0000 −0.310110
\(23\) 16.0000 0.145054 0.0725268 0.997366i \(-0.476894\pi\)
0.0725268 + 0.997366i \(0.476894\pi\)
\(24\) −24.0000 −0.204124
\(25\) 0 0
\(26\) 116.000 0.874980
\(27\) 27.0000 0.192450
\(28\) 28.0000 0.188982
\(29\) 62.0000 0.397004 0.198502 0.980101i \(-0.436392\pi\)
0.198502 + 0.980101i \(0.436392\pi\)
\(30\) 0 0
\(31\) 60.0000 0.347623 0.173812 0.984779i \(-0.444392\pi\)
0.173812 + 0.984779i \(0.444392\pi\)
\(32\) −32.0000 −0.176777
\(33\) 48.0000 0.253204
\(34\) 68.0000 0.342997
\(35\) 0 0
\(36\) 36.0000 0.166667
\(37\) −150.000 −0.666482 −0.333241 0.942842i \(-0.608142\pi\)
−0.333241 + 0.942842i \(0.608142\pi\)
\(38\) −128.000 −0.546430
\(39\) −174.000 −0.714418
\(40\) 0 0
\(41\) 474.000 1.80552 0.902761 0.430144i \(-0.141537\pi\)
0.902761 + 0.430144i \(0.141537\pi\)
\(42\) −42.0000 −0.154303
\(43\) 292.000 1.03557 0.517786 0.855510i \(-0.326756\pi\)
0.517786 + 0.855510i \(0.326756\pi\)
\(44\) 64.0000 0.219281
\(45\) 0 0
\(46\) −32.0000 −0.102568
\(47\) −240.000 −0.744843 −0.372421 0.928064i \(-0.621472\pi\)
−0.372421 + 0.928064i \(0.621472\pi\)
\(48\) 48.0000 0.144338
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −102.000 −0.280056
\(52\) −232.000 −0.618704
\(53\) 662.000 1.71571 0.857856 0.513891i \(-0.171796\pi\)
0.857856 + 0.513891i \(0.171796\pi\)
\(54\) −54.0000 −0.136083
\(55\) 0 0
\(56\) −56.0000 −0.133631
\(57\) 192.000 0.446158
\(58\) −124.000 −0.280724
\(59\) −324.000 −0.714936 −0.357468 0.933925i \(-0.616360\pi\)
−0.357468 + 0.933925i \(0.616360\pi\)
\(60\) 0 0
\(61\) −514.000 −1.07887 −0.539434 0.842028i \(-0.681362\pi\)
−0.539434 + 0.842028i \(0.681362\pi\)
\(62\) −120.000 −0.245807
\(63\) 63.0000 0.125988
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −96.0000 −0.179042
\(67\) 372.000 0.678314 0.339157 0.940730i \(-0.389858\pi\)
0.339157 + 0.940730i \(0.389858\pi\)
\(68\) −136.000 −0.242536
\(69\) 48.0000 0.0837467
\(70\) 0 0
\(71\) −412.000 −0.688668 −0.344334 0.938847i \(-0.611895\pi\)
−0.344334 + 0.938847i \(0.611895\pi\)
\(72\) −72.0000 −0.117851
\(73\) 770.000 1.23454 0.617272 0.786750i \(-0.288238\pi\)
0.617272 + 0.786750i \(0.288238\pi\)
\(74\) 300.000 0.471274
\(75\) 0 0
\(76\) 256.000 0.386384
\(77\) 112.000 0.165761
\(78\) 348.000 0.505170
\(79\) −560.000 −0.797531 −0.398765 0.917053i \(-0.630561\pi\)
−0.398765 + 0.917053i \(0.630561\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −948.000 −1.27670
\(83\) 852.000 1.12674 0.563368 0.826206i \(-0.309505\pi\)
0.563368 + 0.826206i \(0.309505\pi\)
\(84\) 84.0000 0.109109
\(85\) 0 0
\(86\) −584.000 −0.732260
\(87\) 186.000 0.229210
\(88\) −128.000 −0.155055
\(89\) 1466.00 1.74602 0.873009 0.487703i \(-0.162165\pi\)
0.873009 + 0.487703i \(0.162165\pi\)
\(90\) 0 0
\(91\) −406.000 −0.467696
\(92\) 64.0000 0.0725268
\(93\) 180.000 0.200700
\(94\) 480.000 0.526683
\(95\) 0 0
\(96\) −96.0000 −0.102062
\(97\) 178.000 0.186321 0.0931606 0.995651i \(-0.470303\pi\)
0.0931606 + 0.995651i \(0.470303\pi\)
\(98\) −98.0000 −0.101015
\(99\) 144.000 0.146187
\(100\) 0 0
\(101\) 1278.00 1.25907 0.629533 0.776973i \(-0.283246\pi\)
0.629533 + 0.776973i \(0.283246\pi\)
\(102\) 204.000 0.198030
\(103\) 296.000 0.283163 0.141581 0.989927i \(-0.454781\pi\)
0.141581 + 0.989927i \(0.454781\pi\)
\(104\) 464.000 0.437490
\(105\) 0 0
\(106\) −1324.00 −1.21319
\(107\) −1164.00 −1.05166 −0.525832 0.850588i \(-0.676246\pi\)
−0.525832 + 0.850588i \(0.676246\pi\)
\(108\) 108.000 0.0962250
\(109\) −778.000 −0.683659 −0.341830 0.939762i \(-0.611047\pi\)
−0.341830 + 0.939762i \(0.611047\pi\)
\(110\) 0 0
\(111\) −450.000 −0.384794
\(112\) 112.000 0.0944911
\(113\) 42.0000 0.0349648 0.0174824 0.999847i \(-0.494435\pi\)
0.0174824 + 0.999847i \(0.494435\pi\)
\(114\) −384.000 −0.315482
\(115\) 0 0
\(116\) 248.000 0.198502
\(117\) −522.000 −0.412469
\(118\) 648.000 0.505536
\(119\) −238.000 −0.183340
\(120\) 0 0
\(121\) −1075.00 −0.807663
\(122\) 1028.00 0.762875
\(123\) 1422.00 1.04242
\(124\) 240.000 0.173812
\(125\) 0 0
\(126\) −126.000 −0.0890871
\(127\) 280.000 0.195638 0.0978188 0.995204i \(-0.468813\pi\)
0.0978188 + 0.995204i \(0.468813\pi\)
\(128\) −128.000 −0.0883883
\(129\) 876.000 0.597888
\(130\) 0 0
\(131\) 1180.00 0.787001 0.393500 0.919324i \(-0.371264\pi\)
0.393500 + 0.919324i \(0.371264\pi\)
\(132\) 192.000 0.126602
\(133\) 448.000 0.292079
\(134\) −744.000 −0.479640
\(135\) 0 0
\(136\) 272.000 0.171499
\(137\) 730.000 0.455242 0.227621 0.973750i \(-0.426905\pi\)
0.227621 + 0.973750i \(0.426905\pi\)
\(138\) −96.0000 −0.0592178
\(139\) −664.000 −0.405178 −0.202589 0.979264i \(-0.564936\pi\)
−0.202589 + 0.979264i \(0.564936\pi\)
\(140\) 0 0
\(141\) −720.000 −0.430035
\(142\) 824.000 0.486962
\(143\) −928.000 −0.542680
\(144\) 144.000 0.0833333
\(145\) 0 0
\(146\) −1540.00 −0.872954
\(147\) 147.000 0.0824786
\(148\) −600.000 −0.333241
\(149\) 2974.00 1.63516 0.817582 0.575812i \(-0.195314\pi\)
0.817582 + 0.575812i \(0.195314\pi\)
\(150\) 0 0
\(151\) −2768.00 −1.49177 −0.745883 0.666077i \(-0.767972\pi\)
−0.745883 + 0.666077i \(0.767972\pi\)
\(152\) −512.000 −0.273215
\(153\) −306.000 −0.161690
\(154\) −224.000 −0.117211
\(155\) 0 0
\(156\) −696.000 −0.357209
\(157\) −1890.00 −0.960754 −0.480377 0.877062i \(-0.659500\pi\)
−0.480377 + 0.877062i \(0.659500\pi\)
\(158\) 1120.00 0.563939
\(159\) 1986.00 0.990566
\(160\) 0 0
\(161\) 112.000 0.0548251
\(162\) −162.000 −0.0785674
\(163\) 1180.00 0.567023 0.283511 0.958969i \(-0.408501\pi\)
0.283511 + 0.958969i \(0.408501\pi\)
\(164\) 1896.00 0.902761
\(165\) 0 0
\(166\) −1704.00 −0.796723
\(167\) 1216.00 0.563455 0.281727 0.959495i \(-0.409093\pi\)
0.281727 + 0.959495i \(0.409093\pi\)
\(168\) −168.000 −0.0771517
\(169\) 1167.00 0.531179
\(170\) 0 0
\(171\) 576.000 0.257590
\(172\) 1168.00 0.517786
\(173\) −126.000 −0.0553734 −0.0276867 0.999617i \(-0.508814\pi\)
−0.0276867 + 0.999617i \(0.508814\pi\)
\(174\) −372.000 −0.162076
\(175\) 0 0
\(176\) 256.000 0.109640
\(177\) −972.000 −0.412768
\(178\) −2932.00 −1.23462
\(179\) 872.000 0.364114 0.182057 0.983288i \(-0.441725\pi\)
0.182057 + 0.983288i \(0.441725\pi\)
\(180\) 0 0
\(181\) −18.0000 −0.00739188 −0.00369594 0.999993i \(-0.501176\pi\)
−0.00369594 + 0.999993i \(0.501176\pi\)
\(182\) 812.000 0.330711
\(183\) −1542.00 −0.622885
\(184\) −128.000 −0.0512842
\(185\) 0 0
\(186\) −360.000 −0.141917
\(187\) −544.000 −0.212734
\(188\) −960.000 −0.372421
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) 4420.00 1.67445 0.837225 0.546858i \(-0.184176\pi\)
0.837225 + 0.546858i \(0.184176\pi\)
\(192\) 192.000 0.0721688
\(193\) 2254.00 0.840655 0.420328 0.907372i \(-0.361915\pi\)
0.420328 + 0.907372i \(0.361915\pi\)
\(194\) −356.000 −0.131749
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) 750.000 0.271245 0.135623 0.990761i \(-0.456697\pi\)
0.135623 + 0.990761i \(0.456697\pi\)
\(198\) −288.000 −0.103370
\(199\) 3732.00 1.32942 0.664710 0.747102i \(-0.268555\pi\)
0.664710 + 0.747102i \(0.268555\pi\)
\(200\) 0 0
\(201\) 1116.00 0.391625
\(202\) −2556.00 −0.890295
\(203\) 434.000 0.150053
\(204\) −408.000 −0.140028
\(205\) 0 0
\(206\) −592.000 −0.200226
\(207\) 144.000 0.0483512
\(208\) −928.000 −0.309352
\(209\) 1024.00 0.338907
\(210\) 0 0
\(211\) 1980.00 0.646013 0.323007 0.946397i \(-0.395306\pi\)
0.323007 + 0.946397i \(0.395306\pi\)
\(212\) 2648.00 0.857856
\(213\) −1236.00 −0.397602
\(214\) 2328.00 0.743639
\(215\) 0 0
\(216\) −216.000 −0.0680414
\(217\) 420.000 0.131389
\(218\) 1556.00 0.483420
\(219\) 2310.00 0.712764
\(220\) 0 0
\(221\) 1972.00 0.600231
\(222\) 900.000 0.272090
\(223\) 6328.00 1.90024 0.950122 0.311880i \(-0.100959\pi\)
0.950122 + 0.311880i \(0.100959\pi\)
\(224\) −224.000 −0.0668153
\(225\) 0 0
\(226\) −84.0000 −0.0247239
\(227\) 2596.00 0.759042 0.379521 0.925183i \(-0.376089\pi\)
0.379521 + 0.925183i \(0.376089\pi\)
\(228\) 768.000 0.223079
\(229\) 4742.00 1.36839 0.684193 0.729301i \(-0.260155\pi\)
0.684193 + 0.729301i \(0.260155\pi\)
\(230\) 0 0
\(231\) 336.000 0.0957021
\(232\) −496.000 −0.140362
\(233\) −1294.00 −0.363832 −0.181916 0.983314i \(-0.558230\pi\)
−0.181916 + 0.983314i \(0.558230\pi\)
\(234\) 1044.00 0.291660
\(235\) 0 0
\(236\) −1296.00 −0.357468
\(237\) −1680.00 −0.460455
\(238\) 476.000 0.129641
\(239\) −2340.00 −0.633314 −0.316657 0.948540i \(-0.602560\pi\)
−0.316657 + 0.948540i \(0.602560\pi\)
\(240\) 0 0
\(241\) 5962.00 1.59355 0.796776 0.604274i \(-0.206537\pi\)
0.796776 + 0.604274i \(0.206537\pi\)
\(242\) 2150.00 0.571104
\(243\) 243.000 0.0641500
\(244\) −2056.00 −0.539434
\(245\) 0 0
\(246\) −2844.00 −0.737101
\(247\) −3712.00 −0.956230
\(248\) −480.000 −0.122903
\(249\) 2556.00 0.650522
\(250\) 0 0
\(251\) −1572.00 −0.395314 −0.197657 0.980271i \(-0.563333\pi\)
−0.197657 + 0.980271i \(0.563333\pi\)
\(252\) 252.000 0.0629941
\(253\) 256.000 0.0636149
\(254\) −560.000 −0.138337
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 3910.00 0.949024 0.474512 0.880249i \(-0.342625\pi\)
0.474512 + 0.880249i \(0.342625\pi\)
\(258\) −1752.00 −0.422770
\(259\) −1050.00 −0.251907
\(260\) 0 0
\(261\) 558.000 0.132335
\(262\) −2360.00 −0.556493
\(263\) 5672.00 1.32985 0.664925 0.746910i \(-0.268464\pi\)
0.664925 + 0.746910i \(0.268464\pi\)
\(264\) −384.000 −0.0895211
\(265\) 0 0
\(266\) −896.000 −0.206531
\(267\) 4398.00 1.00806
\(268\) 1488.00 0.339157
\(269\) −1002.00 −0.227112 −0.113556 0.993532i \(-0.536224\pi\)
−0.113556 + 0.993532i \(0.536224\pi\)
\(270\) 0 0
\(271\) −6140.00 −1.37630 −0.688152 0.725566i \(-0.741578\pi\)
−0.688152 + 0.725566i \(0.741578\pi\)
\(272\) −544.000 −0.121268
\(273\) −1218.00 −0.270025
\(274\) −1460.00 −0.321904
\(275\) 0 0
\(276\) 192.000 0.0418733
\(277\) −70.0000 −0.0151837 −0.00759186 0.999971i \(-0.502417\pi\)
−0.00759186 + 0.999971i \(0.502417\pi\)
\(278\) 1328.00 0.286504
\(279\) 540.000 0.115874
\(280\) 0 0
\(281\) −3294.00 −0.699301 −0.349650 0.936880i \(-0.613700\pi\)
−0.349650 + 0.936880i \(0.613700\pi\)
\(282\) 1440.00 0.304081
\(283\) −1852.00 −0.389011 −0.194505 0.980901i \(-0.562310\pi\)
−0.194505 + 0.980901i \(0.562310\pi\)
\(284\) −1648.00 −0.344334
\(285\) 0 0
\(286\) 1856.00 0.383733
\(287\) 3318.00 0.682423
\(288\) −288.000 −0.0589256
\(289\) −3757.00 −0.764706
\(290\) 0 0
\(291\) 534.000 0.107573
\(292\) 3080.00 0.617272
\(293\) 5130.00 1.02286 0.511430 0.859325i \(-0.329116\pi\)
0.511430 + 0.859325i \(0.329116\pi\)
\(294\) −294.000 −0.0583212
\(295\) 0 0
\(296\) 1200.00 0.235637
\(297\) 432.000 0.0844013
\(298\) −5948.00 −1.15624
\(299\) −928.000 −0.179490
\(300\) 0 0
\(301\) 2044.00 0.391409
\(302\) 5536.00 1.05484
\(303\) 3834.00 0.726923
\(304\) 1024.00 0.193192
\(305\) 0 0
\(306\) 612.000 0.114332
\(307\) −956.000 −0.177726 −0.0888629 0.996044i \(-0.528323\pi\)
−0.0888629 + 0.996044i \(0.528323\pi\)
\(308\) 448.000 0.0828804
\(309\) 888.000 0.163484
\(310\) 0 0
\(311\) −3448.00 −0.628676 −0.314338 0.949311i \(-0.601782\pi\)
−0.314338 + 0.949311i \(0.601782\pi\)
\(312\) 1392.00 0.252585
\(313\) 5850.00 1.05643 0.528213 0.849112i \(-0.322862\pi\)
0.528213 + 0.849112i \(0.322862\pi\)
\(314\) 3780.00 0.679356
\(315\) 0 0
\(316\) −2240.00 −0.398765
\(317\) −3794.00 −0.672215 −0.336108 0.941824i \(-0.609111\pi\)
−0.336108 + 0.941824i \(0.609111\pi\)
\(318\) −3972.00 −0.700436
\(319\) 992.000 0.174111
\(320\) 0 0
\(321\) −3492.00 −0.607179
\(322\) −224.000 −0.0387672
\(323\) −2176.00 −0.374848
\(324\) 324.000 0.0555556
\(325\) 0 0
\(326\) −2360.00 −0.400946
\(327\) −2334.00 −0.394711
\(328\) −3792.00 −0.638348
\(329\) −1680.00 −0.281524
\(330\) 0 0
\(331\) 4116.00 0.683492 0.341746 0.939792i \(-0.388982\pi\)
0.341746 + 0.939792i \(0.388982\pi\)
\(332\) 3408.00 0.563368
\(333\) −1350.00 −0.222161
\(334\) −2432.00 −0.398423
\(335\) 0 0
\(336\) 336.000 0.0545545
\(337\) −7506.00 −1.21329 −0.606644 0.794974i \(-0.707485\pi\)
−0.606644 + 0.794974i \(0.707485\pi\)
\(338\) −2334.00 −0.375600
\(339\) 126.000 0.0201870
\(340\) 0 0
\(341\) 960.000 0.152454
\(342\) −1152.00 −0.182143
\(343\) 343.000 0.0539949
\(344\) −2336.00 −0.366130
\(345\) 0 0
\(346\) 252.000 0.0391549
\(347\) 11516.0 1.78159 0.890794 0.454407i \(-0.150149\pi\)
0.890794 + 0.454407i \(0.150149\pi\)
\(348\) 744.000 0.114605
\(349\) −11362.0 −1.74268 −0.871338 0.490683i \(-0.836747\pi\)
−0.871338 + 0.490683i \(0.836747\pi\)
\(350\) 0 0
\(351\) −1566.00 −0.238139
\(352\) −512.000 −0.0775275
\(353\) −3890.00 −0.586526 −0.293263 0.956032i \(-0.594741\pi\)
−0.293263 + 0.956032i \(0.594741\pi\)
\(354\) 1944.00 0.291871
\(355\) 0 0
\(356\) 5864.00 0.873009
\(357\) −714.000 −0.105851
\(358\) −1744.00 −0.257467
\(359\) −1332.00 −0.195822 −0.0979112 0.995195i \(-0.531216\pi\)
−0.0979112 + 0.995195i \(0.531216\pi\)
\(360\) 0 0
\(361\) −2763.00 −0.402828
\(362\) 36.0000 0.00522685
\(363\) −3225.00 −0.466305
\(364\) −1624.00 −0.233848
\(365\) 0 0
\(366\) 3084.00 0.440446
\(367\) −10264.0 −1.45988 −0.729941 0.683511i \(-0.760452\pi\)
−0.729941 + 0.683511i \(0.760452\pi\)
\(368\) 256.000 0.0362634
\(369\) 4266.00 0.601840
\(370\) 0 0
\(371\) 4634.00 0.648478
\(372\) 720.000 0.100350
\(373\) 7714.00 1.07082 0.535410 0.844592i \(-0.320157\pi\)
0.535410 + 0.844592i \(0.320157\pi\)
\(374\) 1088.00 0.150426
\(375\) 0 0
\(376\) 1920.00 0.263342
\(377\) −3596.00 −0.491256
\(378\) −378.000 −0.0514344
\(379\) −6020.00 −0.815901 −0.407951 0.913004i \(-0.633756\pi\)
−0.407951 + 0.913004i \(0.633756\pi\)
\(380\) 0 0
\(381\) 840.000 0.112951
\(382\) −8840.00 −1.18402
\(383\) 5368.00 0.716167 0.358084 0.933690i \(-0.383430\pi\)
0.358084 + 0.933690i \(0.383430\pi\)
\(384\) −384.000 −0.0510310
\(385\) 0 0
\(386\) −4508.00 −0.594433
\(387\) 2628.00 0.345191
\(388\) 712.000 0.0931606
\(389\) 10526.0 1.37195 0.685976 0.727624i \(-0.259375\pi\)
0.685976 + 0.727624i \(0.259375\pi\)
\(390\) 0 0
\(391\) −544.000 −0.0703613
\(392\) −392.000 −0.0505076
\(393\) 3540.00 0.454375
\(394\) −1500.00 −0.191799
\(395\) 0 0
\(396\) 576.000 0.0730937
\(397\) −15642.0 −1.97745 −0.988727 0.149728i \(-0.952160\pi\)
−0.988727 + 0.149728i \(0.952160\pi\)
\(398\) −7464.00 −0.940041
\(399\) 1344.00 0.168632
\(400\) 0 0
\(401\) 14498.0 1.80548 0.902738 0.430192i \(-0.141554\pi\)
0.902738 + 0.430192i \(0.141554\pi\)
\(402\) −2232.00 −0.276921
\(403\) −3480.00 −0.430152
\(404\) 5112.00 0.629533
\(405\) 0 0
\(406\) −868.000 −0.106104
\(407\) −2400.00 −0.292294
\(408\) 816.000 0.0990148
\(409\) −13718.0 −1.65846 −0.829232 0.558905i \(-0.811222\pi\)
−0.829232 + 0.558905i \(0.811222\pi\)
\(410\) 0 0
\(411\) 2190.00 0.262834
\(412\) 1184.00 0.141581
\(413\) −2268.00 −0.270220
\(414\) −288.000 −0.0341894
\(415\) 0 0
\(416\) 1856.00 0.218745
\(417\) −1992.00 −0.233930
\(418\) −2048.00 −0.239643
\(419\) −10484.0 −1.22238 −0.611190 0.791484i \(-0.709309\pi\)
−0.611190 + 0.791484i \(0.709309\pi\)
\(420\) 0 0
\(421\) −8594.00 −0.994883 −0.497442 0.867497i \(-0.665727\pi\)
−0.497442 + 0.867497i \(0.665727\pi\)
\(422\) −3960.00 −0.456800
\(423\) −2160.00 −0.248281
\(424\) −5296.00 −0.606596
\(425\) 0 0
\(426\) 2472.00 0.281147
\(427\) −3598.00 −0.407774
\(428\) −4656.00 −0.525832
\(429\) −2784.00 −0.313317
\(430\) 0 0
\(431\) −420.000 −0.0469390 −0.0234695 0.999725i \(-0.507471\pi\)
−0.0234695 + 0.999725i \(0.507471\pi\)
\(432\) 432.000 0.0481125
\(433\) 9794.00 1.08700 0.543498 0.839410i \(-0.317099\pi\)
0.543498 + 0.839410i \(0.317099\pi\)
\(434\) −840.000 −0.0929062
\(435\) 0 0
\(436\) −3112.00 −0.341830
\(437\) 1024.00 0.112093
\(438\) −4620.00 −0.504000
\(439\) −1436.00 −0.156120 −0.0780598 0.996949i \(-0.524873\pi\)
−0.0780598 + 0.996949i \(0.524873\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) −3944.00 −0.424427
\(443\) −12228.0 −1.31144 −0.655722 0.755002i \(-0.727636\pi\)
−0.655722 + 0.755002i \(0.727636\pi\)
\(444\) −1800.00 −0.192397
\(445\) 0 0
\(446\) −12656.0 −1.34367
\(447\) 8922.00 0.944063
\(448\) 448.000 0.0472456
\(449\) −6734.00 −0.707789 −0.353894 0.935285i \(-0.615143\pi\)
−0.353894 + 0.935285i \(0.615143\pi\)
\(450\) 0 0
\(451\) 7584.00 0.791833
\(452\) 168.000 0.0174824
\(453\) −8304.00 −0.861271
\(454\) −5192.00 −0.536724
\(455\) 0 0
\(456\) −1536.00 −0.157741
\(457\) −10690.0 −1.09422 −0.547108 0.837062i \(-0.684271\pi\)
−0.547108 + 0.837062i \(0.684271\pi\)
\(458\) −9484.00 −0.967594
\(459\) −918.000 −0.0933520
\(460\) 0 0
\(461\) 14902.0 1.50554 0.752772 0.658282i \(-0.228717\pi\)
0.752772 + 0.658282i \(0.228717\pi\)
\(462\) −672.000 −0.0676716
\(463\) −17064.0 −1.71281 −0.856405 0.516304i \(-0.827307\pi\)
−0.856405 + 0.516304i \(0.827307\pi\)
\(464\) 992.000 0.0992510
\(465\) 0 0
\(466\) 2588.00 0.257268
\(467\) −3036.00 −0.300834 −0.150417 0.988623i \(-0.548062\pi\)
−0.150417 + 0.988623i \(0.548062\pi\)
\(468\) −2088.00 −0.206235
\(469\) 2604.00 0.256379
\(470\) 0 0
\(471\) −5670.00 −0.554692
\(472\) 2592.00 0.252768
\(473\) 4672.00 0.454162
\(474\) 3360.00 0.325591
\(475\) 0 0
\(476\) −952.000 −0.0916698
\(477\) 5958.00 0.571904
\(478\) 4680.00 0.447821
\(479\) −13664.0 −1.30339 −0.651695 0.758481i \(-0.725942\pi\)
−0.651695 + 0.758481i \(0.725942\pi\)
\(480\) 0 0
\(481\) 8700.00 0.824711
\(482\) −11924.0 −1.12681
\(483\) 336.000 0.0316533
\(484\) −4300.00 −0.403832
\(485\) 0 0
\(486\) −486.000 −0.0453609
\(487\) 11744.0 1.09275 0.546377 0.837539i \(-0.316006\pi\)
0.546377 + 0.837539i \(0.316006\pi\)
\(488\) 4112.00 0.381437
\(489\) 3540.00 0.327371
\(490\) 0 0
\(491\) −48.0000 −0.00441183 −0.00220592 0.999998i \(-0.500702\pi\)
−0.00220592 + 0.999998i \(0.500702\pi\)
\(492\) 5688.00 0.521209
\(493\) −2108.00 −0.192575
\(494\) 7424.00 0.676157
\(495\) 0 0
\(496\) 960.000 0.0869058
\(497\) −2884.00 −0.260292
\(498\) −5112.00 −0.459988
\(499\) 1044.00 0.0936590 0.0468295 0.998903i \(-0.485088\pi\)
0.0468295 + 0.998903i \(0.485088\pi\)
\(500\) 0 0
\(501\) 3648.00 0.325311
\(502\) 3144.00 0.279529
\(503\) −14432.0 −1.27931 −0.639653 0.768664i \(-0.720922\pi\)
−0.639653 + 0.768664i \(0.720922\pi\)
\(504\) −504.000 −0.0445435
\(505\) 0 0
\(506\) −512.000 −0.0449826
\(507\) 3501.00 0.306676
\(508\) 1120.00 0.0978188
\(509\) −6426.00 −0.559582 −0.279791 0.960061i \(-0.590265\pi\)
−0.279791 + 0.960061i \(0.590265\pi\)
\(510\) 0 0
\(511\) 5390.00 0.466614
\(512\) −512.000 −0.0441942
\(513\) 1728.00 0.148719
\(514\) −7820.00 −0.671061
\(515\) 0 0
\(516\) 3504.00 0.298944
\(517\) −3840.00 −0.326660
\(518\) 2100.00 0.178125
\(519\) −378.000 −0.0319699
\(520\) 0 0
\(521\) −11766.0 −0.989401 −0.494700 0.869064i \(-0.664722\pi\)
−0.494700 + 0.869064i \(0.664722\pi\)
\(522\) −1116.00 −0.0935747
\(523\) 11900.0 0.994934 0.497467 0.867483i \(-0.334263\pi\)
0.497467 + 0.867483i \(0.334263\pi\)
\(524\) 4720.00 0.393500
\(525\) 0 0
\(526\) −11344.0 −0.940346
\(527\) −2040.00 −0.168622
\(528\) 768.000 0.0633010
\(529\) −11911.0 −0.978959
\(530\) 0 0
\(531\) −2916.00 −0.238312
\(532\) 1792.00 0.146040
\(533\) −27492.0 −2.23417
\(534\) −8796.00 −0.712809
\(535\) 0 0
\(536\) −2976.00 −0.239820
\(537\) 2616.00 0.210221
\(538\) 2004.00 0.160592
\(539\) 784.000 0.0626517
\(540\) 0 0
\(541\) −22330.0 −1.77457 −0.887284 0.461223i \(-0.847411\pi\)
−0.887284 + 0.461223i \(0.847411\pi\)
\(542\) 12280.0 0.973194
\(543\) −54.0000 −0.00426770
\(544\) 1088.00 0.0857493
\(545\) 0 0
\(546\) 2436.00 0.190936
\(547\) −18396.0 −1.43795 −0.718973 0.695038i \(-0.755387\pi\)
−0.718973 + 0.695038i \(0.755387\pi\)
\(548\) 2920.00 0.227621
\(549\) −4626.00 −0.359623
\(550\) 0 0
\(551\) 3968.00 0.306792
\(552\) −384.000 −0.0296089
\(553\) −3920.00 −0.301438
\(554\) 140.000 0.0107365
\(555\) 0 0
\(556\) −2656.00 −0.202589
\(557\) 3774.00 0.287091 0.143545 0.989644i \(-0.454150\pi\)
0.143545 + 0.989644i \(0.454150\pi\)
\(558\) −1080.00 −0.0819356
\(559\) −16936.0 −1.28142
\(560\) 0 0
\(561\) −1632.00 −0.122822
\(562\) 6588.00 0.494480
\(563\) −9412.00 −0.704562 −0.352281 0.935894i \(-0.614594\pi\)
−0.352281 + 0.935894i \(0.614594\pi\)
\(564\) −2880.00 −0.215018
\(565\) 0 0
\(566\) 3704.00 0.275072
\(567\) 567.000 0.0419961
\(568\) 3296.00 0.243481
\(569\) 11146.0 0.821203 0.410602 0.911815i \(-0.365319\pi\)
0.410602 + 0.911815i \(0.365319\pi\)
\(570\) 0 0
\(571\) 15292.0 1.12075 0.560377 0.828238i \(-0.310656\pi\)
0.560377 + 0.828238i \(0.310656\pi\)
\(572\) −3712.00 −0.271340
\(573\) 13260.0 0.966744
\(574\) −6636.00 −0.482546
\(575\) 0 0
\(576\) 576.000 0.0416667
\(577\) 22322.0 1.61053 0.805266 0.592914i \(-0.202022\pi\)
0.805266 + 0.592914i \(0.202022\pi\)
\(578\) 7514.00 0.540729
\(579\) 6762.00 0.485353
\(580\) 0 0
\(581\) 5964.00 0.425866
\(582\) −1068.00 −0.0760653
\(583\) 10592.0 0.752446
\(584\) −6160.00 −0.436477
\(585\) 0 0
\(586\) −10260.0 −0.723271
\(587\) −684.000 −0.0480949 −0.0240474 0.999711i \(-0.507655\pi\)
−0.0240474 + 0.999711i \(0.507655\pi\)
\(588\) 588.000 0.0412393
\(589\) 3840.00 0.268632
\(590\) 0 0
\(591\) 2250.00 0.156603
\(592\) −2400.00 −0.166621
\(593\) 7806.00 0.540563 0.270282 0.962781i \(-0.412883\pi\)
0.270282 + 0.962781i \(0.412883\pi\)
\(594\) −864.000 −0.0596807
\(595\) 0 0
\(596\) 11896.0 0.817582
\(597\) 11196.0 0.767541
\(598\) 1856.00 0.126919
\(599\) −1284.00 −0.0875840 −0.0437920 0.999041i \(-0.513944\pi\)
−0.0437920 + 0.999041i \(0.513944\pi\)
\(600\) 0 0
\(601\) 12706.0 0.862377 0.431188 0.902262i \(-0.358094\pi\)
0.431188 + 0.902262i \(0.358094\pi\)
\(602\) −4088.00 −0.276768
\(603\) 3348.00 0.226105
\(604\) −11072.0 −0.745883
\(605\) 0 0
\(606\) −7668.00 −0.514012
\(607\) −9016.00 −0.602880 −0.301440 0.953485i \(-0.597467\pi\)
−0.301440 + 0.953485i \(0.597467\pi\)
\(608\) −2048.00 −0.136608
\(609\) 1302.00 0.0866333
\(610\) 0 0
\(611\) 13920.0 0.921674
\(612\) −1224.00 −0.0808452
\(613\) 19386.0 1.27731 0.638657 0.769492i \(-0.279490\pi\)
0.638657 + 0.769492i \(0.279490\pi\)
\(614\) 1912.00 0.125671
\(615\) 0 0
\(616\) −896.000 −0.0586053
\(617\) −14206.0 −0.926924 −0.463462 0.886117i \(-0.653393\pi\)
−0.463462 + 0.886117i \(0.653393\pi\)
\(618\) −1776.00 −0.115601
\(619\) 344.000 0.0223369 0.0111684 0.999938i \(-0.496445\pi\)
0.0111684 + 0.999938i \(0.496445\pi\)
\(620\) 0 0
\(621\) 432.000 0.0279156
\(622\) 6896.00 0.444541
\(623\) 10262.0 0.659933
\(624\) −2784.00 −0.178604
\(625\) 0 0
\(626\) −11700.0 −0.747006
\(627\) 3072.00 0.195668
\(628\) −7560.00 −0.480377
\(629\) 5100.00 0.323291
\(630\) 0 0
\(631\) 3608.00 0.227626 0.113813 0.993502i \(-0.463693\pi\)
0.113813 + 0.993502i \(0.463693\pi\)
\(632\) 4480.00 0.281970
\(633\) 5940.00 0.372976
\(634\) 7588.00 0.475328
\(635\) 0 0
\(636\) 7944.00 0.495283
\(637\) −2842.00 −0.176773
\(638\) −1984.00 −0.123115
\(639\) −3708.00 −0.229556
\(640\) 0 0
\(641\) −18838.0 −1.16077 −0.580387 0.814341i \(-0.697099\pi\)
−0.580387 + 0.814341i \(0.697099\pi\)
\(642\) 6984.00 0.429340
\(643\) −27068.0 −1.66012 −0.830060 0.557673i \(-0.811694\pi\)
−0.830060 + 0.557673i \(0.811694\pi\)
\(644\) 448.000 0.0274125
\(645\) 0 0
\(646\) 4352.00 0.265058
\(647\) 18912.0 1.14916 0.574581 0.818448i \(-0.305165\pi\)
0.574581 + 0.818448i \(0.305165\pi\)
\(648\) −648.000 −0.0392837
\(649\) −5184.00 −0.313544
\(650\) 0 0
\(651\) 1260.00 0.0758576
\(652\) 4720.00 0.283511
\(653\) 614.000 0.0367958 0.0183979 0.999831i \(-0.494143\pi\)
0.0183979 + 0.999831i \(0.494143\pi\)
\(654\) 4668.00 0.279103
\(655\) 0 0
\(656\) 7584.00 0.451380
\(657\) 6930.00 0.411515
\(658\) 3360.00 0.199068
\(659\) 31248.0 1.84712 0.923558 0.383459i \(-0.125267\pi\)
0.923558 + 0.383459i \(0.125267\pi\)
\(660\) 0 0
\(661\) −19882.0 −1.16992 −0.584962 0.811060i \(-0.698891\pi\)
−0.584962 + 0.811060i \(0.698891\pi\)
\(662\) −8232.00 −0.483302
\(663\) 5916.00 0.346544
\(664\) −6816.00 −0.398362
\(665\) 0 0
\(666\) 2700.00 0.157091
\(667\) 992.000 0.0575868
\(668\) 4864.00 0.281727
\(669\) 18984.0 1.09711
\(670\) 0 0
\(671\) −8224.00 −0.473151
\(672\) −672.000 −0.0385758
\(673\) −31866.0 −1.82518 −0.912588 0.408879i \(-0.865920\pi\)
−0.912588 + 0.408879i \(0.865920\pi\)
\(674\) 15012.0 0.857924
\(675\) 0 0
\(676\) 4668.00 0.265589
\(677\) −19574.0 −1.11121 −0.555606 0.831446i \(-0.687514\pi\)
−0.555606 + 0.831446i \(0.687514\pi\)
\(678\) −252.000 −0.0142743
\(679\) 1246.00 0.0704228
\(680\) 0 0
\(681\) 7788.00 0.438233
\(682\) −1920.00 −0.107801
\(683\) −24036.0 −1.34658 −0.673288 0.739380i \(-0.735119\pi\)
−0.673288 + 0.739380i \(0.735119\pi\)
\(684\) 2304.00 0.128795
\(685\) 0 0
\(686\) −686.000 −0.0381802
\(687\) 14226.0 0.790037
\(688\) 4672.00 0.258893
\(689\) −38396.0 −2.12303
\(690\) 0 0
\(691\) 29496.0 1.62385 0.811925 0.583761i \(-0.198420\pi\)
0.811925 + 0.583761i \(0.198420\pi\)
\(692\) −504.000 −0.0276867
\(693\) 1008.00 0.0552536
\(694\) −23032.0 −1.25977
\(695\) 0 0
\(696\) −1488.00 −0.0810381
\(697\) −16116.0 −0.875806
\(698\) 22724.0 1.23226
\(699\) −3882.00 −0.210058
\(700\) 0 0
\(701\) −10242.0 −0.551833 −0.275917 0.961182i \(-0.588981\pi\)
−0.275917 + 0.961182i \(0.588981\pi\)
\(702\) 3132.00 0.168390
\(703\) −9600.00 −0.515037
\(704\) 1024.00 0.0548202
\(705\) 0 0
\(706\) 7780.00 0.414737
\(707\) 8946.00 0.475883
\(708\) −3888.00 −0.206384
\(709\) −13730.0 −0.727279 −0.363640 0.931540i \(-0.618466\pi\)
−0.363640 + 0.931540i \(0.618466\pi\)
\(710\) 0 0
\(711\) −5040.00 −0.265844
\(712\) −11728.0 −0.617311
\(713\) 960.000 0.0504240
\(714\) 1428.00 0.0748481
\(715\) 0 0
\(716\) 3488.00 0.182057
\(717\) −7020.00 −0.365644
\(718\) 2664.00 0.138467
\(719\) −14840.0 −0.769734 −0.384867 0.922972i \(-0.625753\pi\)
−0.384867 + 0.922972i \(0.625753\pi\)
\(720\) 0 0
\(721\) 2072.00 0.107025
\(722\) 5526.00 0.284843
\(723\) 17886.0 0.920038
\(724\) −72.0000 −0.00369594
\(725\) 0 0
\(726\) 6450.00 0.329727
\(727\) 3616.00 0.184470 0.0922352 0.995737i \(-0.470599\pi\)
0.0922352 + 0.995737i \(0.470599\pi\)
\(728\) 3248.00 0.165356
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −9928.00 −0.502326
\(732\) −6168.00 −0.311442
\(733\) 24182.0 1.21853 0.609265 0.792967i \(-0.291465\pi\)
0.609265 + 0.792967i \(0.291465\pi\)
\(734\) 20528.0 1.03229
\(735\) 0 0
\(736\) −512.000 −0.0256421
\(737\) 5952.00 0.297483
\(738\) −8532.00 −0.425565
\(739\) 34052.0 1.69502 0.847512 0.530776i \(-0.178099\pi\)
0.847512 + 0.530776i \(0.178099\pi\)
\(740\) 0 0
\(741\) −11136.0 −0.552080
\(742\) −9268.00 −0.458543
\(743\) −21192.0 −1.04638 −0.523189 0.852217i \(-0.675258\pi\)
−0.523189 + 0.852217i \(0.675258\pi\)
\(744\) −1440.00 −0.0709583
\(745\) 0 0
\(746\) −15428.0 −0.757184
\(747\) 7668.00 0.375579
\(748\) −2176.00 −0.106367
\(749\) −8148.00 −0.397492
\(750\) 0 0
\(751\) −2192.00 −0.106508 −0.0532538 0.998581i \(-0.516959\pi\)
−0.0532538 + 0.998581i \(0.516959\pi\)
\(752\) −3840.00 −0.186211
\(753\) −4716.00 −0.228235
\(754\) 7192.00 0.347370
\(755\) 0 0
\(756\) 756.000 0.0363696
\(757\) 39458.0 1.89449 0.947243 0.320517i \(-0.103857\pi\)
0.947243 + 0.320517i \(0.103857\pi\)
\(758\) 12040.0 0.576929
\(759\) 768.000 0.0367281
\(760\) 0 0
\(761\) 458.000 0.0218167 0.0109083 0.999941i \(-0.496528\pi\)
0.0109083 + 0.999941i \(0.496528\pi\)
\(762\) −1680.00 −0.0798687
\(763\) −5446.00 −0.258399
\(764\) 17680.0 0.837225
\(765\) 0 0
\(766\) −10736.0 −0.506407
\(767\) 18792.0 0.884667
\(768\) 768.000 0.0360844
\(769\) 25354.0 1.18893 0.594466 0.804121i \(-0.297364\pi\)
0.594466 + 0.804121i \(0.297364\pi\)
\(770\) 0 0
\(771\) 11730.0 0.547919
\(772\) 9016.00 0.420328
\(773\) 25306.0 1.17748 0.588741 0.808322i \(-0.299624\pi\)
0.588741 + 0.808322i \(0.299624\pi\)
\(774\) −5256.00 −0.244087
\(775\) 0 0
\(776\) −1424.00 −0.0658745
\(777\) −3150.00 −0.145438
\(778\) −21052.0 −0.970117
\(779\) 30336.0 1.39525
\(780\) 0 0
\(781\) −6592.00 −0.302023
\(782\) 1088.00 0.0497529
\(783\) 1674.00 0.0764034
\(784\) 784.000 0.0357143
\(785\) 0 0
\(786\) −7080.00 −0.321292
\(787\) −26588.0 −1.20427 −0.602135 0.798395i \(-0.705683\pi\)
−0.602135 + 0.798395i \(0.705683\pi\)
\(788\) 3000.00 0.135623
\(789\) 17016.0 0.767789
\(790\) 0 0
\(791\) 294.000 0.0132155
\(792\) −1152.00 −0.0516850
\(793\) 29812.0 1.33500
\(794\) 31284.0 1.39827
\(795\) 0 0
\(796\) 14928.0 0.664710
\(797\) −38862.0 −1.72718 −0.863590 0.504194i \(-0.831789\pi\)
−0.863590 + 0.504194i \(0.831789\pi\)
\(798\) −2688.00 −0.119241
\(799\) 8160.00 0.361302
\(800\) 0 0
\(801\) 13194.0 0.582006
\(802\) −28996.0 −1.27666
\(803\) 12320.0 0.541424
\(804\) 4464.00 0.195812
\(805\) 0 0
\(806\) 6960.00 0.304163
\(807\) −3006.00 −0.131123
\(808\) −10224.0 −0.445147
\(809\) 6610.00 0.287262 0.143631 0.989631i \(-0.454122\pi\)
0.143631 + 0.989631i \(0.454122\pi\)
\(810\) 0 0
\(811\) 4696.00 0.203328 0.101664 0.994819i \(-0.467583\pi\)
0.101664 + 0.994819i \(0.467583\pi\)
\(812\) 1736.00 0.0750267
\(813\) −18420.0 −0.794610
\(814\) 4800.00 0.206683
\(815\) 0 0
\(816\) −1632.00 −0.0700140
\(817\) 18688.0 0.800257
\(818\) 27436.0 1.17271
\(819\) −3654.00 −0.155899
\(820\) 0 0
\(821\) −20362.0 −0.865577 −0.432788 0.901495i \(-0.642470\pi\)
−0.432788 + 0.901495i \(0.642470\pi\)
\(822\) −4380.00 −0.185852
\(823\) 9888.00 0.418802 0.209401 0.977830i \(-0.432849\pi\)
0.209401 + 0.977830i \(0.432849\pi\)
\(824\) −2368.00 −0.100113
\(825\) 0 0
\(826\) 4536.00 0.191075
\(827\) 19252.0 0.809501 0.404751 0.914427i \(-0.367358\pi\)
0.404751 + 0.914427i \(0.367358\pi\)
\(828\) 576.000 0.0241756
\(829\) −12954.0 −0.542715 −0.271358 0.962479i \(-0.587473\pi\)
−0.271358 + 0.962479i \(0.587473\pi\)
\(830\) 0 0
\(831\) −210.000 −0.00876633
\(832\) −3712.00 −0.154676
\(833\) −1666.00 −0.0692959
\(834\) 3984.00 0.165413
\(835\) 0 0
\(836\) 4096.00 0.169453
\(837\) 1620.00 0.0669001
\(838\) 20968.0 0.864353
\(839\) 18784.0 0.772939 0.386469 0.922302i \(-0.373694\pi\)
0.386469 + 0.922302i \(0.373694\pi\)
\(840\) 0 0
\(841\) −20545.0 −0.842388
\(842\) 17188.0 0.703489
\(843\) −9882.00 −0.403742
\(844\) 7920.00 0.323007
\(845\) 0 0
\(846\) 4320.00 0.175561
\(847\) −7525.00 −0.305268
\(848\) 10592.0 0.428928
\(849\) −5556.00 −0.224595
\(850\) 0 0
\(851\) −2400.00 −0.0966756
\(852\) −4944.00 −0.198801
\(853\) 4958.00 0.199014 0.0995069 0.995037i \(-0.468273\pi\)
0.0995069 + 0.995037i \(0.468273\pi\)
\(854\) 7196.00 0.288340
\(855\) 0 0
\(856\) 9312.00 0.371820
\(857\) 15326.0 0.610882 0.305441 0.952211i \(-0.401196\pi\)
0.305441 + 0.952211i \(0.401196\pi\)
\(858\) 5568.00 0.221548
\(859\) 49840.0 1.97965 0.989825 0.142292i \(-0.0454472\pi\)
0.989825 + 0.142292i \(0.0454472\pi\)
\(860\) 0 0
\(861\) 9954.00 0.393997
\(862\) 840.000 0.0331909
\(863\) −13384.0 −0.527922 −0.263961 0.964533i \(-0.585029\pi\)
−0.263961 + 0.964533i \(0.585029\pi\)
\(864\) −864.000 −0.0340207
\(865\) 0 0
\(866\) −19588.0 −0.768623
\(867\) −11271.0 −0.441503
\(868\) 1680.00 0.0656946
\(869\) −8960.00 −0.349767
\(870\) 0 0
\(871\) −21576.0 −0.839351
\(872\) 6224.00 0.241710
\(873\) 1602.00 0.0621071
\(874\) −2048.00 −0.0792616
\(875\) 0 0
\(876\) 9240.00 0.356382
\(877\) −5006.00 −0.192749 −0.0963743 0.995345i \(-0.530725\pi\)
−0.0963743 + 0.995345i \(0.530725\pi\)
\(878\) 2872.00 0.110393
\(879\) 15390.0 0.590548
\(880\) 0 0
\(881\) 14098.0 0.539130 0.269565 0.962982i \(-0.413120\pi\)
0.269565 + 0.962982i \(0.413120\pi\)
\(882\) −882.000 −0.0336718
\(883\) −13580.0 −0.517558 −0.258779 0.965937i \(-0.583320\pi\)
−0.258779 + 0.965937i \(0.583320\pi\)
\(884\) 7888.00 0.300116
\(885\) 0 0
\(886\) 24456.0 0.927331
\(887\) 14648.0 0.554489 0.277244 0.960799i \(-0.410579\pi\)
0.277244 + 0.960799i \(0.410579\pi\)
\(888\) 3600.00 0.136045
\(889\) 1960.00 0.0739441
\(890\) 0 0
\(891\) 1296.00 0.0487291
\(892\) 25312.0 0.950122
\(893\) −15360.0 −0.575591
\(894\) −17844.0 −0.667553
\(895\) 0 0
\(896\) −896.000 −0.0334077
\(897\) −2784.00 −0.103629
\(898\) 13468.0 0.500482
\(899\) 3720.00 0.138008
\(900\) 0 0
\(901\) −22508.0 −0.832242
\(902\) −15168.0 −0.559910
\(903\) 6132.00 0.225980
\(904\) −336.000 −0.0123619
\(905\) 0 0
\(906\) 16608.0 0.609011
\(907\) 17996.0 0.658817 0.329409 0.944187i \(-0.393151\pi\)
0.329409 + 0.944187i \(0.393151\pi\)
\(908\) 10384.0 0.379521
\(909\) 11502.0 0.419689
\(910\) 0 0
\(911\) −41420.0 −1.50637 −0.753187 0.657807i \(-0.771484\pi\)
−0.753187 + 0.657807i \(0.771484\pi\)
\(912\) 3072.00 0.111540
\(913\) 13632.0 0.494144
\(914\) 21380.0 0.773728
\(915\) 0 0
\(916\) 18968.0 0.684193
\(917\) 8260.00 0.297458
\(918\) 1836.00 0.0660098
\(919\) 33640.0 1.20749 0.603744 0.797178i \(-0.293675\pi\)
0.603744 + 0.797178i \(0.293675\pi\)
\(920\) 0 0
\(921\) −2868.00 −0.102610
\(922\) −29804.0 −1.06458
\(923\) 23896.0 0.852163
\(924\) 1344.00 0.0478510
\(925\) 0 0
\(926\) 34128.0 1.21114
\(927\) 2664.00 0.0943875
\(928\) −1984.00 −0.0701810
\(929\) −37918.0 −1.33913 −0.669564 0.742755i \(-0.733519\pi\)
−0.669564 + 0.742755i \(0.733519\pi\)
\(930\) 0 0
\(931\) 3136.00 0.110396
\(932\) −5176.00 −0.181916
\(933\) −10344.0 −0.362966
\(934\) 6072.00 0.212722
\(935\) 0 0
\(936\) 4176.00 0.145830
\(937\) 5954.00 0.207587 0.103793 0.994599i \(-0.466902\pi\)
0.103793 + 0.994599i \(0.466902\pi\)
\(938\) −5208.00 −0.181287
\(939\) 17550.0 0.609928
\(940\) 0 0
\(941\) −33066.0 −1.14551 −0.572753 0.819728i \(-0.694125\pi\)
−0.572753 + 0.819728i \(0.694125\pi\)
\(942\) 11340.0 0.392226
\(943\) 7584.00 0.261897
\(944\) −5184.00 −0.178734
\(945\) 0 0
\(946\) −9344.00 −0.321141
\(947\) −28508.0 −0.978232 −0.489116 0.872219i \(-0.662680\pi\)
−0.489116 + 0.872219i \(0.662680\pi\)
\(948\) −6720.00 −0.230227
\(949\) −44660.0 −1.52763
\(950\) 0 0
\(951\) −11382.0 −0.388104
\(952\) 1904.00 0.0648204
\(953\) −24718.0 −0.840183 −0.420092 0.907482i \(-0.638002\pi\)
−0.420092 + 0.907482i \(0.638002\pi\)
\(954\) −11916.0 −0.404397
\(955\) 0 0
\(956\) −9360.00 −0.316657
\(957\) 2976.00 0.100523
\(958\) 27328.0 0.921636
\(959\) 5110.00 0.172065
\(960\) 0 0
\(961\) −26191.0 −0.879158
\(962\) −17400.0 −0.583159
\(963\) −10476.0 −0.350555
\(964\) 23848.0 0.796776
\(965\) 0 0
\(966\) −672.000 −0.0223822
\(967\) 52424.0 1.74337 0.871687 0.490063i \(-0.163026\pi\)
0.871687 + 0.490063i \(0.163026\pi\)
\(968\) 8600.00 0.285552
\(969\) −6528.00 −0.216419
\(970\) 0 0
\(971\) 10988.0 0.363153 0.181577 0.983377i \(-0.441880\pi\)
0.181577 + 0.983377i \(0.441880\pi\)
\(972\) 972.000 0.0320750
\(973\) −4648.00 −0.153143
\(974\) −23488.0 −0.772694
\(975\) 0 0
\(976\) −8224.00 −0.269717
\(977\) −31446.0 −1.02973 −0.514865 0.857271i \(-0.672158\pi\)
−0.514865 + 0.857271i \(0.672158\pi\)
\(978\) −7080.00 −0.231486
\(979\) 23456.0 0.765737
\(980\) 0 0
\(981\) −7002.00 −0.227886
\(982\) 96.0000 0.00311964
\(983\) −33528.0 −1.08787 −0.543935 0.839127i \(-0.683066\pi\)
−0.543935 + 0.839127i \(0.683066\pi\)
\(984\) −11376.0 −0.368550
\(985\) 0 0
\(986\) 4216.00 0.136171
\(987\) −5040.00 −0.162538
\(988\) −14848.0 −0.478115
\(989\) 4672.00 0.150213
\(990\) 0 0
\(991\) −49856.0 −1.59811 −0.799056 0.601257i \(-0.794667\pi\)
−0.799056 + 0.601257i \(0.794667\pi\)
\(992\) −1920.00 −0.0614517
\(993\) 12348.0 0.394614
\(994\) 5768.00 0.184054
\(995\) 0 0
\(996\) 10224.0 0.325261
\(997\) −9298.00 −0.295357 −0.147678 0.989035i \(-0.547180\pi\)
−0.147678 + 0.989035i \(0.547180\pi\)
\(998\) −2088.00 −0.0662269
\(999\) −4050.00 −0.128265
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.4.a.l.1.1 1
5.2 odd 4 1050.4.g.f.799.1 2
5.3 odd 4 1050.4.g.f.799.2 2
5.4 even 2 210.4.a.i.1.1 1
15.14 odd 2 630.4.a.a.1.1 1
20.19 odd 2 1680.4.a.w.1.1 1
35.34 odd 2 1470.4.a.z.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.4.a.i.1.1 1 5.4 even 2
630.4.a.a.1.1 1 15.14 odd 2
1050.4.a.l.1.1 1 1.1 even 1 trivial
1050.4.g.f.799.1 2 5.2 odd 4
1050.4.g.f.799.2 2 5.3 odd 4
1470.4.a.z.1.1 1 35.34 odd 2
1680.4.a.w.1.1 1 20.19 odd 2