Properties

Label 1050.4.g.f.799.2
Level $1050$
Weight $4$
Character 1050.799
Analytic conductor $61.952$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,4,Mod(799,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.799"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1050.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-8,0,-12,0,0,-18,0,32,0,0,28,0,32,0,0,-128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.9520055060\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1050.799
Dual form 1050.4.g.f.799.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} +3.00000i q^{3} -4.00000 q^{4} -6.00000 q^{6} -7.00000i q^{7} -8.00000i q^{8} -9.00000 q^{9} +16.0000 q^{11} -12.0000i q^{12} -58.0000i q^{13} +14.0000 q^{14} +16.0000 q^{16} +34.0000i q^{17} -18.0000i q^{18} -64.0000 q^{19} +21.0000 q^{21} +32.0000i q^{22} +16.0000i q^{23} +24.0000 q^{24} +116.000 q^{26} -27.0000i q^{27} +28.0000i q^{28} -62.0000 q^{29} +60.0000 q^{31} +32.0000i q^{32} +48.0000i q^{33} -68.0000 q^{34} +36.0000 q^{36} +150.000i q^{37} -128.000i q^{38} +174.000 q^{39} +474.000 q^{41} +42.0000i q^{42} +292.000i q^{43} -64.0000 q^{44} -32.0000 q^{46} +240.000i q^{47} +48.0000i q^{48} -49.0000 q^{49} -102.000 q^{51} +232.000i q^{52} +662.000i q^{53} +54.0000 q^{54} -56.0000 q^{56} -192.000i q^{57} -124.000i q^{58} +324.000 q^{59} -514.000 q^{61} +120.000i q^{62} +63.0000i q^{63} -64.0000 q^{64} -96.0000 q^{66} -372.000i q^{67} -136.000i q^{68} -48.0000 q^{69} -412.000 q^{71} +72.0000i q^{72} +770.000i q^{73} -300.000 q^{74} +256.000 q^{76} -112.000i q^{77} +348.000i q^{78} +560.000 q^{79} +81.0000 q^{81} +948.000i q^{82} +852.000i q^{83} -84.0000 q^{84} -584.000 q^{86} -186.000i q^{87} -128.000i q^{88} -1466.00 q^{89} -406.000 q^{91} -64.0000i q^{92} +180.000i q^{93} -480.000 q^{94} -96.0000 q^{96} -178.000i q^{97} -98.0000i q^{98} -144.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} - 12 q^{6} - 18 q^{9} + 32 q^{11} + 28 q^{14} + 32 q^{16} - 128 q^{19} + 42 q^{21} + 48 q^{24} + 232 q^{26} - 124 q^{29} + 120 q^{31} - 136 q^{34} + 72 q^{36} + 348 q^{39} + 948 q^{41} - 128 q^{44}+ \cdots - 288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 3.00000i 0.577350i
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −6.00000 −0.408248
\(7\) − 7.00000i − 0.377964i
\(8\) − 8.00000i − 0.353553i
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 16.0000 0.438562 0.219281 0.975662i \(-0.429629\pi\)
0.219281 + 0.975662i \(0.429629\pi\)
\(12\) − 12.0000i − 0.288675i
\(13\) − 58.0000i − 1.23741i −0.785624 0.618704i \(-0.787658\pi\)
0.785624 0.618704i \(-0.212342\pi\)
\(14\) 14.0000 0.267261
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 34.0000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) − 18.0000i − 0.235702i
\(19\) −64.0000 −0.772769 −0.386384 0.922338i \(-0.626276\pi\)
−0.386384 + 0.922338i \(0.626276\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) 32.0000i 0.310110i
\(23\) 16.0000i 0.145054i 0.997366 + 0.0725268i \(0.0231063\pi\)
−0.997366 + 0.0725268i \(0.976894\pi\)
\(24\) 24.0000 0.204124
\(25\) 0 0
\(26\) 116.000 0.874980
\(27\) − 27.0000i − 0.192450i
\(28\) 28.0000i 0.188982i
\(29\) −62.0000 −0.397004 −0.198502 0.980101i \(-0.563608\pi\)
−0.198502 + 0.980101i \(0.563608\pi\)
\(30\) 0 0
\(31\) 60.0000 0.347623 0.173812 0.984779i \(-0.444392\pi\)
0.173812 + 0.984779i \(0.444392\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 48.0000i 0.253204i
\(34\) −68.0000 −0.342997
\(35\) 0 0
\(36\) 36.0000 0.166667
\(37\) 150.000i 0.666482i 0.942842 + 0.333241i \(0.108142\pi\)
−0.942842 + 0.333241i \(0.891858\pi\)
\(38\) − 128.000i − 0.546430i
\(39\) 174.000 0.714418
\(40\) 0 0
\(41\) 474.000 1.80552 0.902761 0.430144i \(-0.141537\pi\)
0.902761 + 0.430144i \(0.141537\pi\)
\(42\) 42.0000i 0.154303i
\(43\) 292.000i 1.03557i 0.855510 + 0.517786i \(0.173244\pi\)
−0.855510 + 0.517786i \(0.826756\pi\)
\(44\) −64.0000 −0.219281
\(45\) 0 0
\(46\) −32.0000 −0.102568
\(47\) 240.000i 0.744843i 0.928064 + 0.372421i \(0.121472\pi\)
−0.928064 + 0.372421i \(0.878528\pi\)
\(48\) 48.0000i 0.144338i
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −102.000 −0.280056
\(52\) 232.000i 0.618704i
\(53\) 662.000i 1.71571i 0.513891 + 0.857856i \(0.328204\pi\)
−0.513891 + 0.857856i \(0.671796\pi\)
\(54\) 54.0000 0.136083
\(55\) 0 0
\(56\) −56.0000 −0.133631
\(57\) − 192.000i − 0.446158i
\(58\) − 124.000i − 0.280724i
\(59\) 324.000 0.714936 0.357468 0.933925i \(-0.383640\pi\)
0.357468 + 0.933925i \(0.383640\pi\)
\(60\) 0 0
\(61\) −514.000 −1.07887 −0.539434 0.842028i \(-0.681362\pi\)
−0.539434 + 0.842028i \(0.681362\pi\)
\(62\) 120.000i 0.245807i
\(63\) 63.0000i 0.125988i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −96.0000 −0.179042
\(67\) − 372.000i − 0.678314i −0.940730 0.339157i \(-0.889858\pi\)
0.940730 0.339157i \(-0.110142\pi\)
\(68\) − 136.000i − 0.242536i
\(69\) −48.0000 −0.0837467
\(70\) 0 0
\(71\) −412.000 −0.688668 −0.344334 0.938847i \(-0.611895\pi\)
−0.344334 + 0.938847i \(0.611895\pi\)
\(72\) 72.0000i 0.117851i
\(73\) 770.000i 1.23454i 0.786750 + 0.617272i \(0.211762\pi\)
−0.786750 + 0.617272i \(0.788238\pi\)
\(74\) −300.000 −0.471274
\(75\) 0 0
\(76\) 256.000 0.386384
\(77\) − 112.000i − 0.165761i
\(78\) 348.000i 0.505170i
\(79\) 560.000 0.797531 0.398765 0.917053i \(-0.369439\pi\)
0.398765 + 0.917053i \(0.369439\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 948.000i 1.27670i
\(83\) 852.000i 1.12674i 0.826206 + 0.563368i \(0.190495\pi\)
−0.826206 + 0.563368i \(0.809505\pi\)
\(84\) −84.0000 −0.109109
\(85\) 0 0
\(86\) −584.000 −0.732260
\(87\) − 186.000i − 0.229210i
\(88\) − 128.000i − 0.155055i
\(89\) −1466.00 −1.74602 −0.873009 0.487703i \(-0.837835\pi\)
−0.873009 + 0.487703i \(0.837835\pi\)
\(90\) 0 0
\(91\) −406.000 −0.467696
\(92\) − 64.0000i − 0.0725268i
\(93\) 180.000i 0.200700i
\(94\) −480.000 −0.526683
\(95\) 0 0
\(96\) −96.0000 −0.102062
\(97\) − 178.000i − 0.186321i −0.995651 0.0931606i \(-0.970303\pi\)
0.995651 0.0931606i \(-0.0296970\pi\)
\(98\) − 98.0000i − 0.101015i
\(99\) −144.000 −0.146187
\(100\) 0 0
\(101\) 1278.00 1.25907 0.629533 0.776973i \(-0.283246\pi\)
0.629533 + 0.776973i \(0.283246\pi\)
\(102\) − 204.000i − 0.198030i
\(103\) 296.000i 0.283163i 0.989927 + 0.141581i \(0.0452187\pi\)
−0.989927 + 0.141581i \(0.954781\pi\)
\(104\) −464.000 −0.437490
\(105\) 0 0
\(106\) −1324.00 −1.21319
\(107\) 1164.00i 1.05166i 0.850588 + 0.525832i \(0.176246\pi\)
−0.850588 + 0.525832i \(0.823754\pi\)
\(108\) 108.000i 0.0962250i
\(109\) 778.000 0.683659 0.341830 0.939762i \(-0.388953\pi\)
0.341830 + 0.939762i \(0.388953\pi\)
\(110\) 0 0
\(111\) −450.000 −0.384794
\(112\) − 112.000i − 0.0944911i
\(113\) 42.0000i 0.0349648i 0.999847 + 0.0174824i \(0.00556511\pi\)
−0.999847 + 0.0174824i \(0.994435\pi\)
\(114\) 384.000 0.315482
\(115\) 0 0
\(116\) 248.000 0.198502
\(117\) 522.000i 0.412469i
\(118\) 648.000i 0.505536i
\(119\) 238.000 0.183340
\(120\) 0 0
\(121\) −1075.00 −0.807663
\(122\) − 1028.00i − 0.762875i
\(123\) 1422.00i 1.04242i
\(124\) −240.000 −0.173812
\(125\) 0 0
\(126\) −126.000 −0.0890871
\(127\) − 280.000i − 0.195638i −0.995204 0.0978188i \(-0.968813\pi\)
0.995204 0.0978188i \(-0.0311866\pi\)
\(128\) − 128.000i − 0.0883883i
\(129\) −876.000 −0.597888
\(130\) 0 0
\(131\) 1180.00 0.787001 0.393500 0.919324i \(-0.371264\pi\)
0.393500 + 0.919324i \(0.371264\pi\)
\(132\) − 192.000i − 0.126602i
\(133\) 448.000i 0.292079i
\(134\) 744.000 0.479640
\(135\) 0 0
\(136\) 272.000 0.171499
\(137\) − 730.000i − 0.455242i −0.973750 0.227621i \(-0.926905\pi\)
0.973750 0.227621i \(-0.0730947\pi\)
\(138\) − 96.0000i − 0.0592178i
\(139\) 664.000 0.405178 0.202589 0.979264i \(-0.435064\pi\)
0.202589 + 0.979264i \(0.435064\pi\)
\(140\) 0 0
\(141\) −720.000 −0.430035
\(142\) − 824.000i − 0.486962i
\(143\) − 928.000i − 0.542680i
\(144\) −144.000 −0.0833333
\(145\) 0 0
\(146\) −1540.00 −0.872954
\(147\) − 147.000i − 0.0824786i
\(148\) − 600.000i − 0.333241i
\(149\) −2974.00 −1.63516 −0.817582 0.575812i \(-0.804686\pi\)
−0.817582 + 0.575812i \(0.804686\pi\)
\(150\) 0 0
\(151\) −2768.00 −1.49177 −0.745883 0.666077i \(-0.767972\pi\)
−0.745883 + 0.666077i \(0.767972\pi\)
\(152\) 512.000i 0.273215i
\(153\) − 306.000i − 0.161690i
\(154\) 224.000 0.117211
\(155\) 0 0
\(156\) −696.000 −0.357209
\(157\) 1890.00i 0.960754i 0.877062 + 0.480377i \(0.159500\pi\)
−0.877062 + 0.480377i \(0.840500\pi\)
\(158\) 1120.00i 0.563939i
\(159\) −1986.00 −0.990566
\(160\) 0 0
\(161\) 112.000 0.0548251
\(162\) 162.000i 0.0785674i
\(163\) 1180.00i 0.567023i 0.958969 + 0.283511i \(0.0914994\pi\)
−0.958969 + 0.283511i \(0.908501\pi\)
\(164\) −1896.00 −0.902761
\(165\) 0 0
\(166\) −1704.00 −0.796723
\(167\) − 1216.00i − 0.563455i −0.959495 0.281727i \(-0.909093\pi\)
0.959495 0.281727i \(-0.0909073\pi\)
\(168\) − 168.000i − 0.0771517i
\(169\) −1167.00 −0.531179
\(170\) 0 0
\(171\) 576.000 0.257590
\(172\) − 1168.00i − 0.517786i
\(173\) − 126.000i − 0.0553734i −0.999617 0.0276867i \(-0.991186\pi\)
0.999617 0.0276867i \(-0.00881408\pi\)
\(174\) 372.000 0.162076
\(175\) 0 0
\(176\) 256.000 0.109640
\(177\) 972.000i 0.412768i
\(178\) − 2932.00i − 1.23462i
\(179\) −872.000 −0.364114 −0.182057 0.983288i \(-0.558275\pi\)
−0.182057 + 0.983288i \(0.558275\pi\)
\(180\) 0 0
\(181\) −18.0000 −0.00739188 −0.00369594 0.999993i \(-0.501176\pi\)
−0.00369594 + 0.999993i \(0.501176\pi\)
\(182\) − 812.000i − 0.330711i
\(183\) − 1542.00i − 0.622885i
\(184\) 128.000 0.0512842
\(185\) 0 0
\(186\) −360.000 −0.141917
\(187\) 544.000i 0.212734i
\(188\) − 960.000i − 0.372421i
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) 4420.00 1.67445 0.837225 0.546858i \(-0.184176\pi\)
0.837225 + 0.546858i \(0.184176\pi\)
\(192\) − 192.000i − 0.0721688i
\(193\) 2254.00i 0.840655i 0.907372 + 0.420328i \(0.138085\pi\)
−0.907372 + 0.420328i \(0.861915\pi\)
\(194\) 356.000 0.131749
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) − 750.000i − 0.271245i −0.990761 0.135623i \(-0.956697\pi\)
0.990761 0.135623i \(-0.0433034\pi\)
\(198\) − 288.000i − 0.103370i
\(199\) −3732.00 −1.32942 −0.664710 0.747102i \(-0.731445\pi\)
−0.664710 + 0.747102i \(0.731445\pi\)
\(200\) 0 0
\(201\) 1116.00 0.391625
\(202\) 2556.00i 0.890295i
\(203\) 434.000i 0.150053i
\(204\) 408.000 0.140028
\(205\) 0 0
\(206\) −592.000 −0.200226
\(207\) − 144.000i − 0.0483512i
\(208\) − 928.000i − 0.309352i
\(209\) −1024.00 −0.338907
\(210\) 0 0
\(211\) 1980.00 0.646013 0.323007 0.946397i \(-0.395306\pi\)
0.323007 + 0.946397i \(0.395306\pi\)
\(212\) − 2648.00i − 0.857856i
\(213\) − 1236.00i − 0.397602i
\(214\) −2328.00 −0.743639
\(215\) 0 0
\(216\) −216.000 −0.0680414
\(217\) − 420.000i − 0.131389i
\(218\) 1556.00i 0.483420i
\(219\) −2310.00 −0.712764
\(220\) 0 0
\(221\) 1972.00 0.600231
\(222\) − 900.000i − 0.272090i
\(223\) 6328.00i 1.90024i 0.311880 + 0.950122i \(0.399041\pi\)
−0.311880 + 0.950122i \(0.600959\pi\)
\(224\) 224.000 0.0668153
\(225\) 0 0
\(226\) −84.0000 −0.0247239
\(227\) − 2596.00i − 0.759042i −0.925183 0.379521i \(-0.876089\pi\)
0.925183 0.379521i \(-0.123911\pi\)
\(228\) 768.000i 0.223079i
\(229\) −4742.00 −1.36839 −0.684193 0.729301i \(-0.739845\pi\)
−0.684193 + 0.729301i \(0.739845\pi\)
\(230\) 0 0
\(231\) 336.000 0.0957021
\(232\) 496.000i 0.140362i
\(233\) − 1294.00i − 0.363832i −0.983314 0.181916i \(-0.941770\pi\)
0.983314 0.181916i \(-0.0582298\pi\)
\(234\) −1044.00 −0.291660
\(235\) 0 0
\(236\) −1296.00 −0.357468
\(237\) 1680.00i 0.460455i
\(238\) 476.000i 0.129641i
\(239\) 2340.00 0.633314 0.316657 0.948540i \(-0.397440\pi\)
0.316657 + 0.948540i \(0.397440\pi\)
\(240\) 0 0
\(241\) 5962.00 1.59355 0.796776 0.604274i \(-0.206537\pi\)
0.796776 + 0.604274i \(0.206537\pi\)
\(242\) − 2150.00i − 0.571104i
\(243\) 243.000i 0.0641500i
\(244\) 2056.00 0.539434
\(245\) 0 0
\(246\) −2844.00 −0.737101
\(247\) 3712.00i 0.956230i
\(248\) − 480.000i − 0.122903i
\(249\) −2556.00 −0.650522
\(250\) 0 0
\(251\) −1572.00 −0.395314 −0.197657 0.980271i \(-0.563333\pi\)
−0.197657 + 0.980271i \(0.563333\pi\)
\(252\) − 252.000i − 0.0629941i
\(253\) 256.000i 0.0636149i
\(254\) 560.000 0.138337
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) − 3910.00i − 0.949024i −0.880249 0.474512i \(-0.842625\pi\)
0.880249 0.474512i \(-0.157375\pi\)
\(258\) − 1752.00i − 0.422770i
\(259\) 1050.00 0.251907
\(260\) 0 0
\(261\) 558.000 0.132335
\(262\) 2360.00i 0.556493i
\(263\) 5672.00i 1.32985i 0.746910 + 0.664925i \(0.231536\pi\)
−0.746910 + 0.664925i \(0.768464\pi\)
\(264\) 384.000 0.0895211
\(265\) 0 0
\(266\) −896.000 −0.206531
\(267\) − 4398.00i − 1.00806i
\(268\) 1488.00i 0.339157i
\(269\) 1002.00 0.227112 0.113556 0.993532i \(-0.463776\pi\)
0.113556 + 0.993532i \(0.463776\pi\)
\(270\) 0 0
\(271\) −6140.00 −1.37630 −0.688152 0.725566i \(-0.741578\pi\)
−0.688152 + 0.725566i \(0.741578\pi\)
\(272\) 544.000i 0.121268i
\(273\) − 1218.00i − 0.270025i
\(274\) 1460.00 0.321904
\(275\) 0 0
\(276\) 192.000 0.0418733
\(277\) 70.0000i 0.0151837i 0.999971 + 0.00759186i \(0.00241659\pi\)
−0.999971 + 0.00759186i \(0.997583\pi\)
\(278\) 1328.00i 0.286504i
\(279\) −540.000 −0.115874
\(280\) 0 0
\(281\) −3294.00 −0.699301 −0.349650 0.936880i \(-0.613700\pi\)
−0.349650 + 0.936880i \(0.613700\pi\)
\(282\) − 1440.00i − 0.304081i
\(283\) − 1852.00i − 0.389011i −0.980901 0.194505i \(-0.937690\pi\)
0.980901 0.194505i \(-0.0623101\pi\)
\(284\) 1648.00 0.344334
\(285\) 0 0
\(286\) 1856.00 0.383733
\(287\) − 3318.00i − 0.682423i
\(288\) − 288.000i − 0.0589256i
\(289\) 3757.00 0.764706
\(290\) 0 0
\(291\) 534.000 0.107573
\(292\) − 3080.00i − 0.617272i
\(293\) 5130.00i 1.02286i 0.859325 + 0.511430i \(0.170884\pi\)
−0.859325 + 0.511430i \(0.829116\pi\)
\(294\) 294.000 0.0583212
\(295\) 0 0
\(296\) 1200.00 0.235637
\(297\) − 432.000i − 0.0844013i
\(298\) − 5948.00i − 1.15624i
\(299\) 928.000 0.179490
\(300\) 0 0
\(301\) 2044.00 0.391409
\(302\) − 5536.00i − 1.05484i
\(303\) 3834.00i 0.726923i
\(304\) −1024.00 −0.193192
\(305\) 0 0
\(306\) 612.000 0.114332
\(307\) 956.000i 0.177726i 0.996044 + 0.0888629i \(0.0283233\pi\)
−0.996044 + 0.0888629i \(0.971677\pi\)
\(308\) 448.000i 0.0828804i
\(309\) −888.000 −0.163484
\(310\) 0 0
\(311\) −3448.00 −0.628676 −0.314338 0.949311i \(-0.601782\pi\)
−0.314338 + 0.949311i \(0.601782\pi\)
\(312\) − 1392.00i − 0.252585i
\(313\) 5850.00i 1.05643i 0.849112 + 0.528213i \(0.177138\pi\)
−0.849112 + 0.528213i \(0.822862\pi\)
\(314\) −3780.00 −0.679356
\(315\) 0 0
\(316\) −2240.00 −0.398765
\(317\) 3794.00i 0.672215i 0.941824 + 0.336108i \(0.109111\pi\)
−0.941824 + 0.336108i \(0.890889\pi\)
\(318\) − 3972.00i − 0.700436i
\(319\) −992.000 −0.174111
\(320\) 0 0
\(321\) −3492.00 −0.607179
\(322\) 224.000i 0.0387672i
\(323\) − 2176.00i − 0.374848i
\(324\) −324.000 −0.0555556
\(325\) 0 0
\(326\) −2360.00 −0.400946
\(327\) 2334.00i 0.394711i
\(328\) − 3792.00i − 0.638348i
\(329\) 1680.00 0.281524
\(330\) 0 0
\(331\) 4116.00 0.683492 0.341746 0.939792i \(-0.388982\pi\)
0.341746 + 0.939792i \(0.388982\pi\)
\(332\) − 3408.00i − 0.563368i
\(333\) − 1350.00i − 0.222161i
\(334\) 2432.00 0.398423
\(335\) 0 0
\(336\) 336.000 0.0545545
\(337\) 7506.00i 1.21329i 0.794974 + 0.606644i \(0.207485\pi\)
−0.794974 + 0.606644i \(0.792515\pi\)
\(338\) − 2334.00i − 0.375600i
\(339\) −126.000 −0.0201870
\(340\) 0 0
\(341\) 960.000 0.152454
\(342\) 1152.00i 0.182143i
\(343\) 343.000i 0.0539949i
\(344\) 2336.00 0.366130
\(345\) 0 0
\(346\) 252.000 0.0391549
\(347\) − 11516.0i − 1.78159i −0.454407 0.890794i \(-0.650149\pi\)
0.454407 0.890794i \(-0.349851\pi\)
\(348\) 744.000i 0.114605i
\(349\) 11362.0 1.74268 0.871338 0.490683i \(-0.163253\pi\)
0.871338 + 0.490683i \(0.163253\pi\)
\(350\) 0 0
\(351\) −1566.00 −0.238139
\(352\) 512.000i 0.0775275i
\(353\) − 3890.00i − 0.586526i −0.956032 0.293263i \(-0.905259\pi\)
0.956032 0.293263i \(-0.0947412\pi\)
\(354\) −1944.00 −0.291871
\(355\) 0 0
\(356\) 5864.00 0.873009
\(357\) 714.000i 0.105851i
\(358\) − 1744.00i − 0.257467i
\(359\) 1332.00 0.195822 0.0979112 0.995195i \(-0.468784\pi\)
0.0979112 + 0.995195i \(0.468784\pi\)
\(360\) 0 0
\(361\) −2763.00 −0.402828
\(362\) − 36.0000i − 0.00522685i
\(363\) − 3225.00i − 0.466305i
\(364\) 1624.00 0.233848
\(365\) 0 0
\(366\) 3084.00 0.440446
\(367\) 10264.0i 1.45988i 0.683511 + 0.729941i \(0.260452\pi\)
−0.683511 + 0.729941i \(0.739548\pi\)
\(368\) 256.000i 0.0362634i
\(369\) −4266.00 −0.601840
\(370\) 0 0
\(371\) 4634.00 0.648478
\(372\) − 720.000i − 0.100350i
\(373\) 7714.00i 1.07082i 0.844592 + 0.535410i \(0.179843\pi\)
−0.844592 + 0.535410i \(0.820157\pi\)
\(374\) −1088.00 −0.150426
\(375\) 0 0
\(376\) 1920.00 0.263342
\(377\) 3596.00i 0.491256i
\(378\) − 378.000i − 0.0514344i
\(379\) 6020.00 0.815901 0.407951 0.913004i \(-0.366244\pi\)
0.407951 + 0.913004i \(0.366244\pi\)
\(380\) 0 0
\(381\) 840.000 0.112951
\(382\) 8840.00i 1.18402i
\(383\) 5368.00i 0.716167i 0.933690 + 0.358084i \(0.116570\pi\)
−0.933690 + 0.358084i \(0.883430\pi\)
\(384\) 384.000 0.0510310
\(385\) 0 0
\(386\) −4508.00 −0.594433
\(387\) − 2628.00i − 0.345191i
\(388\) 712.000i 0.0931606i
\(389\) −10526.0 −1.37195 −0.685976 0.727624i \(-0.740625\pi\)
−0.685976 + 0.727624i \(0.740625\pi\)
\(390\) 0 0
\(391\) −544.000 −0.0703613
\(392\) 392.000i 0.0505076i
\(393\) 3540.00i 0.454375i
\(394\) 1500.00 0.191799
\(395\) 0 0
\(396\) 576.000 0.0730937
\(397\) 15642.0i 1.97745i 0.149728 + 0.988727i \(0.452160\pi\)
−0.149728 + 0.988727i \(0.547840\pi\)
\(398\) − 7464.00i − 0.940041i
\(399\) −1344.00 −0.168632
\(400\) 0 0
\(401\) 14498.0 1.80548 0.902738 0.430192i \(-0.141554\pi\)
0.902738 + 0.430192i \(0.141554\pi\)
\(402\) 2232.00i 0.276921i
\(403\) − 3480.00i − 0.430152i
\(404\) −5112.00 −0.629533
\(405\) 0 0
\(406\) −868.000 −0.106104
\(407\) 2400.00i 0.292294i
\(408\) 816.000i 0.0990148i
\(409\) 13718.0 1.65846 0.829232 0.558905i \(-0.188778\pi\)
0.829232 + 0.558905i \(0.188778\pi\)
\(410\) 0 0
\(411\) 2190.00 0.262834
\(412\) − 1184.00i − 0.141581i
\(413\) − 2268.00i − 0.270220i
\(414\) 288.000 0.0341894
\(415\) 0 0
\(416\) 1856.00 0.218745
\(417\) 1992.00i 0.233930i
\(418\) − 2048.00i − 0.239643i
\(419\) 10484.0 1.22238 0.611190 0.791484i \(-0.290691\pi\)
0.611190 + 0.791484i \(0.290691\pi\)
\(420\) 0 0
\(421\) −8594.00 −0.994883 −0.497442 0.867497i \(-0.665727\pi\)
−0.497442 + 0.867497i \(0.665727\pi\)
\(422\) 3960.00i 0.456800i
\(423\) − 2160.00i − 0.248281i
\(424\) 5296.00 0.606596
\(425\) 0 0
\(426\) 2472.00 0.281147
\(427\) 3598.00i 0.407774i
\(428\) − 4656.00i − 0.525832i
\(429\) 2784.00 0.313317
\(430\) 0 0
\(431\) −420.000 −0.0469390 −0.0234695 0.999725i \(-0.507471\pi\)
−0.0234695 + 0.999725i \(0.507471\pi\)
\(432\) − 432.000i − 0.0481125i
\(433\) 9794.00i 1.08700i 0.839410 + 0.543498i \(0.182901\pi\)
−0.839410 + 0.543498i \(0.817099\pi\)
\(434\) 840.000 0.0929062
\(435\) 0 0
\(436\) −3112.00 −0.341830
\(437\) − 1024.00i − 0.112093i
\(438\) − 4620.00i − 0.504000i
\(439\) 1436.00 0.156120 0.0780598 0.996949i \(-0.475127\pi\)
0.0780598 + 0.996949i \(0.475127\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 3944.00i 0.424427i
\(443\) − 12228.0i − 1.31144i −0.755002 0.655722i \(-0.772364\pi\)
0.755002 0.655722i \(-0.227636\pi\)
\(444\) 1800.00 0.192397
\(445\) 0 0
\(446\) −12656.0 −1.34367
\(447\) − 8922.00i − 0.944063i
\(448\) 448.000i 0.0472456i
\(449\) 6734.00 0.707789 0.353894 0.935285i \(-0.384857\pi\)
0.353894 + 0.935285i \(0.384857\pi\)
\(450\) 0 0
\(451\) 7584.00 0.791833
\(452\) − 168.000i − 0.0174824i
\(453\) − 8304.00i − 0.861271i
\(454\) 5192.00 0.536724
\(455\) 0 0
\(456\) −1536.00 −0.157741
\(457\) 10690.0i 1.09422i 0.837062 + 0.547108i \(0.184271\pi\)
−0.837062 + 0.547108i \(0.815729\pi\)
\(458\) − 9484.00i − 0.967594i
\(459\) 918.000 0.0933520
\(460\) 0 0
\(461\) 14902.0 1.50554 0.752772 0.658282i \(-0.228717\pi\)
0.752772 + 0.658282i \(0.228717\pi\)
\(462\) 672.000i 0.0676716i
\(463\) − 17064.0i − 1.71281i −0.516304 0.856405i \(-0.672693\pi\)
0.516304 0.856405i \(-0.327307\pi\)
\(464\) −992.000 −0.0992510
\(465\) 0 0
\(466\) 2588.00 0.257268
\(467\) 3036.00i 0.300834i 0.988623 + 0.150417i \(0.0480616\pi\)
−0.988623 + 0.150417i \(0.951938\pi\)
\(468\) − 2088.00i − 0.206235i
\(469\) −2604.00 −0.256379
\(470\) 0 0
\(471\) −5670.00 −0.554692
\(472\) − 2592.00i − 0.252768i
\(473\) 4672.00i 0.454162i
\(474\) −3360.00 −0.325591
\(475\) 0 0
\(476\) −952.000 −0.0916698
\(477\) − 5958.00i − 0.571904i
\(478\) 4680.00i 0.447821i
\(479\) 13664.0 1.30339 0.651695 0.758481i \(-0.274058\pi\)
0.651695 + 0.758481i \(0.274058\pi\)
\(480\) 0 0
\(481\) 8700.00 0.824711
\(482\) 11924.0i 1.12681i
\(483\) 336.000i 0.0316533i
\(484\) 4300.00 0.403832
\(485\) 0 0
\(486\) −486.000 −0.0453609
\(487\) − 11744.0i − 1.09275i −0.837539 0.546377i \(-0.816006\pi\)
0.837539 0.546377i \(-0.183994\pi\)
\(488\) 4112.00i 0.381437i
\(489\) −3540.00 −0.327371
\(490\) 0 0
\(491\) −48.0000 −0.00441183 −0.00220592 0.999998i \(-0.500702\pi\)
−0.00220592 + 0.999998i \(0.500702\pi\)
\(492\) − 5688.00i − 0.521209i
\(493\) − 2108.00i − 0.192575i
\(494\) −7424.00 −0.676157
\(495\) 0 0
\(496\) 960.000 0.0869058
\(497\) 2884.00i 0.260292i
\(498\) − 5112.00i − 0.459988i
\(499\) −1044.00 −0.0936590 −0.0468295 0.998903i \(-0.514912\pi\)
−0.0468295 + 0.998903i \(0.514912\pi\)
\(500\) 0 0
\(501\) 3648.00 0.325311
\(502\) − 3144.00i − 0.279529i
\(503\) − 14432.0i − 1.27931i −0.768664 0.639653i \(-0.779078\pi\)
0.768664 0.639653i \(-0.220922\pi\)
\(504\) 504.000 0.0445435
\(505\) 0 0
\(506\) −512.000 −0.0449826
\(507\) − 3501.00i − 0.306676i
\(508\) 1120.00i 0.0978188i
\(509\) 6426.00 0.559582 0.279791 0.960061i \(-0.409735\pi\)
0.279791 + 0.960061i \(0.409735\pi\)
\(510\) 0 0
\(511\) 5390.00 0.466614
\(512\) 512.000i 0.0441942i
\(513\) 1728.00i 0.148719i
\(514\) 7820.00 0.671061
\(515\) 0 0
\(516\) 3504.00 0.298944
\(517\) 3840.00i 0.326660i
\(518\) 2100.00i 0.178125i
\(519\) 378.000 0.0319699
\(520\) 0 0
\(521\) −11766.0 −0.989401 −0.494700 0.869064i \(-0.664722\pi\)
−0.494700 + 0.869064i \(0.664722\pi\)
\(522\) 1116.00i 0.0935747i
\(523\) 11900.0i 0.994934i 0.867483 + 0.497467i \(0.165737\pi\)
−0.867483 + 0.497467i \(0.834263\pi\)
\(524\) −4720.00 −0.393500
\(525\) 0 0
\(526\) −11344.0 −0.940346
\(527\) 2040.00i 0.168622i
\(528\) 768.000i 0.0633010i
\(529\) 11911.0 0.978959
\(530\) 0 0
\(531\) −2916.00 −0.238312
\(532\) − 1792.00i − 0.146040i
\(533\) − 27492.0i − 2.23417i
\(534\) 8796.00 0.712809
\(535\) 0 0
\(536\) −2976.00 −0.239820
\(537\) − 2616.00i − 0.210221i
\(538\) 2004.00i 0.160592i
\(539\) −784.000 −0.0626517
\(540\) 0 0
\(541\) −22330.0 −1.77457 −0.887284 0.461223i \(-0.847411\pi\)
−0.887284 + 0.461223i \(0.847411\pi\)
\(542\) − 12280.0i − 0.973194i
\(543\) − 54.0000i − 0.00426770i
\(544\) −1088.00 −0.0857493
\(545\) 0 0
\(546\) 2436.00 0.190936
\(547\) 18396.0i 1.43795i 0.695038 + 0.718973i \(0.255387\pi\)
−0.695038 + 0.718973i \(0.744613\pi\)
\(548\) 2920.00i 0.227621i
\(549\) 4626.00 0.359623
\(550\) 0 0
\(551\) 3968.00 0.306792
\(552\) 384.000i 0.0296089i
\(553\) − 3920.00i − 0.301438i
\(554\) −140.000 −0.0107365
\(555\) 0 0
\(556\) −2656.00 −0.202589
\(557\) − 3774.00i − 0.287091i −0.989644 0.143545i \(-0.954150\pi\)
0.989644 0.143545i \(-0.0458503\pi\)
\(558\) − 1080.00i − 0.0819356i
\(559\) 16936.0 1.28142
\(560\) 0 0
\(561\) −1632.00 −0.122822
\(562\) − 6588.00i − 0.494480i
\(563\) − 9412.00i − 0.704562i −0.935894 0.352281i \(-0.885406\pi\)
0.935894 0.352281i \(-0.114594\pi\)
\(564\) 2880.00 0.215018
\(565\) 0 0
\(566\) 3704.00 0.275072
\(567\) − 567.000i − 0.0419961i
\(568\) 3296.00i 0.243481i
\(569\) −11146.0 −0.821203 −0.410602 0.911815i \(-0.634681\pi\)
−0.410602 + 0.911815i \(0.634681\pi\)
\(570\) 0 0
\(571\) 15292.0 1.12075 0.560377 0.828238i \(-0.310656\pi\)
0.560377 + 0.828238i \(0.310656\pi\)
\(572\) 3712.00i 0.271340i
\(573\) 13260.0i 0.966744i
\(574\) 6636.00 0.482546
\(575\) 0 0
\(576\) 576.000 0.0416667
\(577\) − 22322.0i − 1.61053i −0.592914 0.805266i \(-0.702022\pi\)
0.592914 0.805266i \(-0.297978\pi\)
\(578\) 7514.00i 0.540729i
\(579\) −6762.00 −0.485353
\(580\) 0 0
\(581\) 5964.00 0.425866
\(582\) 1068.00i 0.0760653i
\(583\) 10592.0i 0.752446i
\(584\) 6160.00 0.436477
\(585\) 0 0
\(586\) −10260.0 −0.723271
\(587\) 684.000i 0.0480949i 0.999711 + 0.0240474i \(0.00765528\pi\)
−0.999711 + 0.0240474i \(0.992345\pi\)
\(588\) 588.000i 0.0412393i
\(589\) −3840.00 −0.268632
\(590\) 0 0
\(591\) 2250.00 0.156603
\(592\) 2400.00i 0.166621i
\(593\) 7806.00i 0.540563i 0.962781 + 0.270282i \(0.0871168\pi\)
−0.962781 + 0.270282i \(0.912883\pi\)
\(594\) 864.000 0.0596807
\(595\) 0 0
\(596\) 11896.0 0.817582
\(597\) − 11196.0i − 0.767541i
\(598\) 1856.00i 0.126919i
\(599\) 1284.00 0.0875840 0.0437920 0.999041i \(-0.486056\pi\)
0.0437920 + 0.999041i \(0.486056\pi\)
\(600\) 0 0
\(601\) 12706.0 0.862377 0.431188 0.902262i \(-0.358094\pi\)
0.431188 + 0.902262i \(0.358094\pi\)
\(602\) 4088.00i 0.276768i
\(603\) 3348.00i 0.226105i
\(604\) 11072.0 0.745883
\(605\) 0 0
\(606\) −7668.00 −0.514012
\(607\) 9016.00i 0.602880i 0.953485 + 0.301440i \(0.0974673\pi\)
−0.953485 + 0.301440i \(0.902533\pi\)
\(608\) − 2048.00i − 0.136608i
\(609\) −1302.00 −0.0866333
\(610\) 0 0
\(611\) 13920.0 0.921674
\(612\) 1224.00i 0.0808452i
\(613\) 19386.0i 1.27731i 0.769492 + 0.638657i \(0.220510\pi\)
−0.769492 + 0.638657i \(0.779490\pi\)
\(614\) −1912.00 −0.125671
\(615\) 0 0
\(616\) −896.000 −0.0586053
\(617\) 14206.0i 0.926924i 0.886117 + 0.463462i \(0.153393\pi\)
−0.886117 + 0.463462i \(0.846607\pi\)
\(618\) − 1776.00i − 0.115601i
\(619\) −344.000 −0.0223369 −0.0111684 0.999938i \(-0.503555\pi\)
−0.0111684 + 0.999938i \(0.503555\pi\)
\(620\) 0 0
\(621\) 432.000 0.0279156
\(622\) − 6896.00i − 0.444541i
\(623\) 10262.0i 0.659933i
\(624\) 2784.00 0.178604
\(625\) 0 0
\(626\) −11700.0 −0.747006
\(627\) − 3072.00i − 0.195668i
\(628\) − 7560.00i − 0.480377i
\(629\) −5100.00 −0.323291
\(630\) 0 0
\(631\) 3608.00 0.227626 0.113813 0.993502i \(-0.463693\pi\)
0.113813 + 0.993502i \(0.463693\pi\)
\(632\) − 4480.00i − 0.281970i
\(633\) 5940.00i 0.372976i
\(634\) −7588.00 −0.475328
\(635\) 0 0
\(636\) 7944.00 0.495283
\(637\) 2842.00i 0.176773i
\(638\) − 1984.00i − 0.123115i
\(639\) 3708.00 0.229556
\(640\) 0 0
\(641\) −18838.0 −1.16077 −0.580387 0.814341i \(-0.697099\pi\)
−0.580387 + 0.814341i \(0.697099\pi\)
\(642\) − 6984.00i − 0.429340i
\(643\) − 27068.0i − 1.66012i −0.557673 0.830060i \(-0.688306\pi\)
0.557673 0.830060i \(-0.311694\pi\)
\(644\) −448.000 −0.0274125
\(645\) 0 0
\(646\) 4352.00 0.265058
\(647\) − 18912.0i − 1.14916i −0.818448 0.574581i \(-0.805165\pi\)
0.818448 0.574581i \(-0.194835\pi\)
\(648\) − 648.000i − 0.0392837i
\(649\) 5184.00 0.313544
\(650\) 0 0
\(651\) 1260.00 0.0758576
\(652\) − 4720.00i − 0.283511i
\(653\) 614.000i 0.0367958i 0.999831 + 0.0183979i \(0.00585657\pi\)
−0.999831 + 0.0183979i \(0.994143\pi\)
\(654\) −4668.00 −0.279103
\(655\) 0 0
\(656\) 7584.00 0.451380
\(657\) − 6930.00i − 0.411515i
\(658\) 3360.00i 0.199068i
\(659\) −31248.0 −1.84712 −0.923558 0.383459i \(-0.874733\pi\)
−0.923558 + 0.383459i \(0.874733\pi\)
\(660\) 0 0
\(661\) −19882.0 −1.16992 −0.584962 0.811060i \(-0.698891\pi\)
−0.584962 + 0.811060i \(0.698891\pi\)
\(662\) 8232.00i 0.483302i
\(663\) 5916.00i 0.346544i
\(664\) 6816.00 0.398362
\(665\) 0 0
\(666\) 2700.00 0.157091
\(667\) − 992.000i − 0.0575868i
\(668\) 4864.00i 0.281727i
\(669\) −18984.0 −1.09711
\(670\) 0 0
\(671\) −8224.00 −0.473151
\(672\) 672.000i 0.0385758i
\(673\) − 31866.0i − 1.82518i −0.408879 0.912588i \(-0.634080\pi\)
0.408879 0.912588i \(-0.365920\pi\)
\(674\) −15012.0 −0.857924
\(675\) 0 0
\(676\) 4668.00 0.265589
\(677\) 19574.0i 1.11121i 0.831446 + 0.555606i \(0.187514\pi\)
−0.831446 + 0.555606i \(0.812486\pi\)
\(678\) − 252.000i − 0.0142743i
\(679\) −1246.00 −0.0704228
\(680\) 0 0
\(681\) 7788.00 0.438233
\(682\) 1920.00i 0.107801i
\(683\) − 24036.0i − 1.34658i −0.739380 0.673288i \(-0.764881\pi\)
0.739380 0.673288i \(-0.235119\pi\)
\(684\) −2304.00 −0.128795
\(685\) 0 0
\(686\) −686.000 −0.0381802
\(687\) − 14226.0i − 0.790037i
\(688\) 4672.00i 0.258893i
\(689\) 38396.0 2.12303
\(690\) 0 0
\(691\) 29496.0 1.62385 0.811925 0.583761i \(-0.198420\pi\)
0.811925 + 0.583761i \(0.198420\pi\)
\(692\) 504.000i 0.0276867i
\(693\) 1008.00i 0.0552536i
\(694\) 23032.0 1.25977
\(695\) 0 0
\(696\) −1488.00 −0.0810381
\(697\) 16116.0i 0.875806i
\(698\) 22724.0i 1.23226i
\(699\) 3882.00 0.210058
\(700\) 0 0
\(701\) −10242.0 −0.551833 −0.275917 0.961182i \(-0.588981\pi\)
−0.275917 + 0.961182i \(0.588981\pi\)
\(702\) − 3132.00i − 0.168390i
\(703\) − 9600.00i − 0.515037i
\(704\) −1024.00 −0.0548202
\(705\) 0 0
\(706\) 7780.00 0.414737
\(707\) − 8946.00i − 0.475883i
\(708\) − 3888.00i − 0.206384i
\(709\) 13730.0 0.727279 0.363640 0.931540i \(-0.381534\pi\)
0.363640 + 0.931540i \(0.381534\pi\)
\(710\) 0 0
\(711\) −5040.00 −0.265844
\(712\) 11728.0i 0.617311i
\(713\) 960.000i 0.0504240i
\(714\) −1428.00 −0.0748481
\(715\) 0 0
\(716\) 3488.00 0.182057
\(717\) 7020.00i 0.365644i
\(718\) 2664.00i 0.138467i
\(719\) 14840.0 0.769734 0.384867 0.922972i \(-0.374247\pi\)
0.384867 + 0.922972i \(0.374247\pi\)
\(720\) 0 0
\(721\) 2072.00 0.107025
\(722\) − 5526.00i − 0.284843i
\(723\) 17886.0i 0.920038i
\(724\) 72.0000 0.00369594
\(725\) 0 0
\(726\) 6450.00 0.329727
\(727\) − 3616.00i − 0.184470i −0.995737 0.0922352i \(-0.970599\pi\)
0.995737 0.0922352i \(-0.0294012\pi\)
\(728\) 3248.00i 0.165356i
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −9928.00 −0.502326
\(732\) 6168.00i 0.311442i
\(733\) 24182.0i 1.21853i 0.792967 + 0.609265i \(0.208535\pi\)
−0.792967 + 0.609265i \(0.791465\pi\)
\(734\) −20528.0 −1.03229
\(735\) 0 0
\(736\) −512.000 −0.0256421
\(737\) − 5952.00i − 0.297483i
\(738\) − 8532.00i − 0.425565i
\(739\) −34052.0 −1.69502 −0.847512 0.530776i \(-0.821901\pi\)
−0.847512 + 0.530776i \(0.821901\pi\)
\(740\) 0 0
\(741\) −11136.0 −0.552080
\(742\) 9268.00i 0.458543i
\(743\) − 21192.0i − 1.04638i −0.852217 0.523189i \(-0.824742\pi\)
0.852217 0.523189i \(-0.175258\pi\)
\(744\) 1440.00 0.0709583
\(745\) 0 0
\(746\) −15428.0 −0.757184
\(747\) − 7668.00i − 0.375579i
\(748\) − 2176.00i − 0.106367i
\(749\) 8148.00 0.397492
\(750\) 0 0
\(751\) −2192.00 −0.106508 −0.0532538 0.998581i \(-0.516959\pi\)
−0.0532538 + 0.998581i \(0.516959\pi\)
\(752\) 3840.00i 0.186211i
\(753\) − 4716.00i − 0.228235i
\(754\) −7192.00 −0.347370
\(755\) 0 0
\(756\) 756.000 0.0363696
\(757\) − 39458.0i − 1.89449i −0.320517 0.947243i \(-0.603857\pi\)
0.320517 0.947243i \(-0.396143\pi\)
\(758\) 12040.0i 0.576929i
\(759\) −768.000 −0.0367281
\(760\) 0 0
\(761\) 458.000 0.0218167 0.0109083 0.999941i \(-0.496528\pi\)
0.0109083 + 0.999941i \(0.496528\pi\)
\(762\) 1680.00i 0.0798687i
\(763\) − 5446.00i − 0.258399i
\(764\) −17680.0 −0.837225
\(765\) 0 0
\(766\) −10736.0 −0.506407
\(767\) − 18792.0i − 0.884667i
\(768\) 768.000i 0.0360844i
\(769\) −25354.0 −1.18893 −0.594466 0.804121i \(-0.702636\pi\)
−0.594466 + 0.804121i \(0.702636\pi\)
\(770\) 0 0
\(771\) 11730.0 0.547919
\(772\) − 9016.00i − 0.420328i
\(773\) 25306.0i 1.17748i 0.808322 + 0.588741i \(0.200376\pi\)
−0.808322 + 0.588741i \(0.799624\pi\)
\(774\) 5256.00 0.244087
\(775\) 0 0
\(776\) −1424.00 −0.0658745
\(777\) 3150.00i 0.145438i
\(778\) − 21052.0i − 0.970117i
\(779\) −30336.0 −1.39525
\(780\) 0 0
\(781\) −6592.00 −0.302023
\(782\) − 1088.00i − 0.0497529i
\(783\) 1674.00i 0.0764034i
\(784\) −784.000 −0.0357143
\(785\) 0 0
\(786\) −7080.00 −0.321292
\(787\) 26588.0i 1.20427i 0.798395 + 0.602135i \(0.205683\pi\)
−0.798395 + 0.602135i \(0.794317\pi\)
\(788\) 3000.00i 0.135623i
\(789\) −17016.0 −0.767789
\(790\) 0 0
\(791\) 294.000 0.0132155
\(792\) 1152.00i 0.0516850i
\(793\) 29812.0i 1.33500i
\(794\) −31284.0 −1.39827
\(795\) 0 0
\(796\) 14928.0 0.664710
\(797\) 38862.0i 1.72718i 0.504194 + 0.863590i \(0.331789\pi\)
−0.504194 + 0.863590i \(0.668211\pi\)
\(798\) − 2688.00i − 0.119241i
\(799\) −8160.00 −0.361302
\(800\) 0 0
\(801\) 13194.0 0.582006
\(802\) 28996.0i 1.27666i
\(803\) 12320.0i 0.541424i
\(804\) −4464.00 −0.195812
\(805\) 0 0
\(806\) 6960.00 0.304163
\(807\) 3006.00i 0.131123i
\(808\) − 10224.0i − 0.445147i
\(809\) −6610.00 −0.287262 −0.143631 0.989631i \(-0.545878\pi\)
−0.143631 + 0.989631i \(0.545878\pi\)
\(810\) 0 0
\(811\) 4696.00 0.203328 0.101664 0.994819i \(-0.467583\pi\)
0.101664 + 0.994819i \(0.467583\pi\)
\(812\) − 1736.00i − 0.0750267i
\(813\) − 18420.0i − 0.794610i
\(814\) −4800.00 −0.206683
\(815\) 0 0
\(816\) −1632.00 −0.0700140
\(817\) − 18688.0i − 0.800257i
\(818\) 27436.0i 1.17271i
\(819\) 3654.00 0.155899
\(820\) 0 0
\(821\) −20362.0 −0.865577 −0.432788 0.901495i \(-0.642470\pi\)
−0.432788 + 0.901495i \(0.642470\pi\)
\(822\) 4380.00i 0.185852i
\(823\) 9888.00i 0.418802i 0.977830 + 0.209401i \(0.0671514\pi\)
−0.977830 + 0.209401i \(0.932849\pi\)
\(824\) 2368.00 0.100113
\(825\) 0 0
\(826\) 4536.00 0.191075
\(827\) − 19252.0i − 0.809501i −0.914427 0.404751i \(-0.867358\pi\)
0.914427 0.404751i \(-0.132642\pi\)
\(828\) 576.000i 0.0241756i
\(829\) 12954.0 0.542715 0.271358 0.962479i \(-0.412527\pi\)
0.271358 + 0.962479i \(0.412527\pi\)
\(830\) 0 0
\(831\) −210.000 −0.00876633
\(832\) 3712.00i 0.154676i
\(833\) − 1666.00i − 0.0692959i
\(834\) −3984.00 −0.165413
\(835\) 0 0
\(836\) 4096.00 0.169453
\(837\) − 1620.00i − 0.0669001i
\(838\) 20968.0i 0.864353i
\(839\) −18784.0 −0.772939 −0.386469 0.922302i \(-0.626306\pi\)
−0.386469 + 0.922302i \(0.626306\pi\)
\(840\) 0 0
\(841\) −20545.0 −0.842388
\(842\) − 17188.0i − 0.703489i
\(843\) − 9882.00i − 0.403742i
\(844\) −7920.00 −0.323007
\(845\) 0 0
\(846\) 4320.00 0.175561
\(847\) 7525.00i 0.305268i
\(848\) 10592.0i 0.428928i
\(849\) 5556.00 0.224595
\(850\) 0 0
\(851\) −2400.00 −0.0966756
\(852\) 4944.00i 0.198801i
\(853\) 4958.00i 0.199014i 0.995037 + 0.0995069i \(0.0317265\pi\)
−0.995037 + 0.0995069i \(0.968273\pi\)
\(854\) −7196.00 −0.288340
\(855\) 0 0
\(856\) 9312.00 0.371820
\(857\) − 15326.0i − 0.610882i −0.952211 0.305441i \(-0.901196\pi\)
0.952211 0.305441i \(-0.0988039\pi\)
\(858\) 5568.00i 0.221548i
\(859\) −49840.0 −1.97965 −0.989825 0.142292i \(-0.954553\pi\)
−0.989825 + 0.142292i \(0.954553\pi\)
\(860\) 0 0
\(861\) 9954.00 0.393997
\(862\) − 840.000i − 0.0331909i
\(863\) − 13384.0i − 0.527922i −0.964533 0.263961i \(-0.914971\pi\)
0.964533 0.263961i \(-0.0850290\pi\)
\(864\) 864.000 0.0340207
\(865\) 0 0
\(866\) −19588.0 −0.768623
\(867\) 11271.0i 0.441503i
\(868\) 1680.00i 0.0656946i
\(869\) 8960.00 0.349767
\(870\) 0 0
\(871\) −21576.0 −0.839351
\(872\) − 6224.00i − 0.241710i
\(873\) 1602.00i 0.0621071i
\(874\) 2048.00 0.0792616
\(875\) 0 0
\(876\) 9240.00 0.356382
\(877\) 5006.00i 0.192749i 0.995345 + 0.0963743i \(0.0307246\pi\)
−0.995345 + 0.0963743i \(0.969275\pi\)
\(878\) 2872.00i 0.110393i
\(879\) −15390.0 −0.590548
\(880\) 0 0
\(881\) 14098.0 0.539130 0.269565 0.962982i \(-0.413120\pi\)
0.269565 + 0.962982i \(0.413120\pi\)
\(882\) 882.000i 0.0336718i
\(883\) − 13580.0i − 0.517558i −0.965937 0.258779i \(-0.916680\pi\)
0.965937 0.258779i \(-0.0833201\pi\)
\(884\) −7888.00 −0.300116
\(885\) 0 0
\(886\) 24456.0 0.927331
\(887\) − 14648.0i − 0.554489i −0.960799 0.277244i \(-0.910579\pi\)
0.960799 0.277244i \(-0.0894212\pi\)
\(888\) 3600.00i 0.136045i
\(889\) −1960.00 −0.0739441
\(890\) 0 0
\(891\) 1296.00 0.0487291
\(892\) − 25312.0i − 0.950122i
\(893\) − 15360.0i − 0.575591i
\(894\) 17844.0 0.667553
\(895\) 0 0
\(896\) −896.000 −0.0334077
\(897\) 2784.00i 0.103629i
\(898\) 13468.0i 0.500482i
\(899\) −3720.00 −0.138008
\(900\) 0 0
\(901\) −22508.0 −0.832242
\(902\) 15168.0i 0.559910i
\(903\) 6132.00i 0.225980i
\(904\) 336.000 0.0123619
\(905\) 0 0
\(906\) 16608.0 0.609011
\(907\) − 17996.0i − 0.658817i −0.944187 0.329409i \(-0.893151\pi\)
0.944187 0.329409i \(-0.106849\pi\)
\(908\) 10384.0i 0.379521i
\(909\) −11502.0 −0.419689
\(910\) 0 0
\(911\) −41420.0 −1.50637 −0.753187 0.657807i \(-0.771484\pi\)
−0.753187 + 0.657807i \(0.771484\pi\)
\(912\) − 3072.00i − 0.111540i
\(913\) 13632.0i 0.494144i
\(914\) −21380.0 −0.773728
\(915\) 0 0
\(916\) 18968.0 0.684193
\(917\) − 8260.00i − 0.297458i
\(918\) 1836.00i 0.0660098i
\(919\) −33640.0 −1.20749 −0.603744 0.797178i \(-0.706325\pi\)
−0.603744 + 0.797178i \(0.706325\pi\)
\(920\) 0 0
\(921\) −2868.00 −0.102610
\(922\) 29804.0i 1.06458i
\(923\) 23896.0i 0.852163i
\(924\) −1344.00 −0.0478510
\(925\) 0 0
\(926\) 34128.0 1.21114
\(927\) − 2664.00i − 0.0943875i
\(928\) − 1984.00i − 0.0701810i
\(929\) 37918.0 1.33913 0.669564 0.742755i \(-0.266481\pi\)
0.669564 + 0.742755i \(0.266481\pi\)
\(930\) 0 0
\(931\) 3136.00 0.110396
\(932\) 5176.00i 0.181916i
\(933\) − 10344.0i − 0.362966i
\(934\) −6072.00 −0.212722
\(935\) 0 0
\(936\) 4176.00 0.145830
\(937\) − 5954.00i − 0.207587i −0.994599 0.103793i \(-0.966902\pi\)
0.994599 0.103793i \(-0.0330981\pi\)
\(938\) − 5208.00i − 0.181287i
\(939\) −17550.0 −0.609928
\(940\) 0 0
\(941\) −33066.0 −1.14551 −0.572753 0.819728i \(-0.694125\pi\)
−0.572753 + 0.819728i \(0.694125\pi\)
\(942\) − 11340.0i − 0.392226i
\(943\) 7584.00i 0.261897i
\(944\) 5184.00 0.178734
\(945\) 0 0
\(946\) −9344.00 −0.321141
\(947\) 28508.0i 0.978232i 0.872219 + 0.489116i \(0.162680\pi\)
−0.872219 + 0.489116i \(0.837320\pi\)
\(948\) − 6720.00i − 0.230227i
\(949\) 44660.0 1.52763
\(950\) 0 0
\(951\) −11382.0 −0.388104
\(952\) − 1904.00i − 0.0648204i
\(953\) − 24718.0i − 0.840183i −0.907482 0.420092i \(-0.861998\pi\)
0.907482 0.420092i \(-0.138002\pi\)
\(954\) 11916.0 0.404397
\(955\) 0 0
\(956\) −9360.00 −0.316657
\(957\) − 2976.00i − 0.100523i
\(958\) 27328.0i 0.921636i
\(959\) −5110.00 −0.172065
\(960\) 0 0
\(961\) −26191.0 −0.879158
\(962\) 17400.0i 0.583159i
\(963\) − 10476.0i − 0.350555i
\(964\) −23848.0 −0.796776
\(965\) 0 0
\(966\) −672.000 −0.0223822
\(967\) − 52424.0i − 1.74337i −0.490063 0.871687i \(-0.663026\pi\)
0.490063 0.871687i \(-0.336974\pi\)
\(968\) 8600.00i 0.285552i
\(969\) 6528.00 0.216419
\(970\) 0 0
\(971\) 10988.0 0.363153 0.181577 0.983377i \(-0.441880\pi\)
0.181577 + 0.983377i \(0.441880\pi\)
\(972\) − 972.000i − 0.0320750i
\(973\) − 4648.00i − 0.153143i
\(974\) 23488.0 0.772694
\(975\) 0 0
\(976\) −8224.00 −0.269717
\(977\) 31446.0i 1.02973i 0.857271 + 0.514865i \(0.172158\pi\)
−0.857271 + 0.514865i \(0.827842\pi\)
\(978\) − 7080.00i − 0.231486i
\(979\) −23456.0 −0.765737
\(980\) 0 0
\(981\) −7002.00 −0.227886
\(982\) − 96.0000i − 0.00311964i
\(983\) − 33528.0i − 1.08787i −0.839127 0.543935i \(-0.816934\pi\)
0.839127 0.543935i \(-0.183066\pi\)
\(984\) 11376.0 0.368550
\(985\) 0 0
\(986\) 4216.00 0.136171
\(987\) 5040.00i 0.162538i
\(988\) − 14848.0i − 0.478115i
\(989\) −4672.00 −0.150213
\(990\) 0 0
\(991\) −49856.0 −1.59811 −0.799056 0.601257i \(-0.794667\pi\)
−0.799056 + 0.601257i \(0.794667\pi\)
\(992\) 1920.00i 0.0614517i
\(993\) 12348.0i 0.394614i
\(994\) −5768.00 −0.184054
\(995\) 0 0
\(996\) 10224.0 0.325261
\(997\) 9298.00i 0.295357i 0.989035 + 0.147678i \(0.0471800\pi\)
−0.989035 + 0.147678i \(0.952820\pi\)
\(998\) − 2088.00i − 0.0662269i
\(999\) 4050.00 0.128265
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.4.g.f.799.2 2
5.2 odd 4 1050.4.a.l.1.1 1
5.3 odd 4 210.4.a.i.1.1 1
5.4 even 2 inner 1050.4.g.f.799.1 2
15.8 even 4 630.4.a.a.1.1 1
20.3 even 4 1680.4.a.w.1.1 1
35.13 even 4 1470.4.a.z.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.4.a.i.1.1 1 5.3 odd 4
630.4.a.a.1.1 1 15.8 even 4
1050.4.a.l.1.1 1 5.2 odd 4
1050.4.g.f.799.1 2 5.4 even 2 inner
1050.4.g.f.799.2 2 1.1 even 1 trivial
1470.4.a.z.1.1 1 35.13 even 4
1680.4.a.w.1.1 1 20.3 even 4