Properties

Label 1050.2.u.g.299.4
Level $1050$
Weight $2$
Character 1050.299
Analytic conductor $8.384$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,2,Mod(299,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.299"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.u (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,6,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 11 x^{10} - 32 x^{9} + 64 x^{8} - 120 x^{7} + 237 x^{6} - 360 x^{5} + 576 x^{4} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 299.4
Root \(-0.111613 - 1.72845i\) of defining polynomial
Character \(\chi\) \(=\) 1050.299
Dual form 1050.2.u.g.899.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(0.111613 + 1.72845i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.55269 + 0.767566i) q^{6} +(-1.82168 - 1.91871i) q^{7} -1.00000 q^{8} +(-2.97509 + 0.385834i) q^{9} +(-1.99775 + 1.15340i) q^{11} +(1.44108 - 0.960885i) q^{12} +5.00084 q^{13} +(-2.57250 + 0.618268i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-5.45795 + 3.15115i) q^{17} +(-1.15340 + 2.76942i) q^{18} +(-6.54470 - 3.77859i) q^{19} +(3.11308 - 3.36285i) q^{21} +2.30680i q^{22} +(-3.18628 + 5.51880i) q^{23} +(-0.111613 - 1.72845i) q^{24} +(2.50042 - 4.33086i) q^{26} +(-0.998953 - 5.09922i) q^{27} +(-0.750813 + 2.53698i) q^{28} -3.83533i q^{29} +(-3.79452 + 2.19077i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-2.21657 - 3.32428i) q^{33} +6.30230i q^{34} +(1.82168 + 2.38358i) q^{36} +(5.98363 + 3.45465i) q^{37} +(-6.54470 + 3.77859i) q^{38} +(0.558158 + 8.64371i) q^{39} -9.79371 q^{41} +(-1.35577 - 4.37743i) q^{42} -2.55278i q^{43} +(1.99775 + 1.15340i) q^{44} +(3.18628 + 5.51880i) q^{46} +(1.43486 + 0.828416i) q^{47} +(-1.55269 - 0.767566i) q^{48} +(-0.362928 + 6.99059i) q^{49} +(-6.05578 - 9.08209i) q^{51} +(-2.50042 - 4.33086i) q^{52} +(-1.62639 - 2.81699i) q^{53} +(-4.91553 - 1.68449i) q^{54} +(1.82168 + 1.91871i) q^{56} +(5.80063 - 11.7339i) q^{57} +(-3.32150 - 1.91767i) q^{58} +(-4.96573 - 8.60089i) q^{59} +(-5.18202 - 2.99184i) q^{61} +4.38153i q^{62} +(6.15997 + 5.00547i) q^{63} +1.00000 q^{64} +(-3.98719 + 0.257468i) q^{66} +(-2.39643 + 1.38358i) q^{67} +(5.45795 + 3.15115i) q^{68} +(-9.89460 - 4.89136i) q^{69} -2.85910i q^{71} +(2.97509 - 0.385834i) q^{72} +(1.84089 + 3.18851i) q^{73} +(5.98363 - 3.45465i) q^{74} +7.55717i q^{76} +(5.85231 + 1.73198i) q^{77} +(7.76475 + 3.83848i) q^{78} +(1.27945 - 2.21607i) q^{79} +(8.70226 - 2.29578i) q^{81} +(-4.89686 + 8.48160i) q^{82} -1.83743i q^{83} +(-4.46885 - 1.01458i) q^{84} +(-2.21077 - 1.27639i) q^{86} +(6.62919 - 0.428072i) q^{87} +(1.99775 - 1.15340i) q^{88} +(-2.94387 + 5.09894i) q^{89} +(-9.10996 - 9.59518i) q^{91} +6.37256 q^{92} +(-4.21015 - 6.31412i) q^{93} +(1.43486 - 0.828416i) q^{94} +(-1.44108 + 0.960885i) q^{96} +4.61723 q^{97} +(5.87256 + 3.80960i) q^{98} +(5.49845 - 4.20226i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} - 4 q^{3} - 6 q^{4} - 2 q^{6} - 6 q^{7} - 12 q^{8} - 6 q^{9} - 12 q^{11} + 2 q^{12} - 8 q^{13} - 12 q^{14} - 6 q^{16} - 12 q^{17} - 18 q^{21} - 2 q^{23} + 4 q^{24} - 4 q^{26} - 28 q^{27}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0.111613 + 1.72845i 0.0644396 + 0.997922i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) 1.55269 + 0.767566i 0.633883 + 0.313358i
\(7\) −1.82168 1.91871i −0.688532 0.725206i
\(8\) −1.00000 −0.353553
\(9\) −2.97509 + 0.385834i −0.991695 + 0.128611i
\(10\) 0 0
\(11\) −1.99775 + 1.15340i −0.602344 + 0.347763i −0.769963 0.638089i \(-0.779725\pi\)
0.167619 + 0.985852i \(0.446392\pi\)
\(12\) 1.44108 0.960885i 0.416003 0.277384i
\(13\) 5.00084 1.38698 0.693492 0.720464i \(-0.256071\pi\)
0.693492 + 0.720464i \(0.256071\pi\)
\(14\) −2.57250 + 0.618268i −0.687529 + 0.165239i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −5.45795 + 3.15115i −1.32375 + 0.764266i −0.984324 0.176368i \(-0.943565\pi\)
−0.339423 + 0.940634i \(0.610232\pi\)
\(18\) −1.15340 + 2.76942i −0.271859 + 0.652758i
\(19\) −6.54470 3.77859i −1.50146 0.866867i −0.999999 0.00168616i \(-0.999463\pi\)
−0.501460 0.865181i \(-0.667203\pi\)
\(20\) 0 0
\(21\) 3.11308 3.36285i 0.679330 0.733833i
\(22\) 2.30680i 0.491812i
\(23\) −3.18628 + 5.51880i −0.664385 + 1.15075i 0.315066 + 0.949070i \(0.397973\pi\)
−0.979452 + 0.201679i \(0.935360\pi\)
\(24\) −0.111613 1.72845i −0.0227829 0.352819i
\(25\) 0 0
\(26\) 2.50042 4.33086i 0.490373 0.849351i
\(27\) −0.998953 5.09922i −0.192249 0.981346i
\(28\) −0.750813 + 2.53698i −0.141890 + 0.479445i
\(29\) 3.83533i 0.712204i −0.934447 0.356102i \(-0.884106\pi\)
0.934447 0.356102i \(-0.115894\pi\)
\(30\) 0 0
\(31\) −3.79452 + 2.19077i −0.681516 + 0.393473i −0.800426 0.599432i \(-0.795393\pi\)
0.118910 + 0.992905i \(0.462060\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −2.21657 3.32428i −0.385855 0.578682i
\(34\) 6.30230i 1.08083i
\(35\) 0 0
\(36\) 1.82168 + 2.38358i 0.303614 + 0.397264i
\(37\) 5.98363 + 3.45465i 0.983703 + 0.567941i 0.903386 0.428828i \(-0.141074\pi\)
0.0803166 + 0.996769i \(0.474407\pi\)
\(38\) −6.54470 + 3.77859i −1.06169 + 0.612968i
\(39\) 0.558158 + 8.64371i 0.0893767 + 1.38410i
\(40\) 0 0
\(41\) −9.79371 −1.52952 −0.764760 0.644315i \(-0.777143\pi\)
−0.764760 + 0.644315i \(0.777143\pi\)
\(42\) −1.35577 4.37743i −0.209200 0.675452i
\(43\) 2.55278i 0.389296i −0.980873 0.194648i \(-0.937644\pi\)
0.980873 0.194648i \(-0.0623564\pi\)
\(44\) 1.99775 + 1.15340i 0.301172 + 0.173882i
\(45\) 0 0
\(46\) 3.18628 + 5.51880i 0.469791 + 0.813703i
\(47\) 1.43486 + 0.828416i 0.209296 + 0.120837i 0.600984 0.799261i \(-0.294776\pi\)
−0.391688 + 0.920098i \(0.628109\pi\)
\(48\) −1.55269 0.767566i −0.224111 0.110789i
\(49\) −0.362928 + 6.99059i −0.0518469 + 0.998655i
\(50\) 0 0
\(51\) −6.05578 9.08209i −0.847979 1.27175i
\(52\) −2.50042 4.33086i −0.346746 0.600582i
\(53\) −1.62639 2.81699i −0.223402 0.386944i 0.732437 0.680835i \(-0.238383\pi\)
−0.955839 + 0.293891i \(0.905050\pi\)
\(54\) −4.91553 1.68449i −0.668920 0.229231i
\(55\) 0 0
\(56\) 1.82168 + 1.91871i 0.243433 + 0.256399i
\(57\) 5.80063 11.7339i 0.768312 1.55420i
\(58\) −3.32150 1.91767i −0.436134 0.251802i
\(59\) −4.96573 8.60089i −0.646483 1.11974i −0.983957 0.178406i \(-0.942906\pi\)
0.337474 0.941335i \(-0.390427\pi\)
\(60\) 0 0
\(61\) −5.18202 2.99184i −0.663489 0.383066i 0.130116 0.991499i \(-0.458465\pi\)
−0.793605 + 0.608433i \(0.791798\pi\)
\(62\) 4.38153i 0.556455i
\(63\) 6.15997 + 5.00547i 0.776084 + 0.630630i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −3.98719 + 0.257468i −0.490789 + 0.0316922i
\(67\) −2.39643 + 1.38358i −0.292771 + 0.169031i −0.639191 0.769048i \(-0.720731\pi\)
0.346420 + 0.938080i \(0.387397\pi\)
\(68\) 5.45795 + 3.15115i 0.661874 + 0.382133i
\(69\) −9.89460 4.89136i −1.19117 0.588851i
\(70\) 0 0
\(71\) 2.85910i 0.339312i −0.985503 0.169656i \(-0.945734\pi\)
0.985503 0.169656i \(-0.0542657\pi\)
\(72\) 2.97509 0.385834i 0.350617 0.0454710i
\(73\) 1.84089 + 3.18851i 0.215459 + 0.373187i 0.953415 0.301663i \(-0.0975418\pi\)
−0.737955 + 0.674850i \(0.764208\pi\)
\(74\) 5.98363 3.45465i 0.695583 0.401595i
\(75\) 0 0
\(76\) 7.55717i 0.866867i
\(77\) 5.85231 + 1.73198i 0.666933 + 0.197377i
\(78\) 7.76475 + 3.83848i 0.879185 + 0.434622i
\(79\) 1.27945 2.21607i 0.143949 0.249327i −0.785031 0.619456i \(-0.787353\pi\)
0.928980 + 0.370129i \(0.120687\pi\)
\(80\) 0 0
\(81\) 8.70226 2.29578i 0.966918 0.255087i
\(82\) −4.89686 + 8.48160i −0.540767 + 0.936636i
\(83\) 1.83743i 0.201684i −0.994902 0.100842i \(-0.967846\pi\)
0.994902 0.100842i \(-0.0321537\pi\)
\(84\) −4.46885 1.01458i −0.487592 0.110700i
\(85\) 0 0
\(86\) −2.21077 1.27639i −0.238394 0.137637i
\(87\) 6.62919 0.428072i 0.710723 0.0458942i
\(88\) 1.99775 1.15340i 0.212961 0.122953i
\(89\) −2.94387 + 5.09894i −0.312050 + 0.540486i −0.978806 0.204790i \(-0.934349\pi\)
0.666756 + 0.745276i \(0.267682\pi\)
\(90\) 0 0
\(91\) −9.10996 9.59518i −0.954983 1.00585i
\(92\) 6.37256 0.664385
\(93\) −4.21015 6.31412i −0.436572 0.654744i
\(94\) 1.43486 0.828416i 0.147994 0.0854446i
\(95\) 0 0
\(96\) −1.44108 + 0.960885i −0.147079 + 0.0980699i
\(97\) 4.61723 0.468808 0.234404 0.972139i \(-0.424686\pi\)
0.234404 + 0.972139i \(0.424686\pi\)
\(98\) 5.87256 + 3.80960i 0.593218 + 0.384827i
\(99\) 5.49845 4.20226i 0.552615 0.422343i
\(100\) 0 0
\(101\) 5.65702 + 9.79825i 0.562894 + 0.974962i 0.997242 + 0.0742165i \(0.0236456\pi\)
−0.434348 + 0.900745i \(0.643021\pi\)
\(102\) −10.8932 + 0.703417i −1.07859 + 0.0696486i
\(103\) 3.68203 6.37747i 0.362802 0.628391i −0.625619 0.780129i \(-0.715154\pi\)
0.988421 + 0.151738i \(0.0484869\pi\)
\(104\) −5.00084 −0.490373
\(105\) 0 0
\(106\) −3.25278 −0.315938
\(107\) −4.20937 + 7.29084i −0.406935 + 0.704832i −0.994545 0.104312i \(-0.966736\pi\)
0.587609 + 0.809145i \(0.300069\pi\)
\(108\) −3.91658 + 3.41473i −0.376873 + 0.328583i
\(109\) −3.33156 5.77043i −0.319105 0.552707i 0.661196 0.750213i \(-0.270049\pi\)
−0.980302 + 0.197506i \(0.936716\pi\)
\(110\) 0 0
\(111\) −5.30334 + 10.7280i −0.503371 + 1.01826i
\(112\) 2.57250 0.618268i 0.243078 0.0584209i
\(113\) 4.45505 0.419096 0.209548 0.977798i \(-0.432801\pi\)
0.209548 + 0.977798i \(0.432801\pi\)
\(114\) −7.26157 10.8905i −0.680109 1.01999i
\(115\) 0 0
\(116\) −3.32150 + 1.91767i −0.308393 + 0.178051i
\(117\) −14.8779 + 1.92950i −1.37546 + 0.178382i
\(118\) −9.93145 −0.914264
\(119\) 15.9888 + 4.73184i 1.46569 + 0.433767i
\(120\) 0 0
\(121\) −2.83934 + 4.91787i −0.258121 + 0.447079i
\(122\) −5.18202 + 2.99184i −0.469158 + 0.270868i
\(123\) −1.09310 16.9279i −0.0985618 1.52634i
\(124\) 3.79452 + 2.19077i 0.340758 + 0.196737i
\(125\) 0 0
\(126\) 7.41485 2.83196i 0.660567 0.252291i
\(127\) 1.83694i 0.163002i −0.996673 0.0815011i \(-0.974029\pi\)
0.996673 0.0815011i \(-0.0259714\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 4.41236 0.284923i 0.388487 0.0250861i
\(130\) 0 0
\(131\) 2.76942 4.79677i 0.241965 0.419096i −0.719309 0.694690i \(-0.755541\pi\)
0.961274 + 0.275595i \(0.0888747\pi\)
\(132\) −1.77062 + 3.58174i −0.154113 + 0.311751i
\(133\) 4.67236 + 19.4408i 0.405145 + 1.68573i
\(134\) 2.76716i 0.239047i
\(135\) 0 0
\(136\) 5.45795 3.15115i 0.468015 0.270209i
\(137\) −0.620520 1.07477i −0.0530146 0.0918240i 0.838300 0.545209i \(-0.183550\pi\)
−0.891315 + 0.453385i \(0.850216\pi\)
\(138\) −9.18334 + 6.12330i −0.781738 + 0.521250i
\(139\) 12.5344i 1.06315i 0.847011 + 0.531576i \(0.178400\pi\)
−0.847011 + 0.531576i \(0.821600\pi\)
\(140\) 0 0
\(141\) −1.27173 + 2.57255i −0.107099 + 0.216647i
\(142\) −2.47605 1.42955i −0.207786 0.119965i
\(143\) −9.99042 + 5.76797i −0.835441 + 0.482342i
\(144\) 1.15340 2.76942i 0.0961167 0.230785i
\(145\) 0 0
\(146\) 3.68177 0.304706
\(147\) −12.1234 + 0.152935i −0.999920 + 0.0126138i
\(148\) 6.90930i 0.567941i
\(149\) 13.5058 + 7.79757i 1.10644 + 0.638802i 0.937904 0.346894i \(-0.112764\pi\)
0.168533 + 0.985696i \(0.446097\pi\)
\(150\) 0 0
\(151\) −1.51958 2.63198i −0.123661 0.214188i 0.797548 0.603256i \(-0.206130\pi\)
−0.921209 + 0.389068i \(0.872797\pi\)
\(152\) 6.54470 + 3.77859i 0.530846 + 0.306484i
\(153\) 15.0220 11.4808i 1.21446 0.928168i
\(154\) 4.42609 4.20226i 0.356665 0.338628i
\(155\) 0 0
\(156\) 7.20659 4.80523i 0.576989 0.384727i
\(157\) 7.91260 + 13.7050i 0.631494 + 1.09378i 0.987246 + 0.159200i \(0.0508913\pi\)
−0.355752 + 0.934580i \(0.615775\pi\)
\(158\) −1.27945 2.21607i −0.101787 0.176301i
\(159\) 4.68751 3.12555i 0.371744 0.247872i
\(160\) 0 0
\(161\) 16.3934 3.93995i 1.29198 0.310512i
\(162\) 2.36293 8.68427i 0.185649 0.682301i
\(163\) −7.46238 4.30841i −0.584499 0.337461i 0.178420 0.983954i \(-0.442901\pi\)
−0.762919 + 0.646494i \(0.776235\pi\)
\(164\) 4.89686 + 8.48160i 0.382380 + 0.662302i
\(165\) 0 0
\(166\) −1.59126 0.918714i −0.123506 0.0713060i
\(167\) 8.64948i 0.669317i 0.942339 + 0.334658i \(0.108621\pi\)
−0.942339 + 0.334658i \(0.891379\pi\)
\(168\) −3.11308 + 3.36285i −0.240179 + 0.259449i
\(169\) 12.0084 0.923724
\(170\) 0 0
\(171\) 20.9290 + 8.71645i 1.60048 + 0.666563i
\(172\) −2.21077 + 1.27639i −0.168570 + 0.0973239i
\(173\) 15.5291 + 8.96573i 1.18066 + 0.681652i 0.956166 0.292825i \(-0.0945954\pi\)
0.224489 + 0.974477i \(0.427929\pi\)
\(174\) 2.94387 5.95508i 0.223174 0.451454i
\(175\) 0 0
\(176\) 2.30680i 0.173882i
\(177\) 14.3120 9.54298i 1.07575 0.717295i
\(178\) 2.94387 + 5.09894i 0.220653 + 0.382181i
\(179\) 10.4070 6.00848i 0.777855 0.449095i −0.0578145 0.998327i \(-0.518413\pi\)
0.835670 + 0.549233i \(0.185080\pi\)
\(180\) 0 0
\(181\) 9.52612i 0.708071i −0.935232 0.354036i \(-0.884809\pi\)
0.935232 0.354036i \(-0.115191\pi\)
\(182\) −12.8647 + 3.09186i −0.953591 + 0.229184i
\(183\) 4.59287 9.29079i 0.339514 0.686795i
\(184\) 3.18628 5.51880i 0.234896 0.406851i
\(185\) 0 0
\(186\) −7.57326 + 0.489035i −0.555299 + 0.0358578i
\(187\) 7.26907 12.5904i 0.531567 0.920701i
\(188\) 1.65683i 0.120837i
\(189\) −7.96418 + 11.2059i −0.579309 + 0.815108i
\(190\) 0 0
\(191\) −4.30564 2.48586i −0.311545 0.179871i 0.336073 0.941836i \(-0.390901\pi\)
−0.647618 + 0.761965i \(0.724235\pi\)
\(192\) 0.111613 + 1.72845i 0.00805496 + 0.124740i
\(193\) −5.22491 + 3.01660i −0.376097 + 0.217140i −0.676119 0.736793i \(-0.736339\pi\)
0.300022 + 0.953932i \(0.403006\pi\)
\(194\) 2.30861 3.99864i 0.165749 0.287085i
\(195\) 0 0
\(196\) 6.23549 3.18099i 0.445392 0.227213i
\(197\) 14.2144 1.01273 0.506366 0.862318i \(-0.330988\pi\)
0.506366 + 0.862318i \(0.330988\pi\)
\(198\) −0.890043 6.86293i −0.0632526 0.487727i
\(199\) −1.94932 + 1.12544i −0.138183 + 0.0797802i −0.567498 0.823375i \(-0.692089\pi\)
0.429315 + 0.903155i \(0.358755\pi\)
\(200\) 0 0
\(201\) −2.65893 3.98769i −0.187546 0.281270i
\(202\) 11.3140 0.796053
\(203\) −7.35891 + 6.98677i −0.516494 + 0.490375i
\(204\) −4.83743 + 9.78550i −0.338688 + 0.685122i
\(205\) 0 0
\(206\) −3.68203 6.37747i −0.256540 0.444339i
\(207\) 7.35011 17.6483i 0.510868 1.22664i
\(208\) −2.50042 + 4.33086i −0.173373 + 0.300291i
\(209\) 17.4329 1.20586
\(210\) 0 0
\(211\) 27.6034 1.90029 0.950147 0.311804i \(-0.100933\pi\)
0.950147 + 0.311804i \(0.100933\pi\)
\(212\) −1.62639 + 2.81699i −0.111701 + 0.193472i
\(213\) 4.94181 0.319112i 0.338607 0.0218652i
\(214\) 4.20937 + 7.29084i 0.287747 + 0.498392i
\(215\) 0 0
\(216\) 0.998953 + 5.09922i 0.0679701 + 0.346958i
\(217\) 11.1159 + 3.28971i 0.754594 + 0.223320i
\(218\) −6.66311 −0.451283
\(219\) −5.30571 + 3.53776i −0.358527 + 0.239060i
\(220\) 0 0
\(221\) −27.2943 + 15.7584i −1.83602 + 1.06002i
\(222\) 6.63904 + 9.95683i 0.445583 + 0.668258i
\(223\) −23.0777 −1.54539 −0.772697 0.634775i \(-0.781093\pi\)
−0.772697 + 0.634775i \(0.781093\pi\)
\(224\) 0.750813 2.53698i 0.0501658 0.169509i
\(225\) 0 0
\(226\) 2.22752 3.85818i 0.148173 0.256643i
\(227\) −17.3509 + 10.0175i −1.15162 + 0.664887i −0.949281 0.314429i \(-0.898187\pi\)
−0.202337 + 0.979316i \(0.564854\pi\)
\(228\) −13.0622 + 0.843477i −0.865066 + 0.0558606i
\(229\) −24.9111 14.3824i −1.64617 0.950417i −0.978575 0.205892i \(-0.933990\pi\)
−0.667595 0.744524i \(-0.732676\pi\)
\(230\) 0 0
\(231\) −2.34044 + 10.3087i −0.153990 + 0.678266i
\(232\) 3.83533i 0.251802i
\(233\) 12.8558 22.2668i 0.842209 1.45875i −0.0458133 0.998950i \(-0.514588\pi\)
0.888023 0.459799i \(-0.152079\pi\)
\(234\) −5.76797 + 13.8494i −0.377064 + 0.905364i
\(235\) 0 0
\(236\) −4.96573 + 8.60089i −0.323241 + 0.559870i
\(237\) 3.97317 + 1.96412i 0.258085 + 0.127583i
\(238\) 12.0923 11.4808i 0.783828 0.744190i
\(239\) 10.7220i 0.693551i 0.937948 + 0.346776i \(0.112723\pi\)
−0.937948 + 0.346776i \(0.887277\pi\)
\(240\) 0 0
\(241\) 1.02594 0.592325i 0.0660864 0.0381550i −0.466593 0.884472i \(-0.654519\pi\)
0.532679 + 0.846317i \(0.321185\pi\)
\(242\) 2.83934 + 4.91787i 0.182519 + 0.316133i
\(243\) 4.93943 + 14.7852i 0.316864 + 0.948471i
\(244\) 5.98368i 0.383066i
\(245\) 0 0
\(246\) −15.2066 7.51732i −0.969536 0.479287i
\(247\) −32.7290 18.8961i −2.08250 1.20233i
\(248\) 3.79452 2.19077i 0.240952 0.139114i
\(249\) 3.17590 0.205080i 0.201265 0.0129964i
\(250\) 0 0
\(251\) 14.3689 0.906958 0.453479 0.891267i \(-0.350183\pi\)
0.453479 + 0.891267i \(0.350183\pi\)
\(252\) 1.25488 7.83743i 0.0790498 0.493712i
\(253\) 14.7002i 0.924195i
\(254\) −1.59084 0.918471i −0.0998181 0.0576300i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −14.3206 8.26802i −0.893297 0.515745i −0.0182774 0.999833i \(-0.505818\pi\)
−0.875019 + 0.484088i \(0.839152\pi\)
\(258\) 1.95943 3.96368i 0.121989 0.246768i
\(259\) −4.27180 17.7742i −0.265437 1.10443i
\(260\) 0 0
\(261\) 1.47980 + 11.4104i 0.0915975 + 0.706289i
\(262\) −2.76942 4.79677i −0.171095 0.296345i
\(263\) −15.4700 26.7948i −0.953920 1.65224i −0.736820 0.676089i \(-0.763673\pi\)
−0.217100 0.976149i \(-0.569660\pi\)
\(264\) 2.21657 + 3.32428i 0.136420 + 0.204595i
\(265\) 0 0
\(266\) 19.1724 + 5.67402i 1.17554 + 0.347897i
\(267\) −9.14184 4.51923i −0.559471 0.276573i
\(268\) 2.39643 + 1.38358i 0.146386 + 0.0845157i
\(269\) −2.05211 3.55436i −0.125119 0.216713i 0.796660 0.604427i \(-0.206598\pi\)
−0.921780 + 0.387714i \(0.873265\pi\)
\(270\) 0 0
\(271\) −7.86071 4.53838i −0.477504 0.275687i 0.241872 0.970308i \(-0.422239\pi\)
−0.719376 + 0.694621i \(0.755572\pi\)
\(272\) 6.30230i 0.382133i
\(273\) 15.5680 16.8171i 0.942219 1.01781i
\(274\) −1.24104 −0.0749740
\(275\) 0 0
\(276\) 0.711259 + 11.0147i 0.0428128 + 0.663004i
\(277\) 0.187473 0.108238i 0.0112642 0.00650338i −0.494357 0.869259i \(-0.664597\pi\)
0.505622 + 0.862755i \(0.331263\pi\)
\(278\) 10.8551 + 6.26718i 0.651044 + 0.375881i
\(279\) 10.4437 7.98177i 0.625250 0.477856i
\(280\) 0 0
\(281\) 18.8498i 1.12448i −0.826973 0.562241i \(-0.809939\pi\)
0.826973 0.562241i \(-0.190061\pi\)
\(282\) 1.59203 + 2.38762i 0.0948037 + 0.142181i
\(283\) 0.999159 + 1.73059i 0.0593939 + 0.102873i 0.894193 0.447681i \(-0.147750\pi\)
−0.834800 + 0.550554i \(0.814417\pi\)
\(284\) −2.47605 + 1.42955i −0.146927 + 0.0848281i
\(285\) 0 0
\(286\) 11.5359i 0.682135i
\(287\) 17.8411 + 18.7913i 1.05312 + 1.10922i
\(288\) −1.82168 2.38358i −0.107344 0.140454i
\(289\) 11.3595 19.6752i 0.668204 1.15736i
\(290\) 0 0
\(291\) 0.515341 + 7.98065i 0.0302099 + 0.467834i
\(292\) 1.84089 3.18851i 0.107730 0.186593i
\(293\) 9.28117i 0.542212i 0.962550 + 0.271106i \(0.0873894\pi\)
−0.962550 + 0.271106i \(0.912611\pi\)
\(294\) −5.92925 + 10.5756i −0.345801 + 0.616783i
\(295\) 0 0
\(296\) −5.98363 3.45465i −0.347791 0.200797i
\(297\) 7.87710 + 9.03477i 0.457076 + 0.524251i
\(298\) 13.5058 7.79757i 0.782370 0.451701i
\(299\) −15.9341 + 27.5986i −0.921492 + 1.59607i
\(300\) 0 0
\(301\) −4.89806 + 4.65037i −0.282319 + 0.268043i
\(302\) −3.03915 −0.174883
\(303\) −16.3044 + 10.8715i −0.936663 + 0.624551i
\(304\) 6.54470 3.77859i 0.375365 0.216717i
\(305\) 0 0
\(306\) −2.43164 18.7499i −0.139008 1.07186i
\(307\) −26.9282 −1.53687 −0.768436 0.639927i \(-0.778965\pi\)
−0.768436 + 0.639927i \(0.778965\pi\)
\(308\) −1.42622 5.93424i −0.0812665 0.338135i
\(309\) 11.4341 + 5.65241i 0.650464 + 0.321554i
\(310\) 0 0
\(311\) −1.41065 2.44331i −0.0799905 0.138548i 0.823255 0.567672i \(-0.192156\pi\)
−0.903246 + 0.429124i \(0.858822\pi\)
\(312\) −0.558158 8.64371i −0.0315994 0.489354i
\(313\) −5.72135 + 9.90967i −0.323390 + 0.560128i −0.981185 0.193069i \(-0.938156\pi\)
0.657795 + 0.753197i \(0.271489\pi\)
\(314\) 15.8252 0.893068
\(315\) 0 0
\(316\) −2.55889 −0.143949
\(317\) −4.65491 + 8.06254i −0.261446 + 0.452837i −0.966626 0.256190i \(-0.917533\pi\)
0.705181 + 0.709028i \(0.250866\pi\)
\(318\) −0.363052 5.62228i −0.0203589 0.315282i
\(319\) 4.42368 + 7.66203i 0.247678 + 0.428991i
\(320\) 0 0
\(321\) −13.0717 6.46194i −0.729590 0.360670i
\(322\) 4.78460 16.1671i 0.266635 0.900956i
\(323\) 47.6275 2.65007
\(324\) −6.33934 6.38849i −0.352185 0.354916i
\(325\) 0 0
\(326\) −7.46238 + 4.30841i −0.413303 + 0.238621i
\(327\) 9.60205 6.40249i 0.530995 0.354058i
\(328\) 9.79371 0.540767
\(329\) −1.02437 4.26220i −0.0564752 0.234983i
\(330\) 0 0
\(331\) −9.14801 + 15.8448i −0.502820 + 0.870910i 0.497175 + 0.867650i \(0.334371\pi\)
−0.999995 + 0.00325921i \(0.998963\pi\)
\(332\) −1.59126 + 0.918714i −0.0873317 + 0.0504210i
\(333\) −19.1347 7.96919i −1.04858 0.436709i
\(334\) 7.49067 + 4.32474i 0.409871 + 0.236639i
\(335\) 0 0
\(336\) 1.35577 + 4.37743i 0.0739633 + 0.238808i
\(337\) 7.84516i 0.427353i 0.976904 + 0.213676i \(0.0685438\pi\)
−0.976904 + 0.213676i \(0.931456\pi\)
\(338\) 6.00420 10.3996i 0.326586 0.565663i
\(339\) 0.497240 + 7.70033i 0.0270064 + 0.418225i
\(340\) 0 0
\(341\) 5.05366 8.75320i 0.273671 0.474012i
\(342\) 18.0131 13.7668i 0.974039 0.744423i
\(343\) 14.0741 12.0383i 0.759929 0.650006i
\(344\) 2.55278i 0.137637i
\(345\) 0 0
\(346\) 15.5291 8.96573i 0.834849 0.482000i
\(347\) 0.116147 + 0.201172i 0.00623509 + 0.0107995i 0.869126 0.494591i \(-0.164682\pi\)
−0.862891 + 0.505390i \(0.831349\pi\)
\(348\) −3.68532 5.52701i −0.197554 0.296279i
\(349\) 11.5685i 0.619249i −0.950859 0.309624i \(-0.899797\pi\)
0.950859 0.309624i \(-0.100203\pi\)
\(350\) 0 0
\(351\) −4.99561 25.5004i −0.266646 1.36111i
\(352\) −1.99775 1.15340i −0.106480 0.0614764i
\(353\) −30.0575 + 17.3537i −1.59980 + 0.923646i −0.608277 + 0.793725i \(0.708139\pi\)
−0.991524 + 0.129921i \(0.958528\pi\)
\(354\) −1.10848 17.1660i −0.0589149 0.912364i
\(355\) 0 0
\(356\) 5.88774 0.312050
\(357\) −6.39421 + 28.1640i −0.338417 + 1.49060i
\(358\) 12.0170i 0.635116i
\(359\) 15.1834 + 8.76612i 0.801347 + 0.462658i 0.843942 0.536434i \(-0.180229\pi\)
−0.0425949 + 0.999092i \(0.513562\pi\)
\(360\) 0 0
\(361\) 19.0554 + 33.0050i 1.00292 + 1.73710i
\(362\) −8.24987 4.76306i −0.433603 0.250341i
\(363\) −8.81721 4.35875i −0.462783 0.228775i
\(364\) −3.75470 + 12.6870i −0.196799 + 0.664982i
\(365\) 0 0
\(366\) −5.74962 8.62293i −0.300538 0.450728i
\(367\) −5.02009 8.69505i −0.262047 0.453878i 0.704739 0.709467i \(-0.251064\pi\)
−0.966786 + 0.255589i \(0.917731\pi\)
\(368\) −3.18628 5.51880i −0.166096 0.287687i
\(369\) 29.1371 3.77875i 1.51682 0.196714i
\(370\) 0 0
\(371\) −2.44223 + 8.25225i −0.126794 + 0.428436i
\(372\) −3.36311 + 6.80316i −0.174369 + 0.352727i
\(373\) −0.00417483 0.00241034i −0.000216164 0.000124803i 0.499892 0.866088i \(-0.333373\pi\)
−0.500108 + 0.865963i \(0.666706\pi\)
\(374\) −7.26907 12.5904i −0.375875 0.651034i
\(375\) 0 0
\(376\) −1.43486 0.828416i −0.0739972 0.0427223i
\(377\) 19.1799i 0.987815i
\(378\) 5.72249 + 12.5001i 0.294333 + 0.642937i
\(379\) −18.6572 −0.958356 −0.479178 0.877718i \(-0.659065\pi\)
−0.479178 + 0.877718i \(0.659065\pi\)
\(380\) 0 0
\(381\) 3.17506 0.205026i 0.162663 0.0105038i
\(382\) −4.30564 + 2.48586i −0.220296 + 0.127188i
\(383\) −16.3214 9.42316i −0.833984 0.481501i 0.0212308 0.999775i \(-0.493242\pi\)
−0.855215 + 0.518274i \(0.826575\pi\)
\(384\) 1.55269 + 0.767566i 0.0792353 + 0.0391697i
\(385\) 0 0
\(386\) 6.03321i 0.307082i
\(387\) 0.984951 + 7.59475i 0.0500679 + 0.386063i
\(388\) −2.30861 3.99864i −0.117202 0.203000i
\(389\) −9.40510 + 5.43003i −0.476857 + 0.275314i −0.719106 0.694901i \(-0.755448\pi\)
0.242249 + 0.970214i \(0.422115\pi\)
\(390\) 0 0
\(391\) 40.1618i 2.03107i
\(392\) 0.362928 6.99059i 0.0183306 0.353078i
\(393\) 8.60008 + 4.25142i 0.433817 + 0.214456i
\(394\) 7.10719 12.3100i 0.358055 0.620170i
\(395\) 0 0
\(396\) −6.38849 2.66066i −0.321034 0.133703i
\(397\) 13.5204 23.4180i 0.678570 1.17532i −0.296841 0.954927i \(-0.595933\pi\)
0.975412 0.220391i \(-0.0707334\pi\)
\(398\) 2.25088i 0.112826i
\(399\) −33.0810 + 10.2458i −1.65612 + 0.512931i
\(400\) 0 0
\(401\) 21.2396 + 12.2627i 1.06066 + 0.612371i 0.925614 0.378469i \(-0.123549\pi\)
0.135043 + 0.990840i \(0.456883\pi\)
\(402\) −4.78291 + 0.308851i −0.238550 + 0.0154041i
\(403\) −18.9758 + 10.9557i −0.945251 + 0.545741i
\(404\) 5.65702 9.79825i 0.281447 0.487481i
\(405\) 0 0
\(406\) 2.37127 + 9.86639i 0.117684 + 0.489661i
\(407\) −15.9384 −0.790036
\(408\) 6.05578 + 9.08209i 0.299806 + 0.449630i
\(409\) −4.67954 + 2.70173i −0.231388 + 0.133592i −0.611212 0.791467i \(-0.709318\pi\)
0.379824 + 0.925059i \(0.375985\pi\)
\(410\) 0 0
\(411\) 1.78843 1.19250i 0.0882170 0.0588216i
\(412\) −7.36407 −0.362802
\(413\) −7.45666 + 25.1959i −0.366918 + 1.23981i
\(414\) −11.6088 15.1895i −0.570541 0.746524i
\(415\) 0 0
\(416\) 2.50042 + 4.33086i 0.122593 + 0.212338i
\(417\) −21.6650 + 1.39899i −1.06094 + 0.0685091i
\(418\) 8.71645 15.0973i 0.426335 0.738434i
\(419\) −28.2930 −1.38220 −0.691101 0.722758i \(-0.742874\pi\)
−0.691101 + 0.722758i \(0.742874\pi\)
\(420\) 0 0
\(421\) −25.1687 −1.22665 −0.613323 0.789832i \(-0.710168\pi\)
−0.613323 + 0.789832i \(0.710168\pi\)
\(422\) 13.8017 23.9052i 0.671855 1.16369i
\(423\) −4.58846 1.91099i −0.223099 0.0929156i
\(424\) 1.62639 + 2.81699i 0.0789846 + 0.136805i
\(425\) 0 0
\(426\) 2.19455 4.43929i 0.106326 0.215084i
\(427\) 3.69952 + 15.3930i 0.179032 + 0.744919i
\(428\) 8.41874 0.406935
\(429\) −11.0847 16.6242i −0.535175 0.802622i
\(430\) 0 0
\(431\) 9.71524 5.60910i 0.467967 0.270181i −0.247421 0.968908i \(-0.579583\pi\)
0.715388 + 0.698727i \(0.246250\pi\)
\(432\) 4.91553 + 1.68449i 0.236499 + 0.0810452i
\(433\) −0.639592 −0.0307368 −0.0153684 0.999882i \(-0.504892\pi\)
−0.0153684 + 0.999882i \(0.504892\pi\)
\(434\) 8.40691 7.98177i 0.403544 0.383137i
\(435\) 0 0
\(436\) −3.33156 + 5.77043i −0.159553 + 0.276353i
\(437\) 41.7065 24.0793i 1.99509 1.15187i
\(438\) 0.410933 + 6.36376i 0.0196351 + 0.304072i
\(439\) 11.3999 + 6.58174i 0.544088 + 0.314129i 0.746734 0.665123i \(-0.231621\pi\)
−0.202646 + 0.979252i \(0.564954\pi\)
\(440\) 0 0
\(441\) −1.61747 20.9376i −0.0770221 0.997029i
\(442\) 31.5168i 1.49910i
\(443\) 12.9223 22.3821i 0.613957 1.06341i −0.376609 0.926372i \(-0.622910\pi\)
0.990566 0.137033i \(-0.0437567\pi\)
\(444\) 11.9424 0.771166i 0.566761 0.0365979i
\(445\) 0 0
\(446\) −11.5388 + 19.9858i −0.546380 + 0.946357i
\(447\) −11.9703 + 24.2144i −0.566176 + 1.14530i
\(448\) −1.82168 1.91871i −0.0860665 0.0906507i
\(449\) 28.3586i 1.33833i −0.743116 0.669163i \(-0.766653\pi\)
0.743116 0.669163i \(-0.233347\pi\)
\(450\) 0 0
\(451\) 19.5654 11.2961i 0.921297 0.531911i
\(452\) −2.22752 3.85818i −0.104774 0.181474i
\(453\) 4.37965 2.92027i 0.205774 0.137206i
\(454\) 20.0351i 0.940293i
\(455\) 0 0
\(456\) −5.80063 + 11.7339i −0.271639 + 0.549492i
\(457\) 25.2797 + 14.5953i 1.18254 + 0.682737i 0.956600 0.291405i \(-0.0941226\pi\)
0.225936 + 0.974142i \(0.427456\pi\)
\(458\) −24.9111 + 14.3824i −1.16402 + 0.672046i
\(459\) 21.5206 + 24.6835i 1.00450 + 1.15213i
\(460\) 0 0
\(461\) −31.0968 −1.44832 −0.724162 0.689630i \(-0.757773\pi\)
−0.724162 + 0.689630i \(0.757773\pi\)
\(462\) 7.75741 + 7.18125i 0.360908 + 0.334102i
\(463\) 33.4915i 1.55648i 0.627967 + 0.778240i \(0.283887\pi\)
−0.627967 + 0.778240i \(0.716113\pi\)
\(464\) 3.32150 + 1.91767i 0.154197 + 0.0890255i
\(465\) 0 0
\(466\) −12.8558 22.2668i −0.595532 1.03149i
\(467\) 12.8389 + 7.41254i 0.594113 + 0.343012i 0.766722 0.641979i \(-0.221886\pi\)
−0.172609 + 0.984990i \(0.555220\pi\)
\(468\) 9.10996 + 11.9199i 0.421108 + 0.550998i
\(469\) 7.02025 + 2.07762i 0.324165 + 0.0959357i
\(470\) 0 0
\(471\) −22.8053 + 15.2062i −1.05081 + 0.700664i
\(472\) 4.96573 + 8.60089i 0.228566 + 0.395888i
\(473\) 2.94438 + 5.09982i 0.135383 + 0.234490i
\(474\) 3.68756 2.45880i 0.169375 0.112937i
\(475\) 0 0
\(476\) −3.89651 16.2126i −0.178596 0.743105i
\(477\) 5.92555 + 7.75328i 0.271312 + 0.354998i
\(478\) 9.28556 + 5.36102i 0.424712 + 0.245207i
\(479\) −11.5223 19.9573i −0.526469 0.911871i −0.999524 0.0308386i \(-0.990182\pi\)
0.473055 0.881033i \(-0.343151\pi\)
\(480\) 0 0
\(481\) 29.9232 + 17.2762i 1.36438 + 0.787725i
\(482\) 1.18465i 0.0539593i
\(483\) 8.63973 + 27.8954i 0.393121 + 1.26929i
\(484\) 5.67867 0.258121
\(485\) 0 0
\(486\) 15.2741 + 3.11493i 0.692846 + 0.141296i
\(487\) −9.20383 + 5.31384i −0.417066 + 0.240793i −0.693821 0.720147i \(-0.744074\pi\)
0.276756 + 0.960940i \(0.410741\pi\)
\(488\) 5.18202 + 2.99184i 0.234579 + 0.135434i
\(489\) 6.61397 13.3792i 0.299094 0.605030i
\(490\) 0 0
\(491\) 22.4687i 1.01400i −0.861947 0.506998i \(-0.830755\pi\)
0.861947 0.506998i \(-0.169245\pi\)
\(492\) −14.1135 + 9.41063i −0.636285 + 0.424264i
\(493\) 12.0857 + 20.9331i 0.544313 + 0.942778i
\(494\) −32.7290 + 18.8961i −1.47255 + 0.850176i
\(495\) 0 0
\(496\) 4.38153i 0.196737i
\(497\) −5.48579 + 5.20837i −0.246071 + 0.233627i
\(498\) 1.41035 2.85295i 0.0631992 0.127844i
\(499\) −19.8794 + 34.4322i −0.889925 + 1.54140i −0.0499622 + 0.998751i \(0.515910\pi\)
−0.839963 + 0.542644i \(0.817423\pi\)
\(500\) 0 0
\(501\) −14.9502 + 0.965392i −0.667926 + 0.0431305i
\(502\) 7.18445 12.4438i 0.320658 0.555396i
\(503\) 18.6717i 0.832530i 0.909243 + 0.416265i \(0.136661\pi\)
−0.909243 + 0.416265i \(0.863339\pi\)
\(504\) −6.15997 5.00547i −0.274387 0.222961i
\(505\) 0 0
\(506\) −12.7308 7.35011i −0.565952 0.326752i
\(507\) 1.34029 + 20.7559i 0.0595244 + 0.921804i
\(508\) −1.59084 + 0.918471i −0.0705820 + 0.0407506i
\(509\) 2.01643 3.49256i 0.0893768 0.154805i −0.817871 0.575402i \(-0.804846\pi\)
0.907248 + 0.420596i \(0.138179\pi\)
\(510\) 0 0
\(511\) 2.76432 9.34059i 0.122286 0.413203i
\(512\) −1.00000 −0.0441942
\(513\) −12.7300 + 37.1475i −0.562044 + 1.64010i
\(514\) −14.3206 + 8.26802i −0.631656 + 0.364687i
\(515\) 0 0
\(516\) −2.45293 3.67875i −0.107984 0.161948i
\(517\) −3.82198 −0.168091
\(518\) −17.5288 5.18759i −0.770170 0.227930i
\(519\) −13.7636 + 27.8420i −0.604154 + 1.22213i
\(520\) 0 0
\(521\) 5.27733 + 9.14060i 0.231204 + 0.400457i 0.958163 0.286224i \(-0.0924002\pi\)
−0.726959 + 0.686681i \(0.759067\pi\)
\(522\) 10.6216 + 4.42368i 0.464896 + 0.193619i
\(523\) −10.2661 + 17.7815i −0.448907 + 0.777529i −0.998315 0.0580246i \(-0.981520\pi\)
0.549408 + 0.835554i \(0.314853\pi\)
\(524\) −5.53883 −0.241965
\(525\) 0 0
\(526\) −30.9400 −1.34905
\(527\) 13.8069 23.9142i 0.601436 1.04172i
\(528\) 3.98719 0.257468i 0.173520 0.0112049i
\(529\) −8.80476 15.2503i −0.382816 0.663056i
\(530\) 0 0
\(531\) 18.0920 + 23.6724i 0.785125 + 1.02730i
\(532\) 14.5001 13.7668i 0.628657 0.596866i
\(533\) −48.9768 −2.12142
\(534\) −8.48469 + 5.65745i −0.367168 + 0.244822i
\(535\) 0 0
\(536\) 2.39643 1.38358i 0.103510 0.0597616i
\(537\) 11.5469 + 17.3174i 0.498286 + 0.747299i
\(538\) −4.10422 −0.176946
\(539\) −7.33790 14.3840i −0.316066 0.619564i
\(540\) 0 0
\(541\) 4.59255 7.95454i 0.197449 0.341992i −0.750251 0.661153i \(-0.770068\pi\)
0.947701 + 0.319160i \(0.103401\pi\)
\(542\) −7.86071 + 4.53838i −0.337646 + 0.194940i
\(543\) 16.4654 1.06324i 0.706600 0.0456279i
\(544\) −5.45795 3.15115i −0.234008 0.135104i
\(545\) 0 0
\(546\) −6.77999 21.8908i −0.290157 0.936841i
\(547\) 5.21319i 0.222900i −0.993770 0.111450i \(-0.964450\pi\)
0.993770 0.111450i \(-0.0355495\pi\)
\(548\) −0.620520 + 1.07477i −0.0265073 + 0.0459120i
\(549\) 16.5713 + 6.90157i 0.707246 + 0.294552i
\(550\) 0 0
\(551\) −14.4921 + 25.1011i −0.617386 + 1.06934i
\(552\) 9.89460 + 4.89136i 0.421142 + 0.208190i
\(553\) −6.58275 + 1.58208i −0.279927 + 0.0672770i
\(554\) 0.216476i 0.00919717i
\(555\) 0 0
\(556\) 10.8551 6.26718i 0.460358 0.265788i
\(557\) −12.9066 22.3550i −0.546872 0.947210i −0.998487 0.0549970i \(-0.982485\pi\)
0.451614 0.892213i \(-0.350848\pi\)
\(558\) −1.69055 13.0354i −0.0715665 0.551834i
\(559\) 12.7661i 0.539947i
\(560\) 0 0
\(561\) 22.5732 + 11.1590i 0.953042 + 0.471133i
\(562\) −16.3244 9.42488i −0.688602 0.397565i
\(563\) −32.4704 + 18.7468i −1.36847 + 0.790084i −0.990732 0.135831i \(-0.956630\pi\)
−0.377733 + 0.925914i \(0.623296\pi\)
\(564\) 2.86375 0.184924i 0.120586 0.00778669i
\(565\) 0 0
\(566\) 1.99832 0.0839956
\(567\) −20.2577 12.5150i −0.850745 0.525579i
\(568\) 2.85910i 0.119965i
\(569\) −35.0352 20.2276i −1.46875 0.847985i −0.469367 0.883003i \(-0.655518\pi\)
−0.999387 + 0.0350177i \(0.988851\pi\)
\(570\) 0 0
\(571\) 14.5551 + 25.2101i 0.609111 + 1.05501i 0.991387 + 0.130963i \(0.0418070\pi\)
−0.382276 + 0.924048i \(0.624860\pi\)
\(572\) 9.99042 + 5.76797i 0.417720 + 0.241171i
\(573\) 3.81613 7.71954i 0.159421 0.322488i
\(574\) 25.1943 6.05514i 1.05159 0.252737i
\(575\) 0 0
\(576\) −2.97509 + 0.385834i −0.123962 + 0.0160764i
\(577\) −7.58769 13.1423i −0.315880 0.547120i 0.663744 0.747959i \(-0.268966\pi\)
−0.979624 + 0.200840i \(0.935633\pi\)
\(578\) −11.3595 19.6752i −0.472492 0.818380i
\(579\) −5.79722 8.69431i −0.240924 0.361323i
\(580\) 0 0
\(581\) −3.52550 + 3.34722i −0.146262 + 0.138866i
\(582\) 7.16912 + 3.54403i 0.297169 + 0.146905i
\(583\) 6.49824 + 3.75176i 0.269130 + 0.155382i
\(584\) −1.84089 3.18851i −0.0761764 0.131941i
\(585\) 0 0
\(586\) 8.03773 + 4.64059i 0.332036 + 0.191701i
\(587\) 3.22807i 0.133237i 0.997779 + 0.0666183i \(0.0212210\pi\)
−0.997779 + 0.0666183i \(0.978779\pi\)
\(588\) 6.19414 + 10.4227i 0.255442 + 0.429825i
\(589\) 33.1120 1.36436
\(590\) 0 0
\(591\) 1.58651 + 24.5689i 0.0652601 + 1.01063i
\(592\) −5.98363 + 3.45465i −0.245926 + 0.141985i
\(593\) 37.8717 + 21.8653i 1.55521 + 0.897899i 0.997704 + 0.0677234i \(0.0215735\pi\)
0.557502 + 0.830175i \(0.311760\pi\)
\(594\) 11.7629 2.30439i 0.482637 0.0945501i
\(595\) 0 0
\(596\) 15.5951i 0.638802i
\(597\) −2.16283 3.24369i −0.0885189 0.132755i
\(598\) 15.9341 + 27.5986i 0.651593 + 1.12859i
\(599\) 6.96777 4.02284i 0.284695 0.164369i −0.350852 0.936431i \(-0.614108\pi\)
0.635547 + 0.772062i \(0.280775\pi\)
\(600\) 0 0
\(601\) 8.38546i 0.342050i 0.985267 + 0.171025i \(0.0547079\pi\)
−0.985267 + 0.171025i \(0.945292\pi\)
\(602\) 1.57830 + 6.56703i 0.0643269 + 0.267652i
\(603\) 6.59576 5.04090i 0.268600 0.205281i
\(604\) −1.51958 + 2.63198i −0.0618306 + 0.107094i
\(605\) 0 0
\(606\) 1.26279 + 19.5558i 0.0512974 + 0.794398i
\(607\) −8.46682 + 14.6650i −0.343658 + 0.595232i −0.985109 0.171931i \(-0.944999\pi\)
0.641451 + 0.767164i \(0.278333\pi\)
\(608\) 7.55717i 0.306484i
\(609\) −12.8976 11.9397i −0.522639 0.483821i
\(610\) 0 0
\(611\) 7.17550 + 4.14278i 0.290290 + 0.167599i
\(612\) −17.4537 7.26907i −0.705523 0.293835i
\(613\) −29.3464 + 16.9432i −1.18529 + 0.684328i −0.957233 0.289319i \(-0.906571\pi\)
−0.228058 + 0.973647i \(0.573238\pi\)
\(614\) −13.4641 + 23.3205i −0.543366 + 0.941138i
\(615\) 0 0
\(616\) −5.85231 1.73198i −0.235796 0.0697833i
\(617\) −37.5359 −1.51114 −0.755570 0.655068i \(-0.772640\pi\)
−0.755570 + 0.655068i \(0.772640\pi\)
\(618\) 10.6122 7.07602i 0.426885 0.284639i
\(619\) −14.6497 + 8.45802i −0.588822 + 0.339957i −0.764632 0.644468i \(-0.777079\pi\)
0.175809 + 0.984424i \(0.443746\pi\)
\(620\) 0 0
\(621\) 31.3245 + 10.7345i 1.25701 + 0.430762i
\(622\) −2.82130 −0.113124
\(623\) 15.1462 3.64021i 0.606820 0.145842i
\(624\) −7.76475 3.83848i −0.310839 0.153662i
\(625\) 0 0
\(626\) 5.72135 + 9.90967i 0.228671 + 0.396070i
\(627\) 1.94573 + 30.1319i 0.0777051 + 1.20335i
\(628\) 7.91260 13.7050i 0.315747 0.546890i
\(629\) −43.5445 −1.73623
\(630\) 0 0
\(631\) −29.1879 −1.16195 −0.580977 0.813920i \(-0.697329\pi\)
−0.580977 + 0.813920i \(0.697329\pi\)
\(632\) −1.27945 + 2.21607i −0.0508937 + 0.0881504i
\(633\) 3.08089 + 47.7110i 0.122454 + 1.89634i
\(634\) 4.65491 + 8.06254i 0.184870 + 0.320204i
\(635\) 0 0
\(636\) −5.05056 2.49673i −0.200268 0.0990016i
\(637\) −1.81495 + 34.9588i −0.0719108 + 1.38512i
\(638\) 8.84735 0.350270
\(639\) 1.10314 + 8.50606i 0.0436394 + 0.336494i
\(640\) 0 0
\(641\) 3.95871 2.28556i 0.156360 0.0902743i −0.419779 0.907627i \(-0.637892\pi\)
0.576138 + 0.817352i \(0.304559\pi\)
\(642\) −12.1320 + 8.08944i −0.478814 + 0.319265i
\(643\) 24.0758 0.949457 0.474728 0.880132i \(-0.342546\pi\)
0.474728 + 0.880132i \(0.342546\pi\)
\(644\) −11.6088 12.2271i −0.457451 0.481816i
\(645\) 0 0
\(646\) 23.8138 41.2467i 0.936940 1.62283i
\(647\) −15.0897 + 8.71205i −0.593238 + 0.342506i −0.766377 0.642391i \(-0.777942\pi\)
0.173139 + 0.984897i \(0.444609\pi\)
\(648\) −8.70226 + 2.29578i −0.341857 + 0.0901867i
\(649\) 19.8405 + 11.4549i 0.778809 + 0.449646i
\(650\) 0 0
\(651\) −4.44543 + 19.5804i −0.174230 + 0.767417i
\(652\) 8.61682i 0.337461i
\(653\) 18.9455 32.8146i 0.741396 1.28414i −0.210464 0.977602i \(-0.567497\pi\)
0.951860 0.306534i \(-0.0991693\pi\)
\(654\) −0.743688 11.5169i −0.0290805 0.450345i
\(655\) 0 0
\(656\) 4.89686 8.48160i 0.191190 0.331151i
\(657\) −6.70703 8.77580i −0.261666 0.342377i
\(658\) −4.20336 1.24397i −0.163864 0.0484950i
\(659\) 24.7262i 0.963197i −0.876392 0.481599i \(-0.840056\pi\)
0.876392 0.481599i \(-0.159944\pi\)
\(660\) 0 0
\(661\) −37.8348 + 21.8439i −1.47160 + 0.849631i −0.999491 0.0319070i \(-0.989842\pi\)
−0.472113 + 0.881538i \(0.656509\pi\)
\(662\) 9.14801 + 15.8448i 0.355547 + 0.615826i
\(663\) −30.2840 45.4181i −1.17613 1.76389i
\(664\) 1.83743i 0.0713060i
\(665\) 0 0
\(666\) −16.4689 + 12.5866i −0.638156 + 0.487720i
\(667\) 21.1664 + 12.2205i 0.819568 + 0.473178i
\(668\) 7.49067 4.32474i 0.289823 0.167329i
\(669\) −2.57576 39.8886i −0.0995847 1.54218i
\(670\) 0 0
\(671\) 13.8031 0.532865
\(672\) 4.46885 + 1.01458i 0.172390 + 0.0391384i
\(673\) 34.1588i 1.31673i −0.752701 0.658363i \(-0.771249\pi\)
0.752701 0.658363i \(-0.228751\pi\)
\(674\) 6.79410 + 3.92258i 0.261699 + 0.151092i
\(675\) 0 0
\(676\) −6.00420 10.3996i −0.230931 0.399984i
\(677\) 11.3732 + 6.56630i 0.437106 + 0.252364i 0.702369 0.711813i \(-0.252125\pi\)
−0.265263 + 0.964176i \(0.585459\pi\)
\(678\) 6.91730 + 3.41954i 0.265657 + 0.131327i
\(679\) −8.41113 8.85914i −0.322790 0.339983i
\(680\) 0 0
\(681\) −19.2514 28.8721i −0.737715 1.10638i
\(682\) −5.05366 8.75320i −0.193515 0.335177i
\(683\) 22.9411 + 39.7352i 0.877818 + 1.52043i 0.853730 + 0.520716i \(0.174335\pi\)
0.0240882 + 0.999710i \(0.492332\pi\)
\(684\) −2.91582 22.4832i −0.111489 0.859668i
\(685\) 0 0
\(686\) −3.38843 18.2077i −0.129371 0.695171i
\(687\) 22.0789 44.6628i 0.842363 1.70399i
\(688\) 2.21077 + 1.27639i 0.0842850 + 0.0486620i
\(689\) −8.13333 14.0873i −0.309855 0.536685i
\(690\) 0 0
\(691\) −15.2114 8.78233i −0.578671 0.334096i 0.181934 0.983311i \(-0.441764\pi\)
−0.760605 + 0.649215i \(0.775098\pi\)
\(692\) 17.9315i 0.681652i
\(693\) −18.0794 2.89475i −0.686779 0.109963i
\(694\) 0.232294 0.00881775
\(695\) 0 0
\(696\) −6.62919 + 0.428072i −0.251279 + 0.0162260i
\(697\) 53.4536 30.8614i 2.02470 1.16896i
\(698\) −10.0186 5.78426i −0.379211 0.218938i
\(699\) 39.9220 + 19.7353i 1.50999 + 0.746458i
\(700\) 0 0
\(701\) 39.2501i 1.48246i −0.671253 0.741228i \(-0.734244\pi\)
0.671253 0.741228i \(-0.265756\pi\)
\(702\) −24.5818 8.42388i −0.927780 0.317939i
\(703\) −26.1074 45.2193i −0.984659 1.70548i
\(704\) −1.99775 + 1.15340i −0.0752930 + 0.0434704i
\(705\) 0 0
\(706\) 34.7075i 1.30623i
\(707\) 8.49472 28.7035i 0.319477 1.07951i
\(708\) −15.4205 7.62305i −0.579536 0.286492i
\(709\) −23.8340 + 41.2817i −0.895105 + 1.55037i −0.0614314 + 0.998111i \(0.519567\pi\)
−0.833674 + 0.552257i \(0.813767\pi\)
\(710\) 0 0
\(711\) −2.95143 + 7.08664i −0.110687 + 0.265770i
\(712\) 2.94387 5.09894i 0.110326 0.191091i
\(713\) 27.9216i 1.04567i
\(714\) 21.1937 + 19.6196i 0.793152 + 0.734243i
\(715\) 0 0
\(716\) −10.4070 6.00848i −0.388928 0.224547i
\(717\) −18.5325 + 1.19672i −0.692110 + 0.0446922i
\(718\) 15.1834 8.76612i 0.566638 0.327149i
\(719\) −16.7107 + 28.9438i −0.623205 + 1.07942i 0.365680 + 0.930740i \(0.380836\pi\)
−0.988885 + 0.148682i \(0.952497\pi\)
\(720\) 0 0
\(721\) −18.9441 + 4.55297i −0.705513 + 0.169561i
\(722\) 38.1109 1.41834
\(723\) 1.13831 + 1.70717i 0.0423343 + 0.0634904i
\(724\) −8.24987 + 4.76306i −0.306604 + 0.177018i
\(725\) 0 0
\(726\) −8.18340 + 5.45655i −0.303714 + 0.202512i
\(727\) −31.9845 −1.18624 −0.593119 0.805115i \(-0.702104\pi\)
−0.593119 + 0.805115i \(0.702104\pi\)
\(728\) 9.10996 + 9.59518i 0.337637 + 0.355621i
\(729\) −25.0042 + 10.1878i −0.926081 + 0.377325i
\(730\) 0 0
\(731\) 8.04420 + 13.9330i 0.297525 + 0.515329i
\(732\) −10.3425 + 0.667855i −0.382269 + 0.0246846i
\(733\) 19.6001 33.9483i 0.723945 1.25391i −0.235461 0.971884i \(-0.575660\pi\)
0.959407 0.282026i \(-0.0910066\pi\)
\(734\) −10.0402 −0.370590
\(735\) 0 0
\(736\) −6.37256 −0.234896
\(737\) 3.19165 5.52810i 0.117566 0.203630i
\(738\) 11.2961 27.1229i 0.415814 0.998406i
\(739\) −16.8814 29.2394i −0.620992 1.07559i −0.989301 0.145886i \(-0.953397\pi\)
0.368310 0.929703i \(-0.379937\pi\)
\(740\) 0 0
\(741\) 29.0080 58.6796i 1.06564 2.15565i
\(742\) 5.92555 + 6.24116i 0.217534 + 0.229120i
\(743\) 14.3933 0.528038 0.264019 0.964517i \(-0.414952\pi\)
0.264019 + 0.964517i \(0.414952\pi\)
\(744\) 4.21015 + 6.31412i 0.154352 + 0.231487i
\(745\) 0 0
\(746\) −0.00417483 + 0.00241034i −0.000152851 + 8.82487e-5i
\(747\) 0.708943 + 5.46651i 0.0259389 + 0.200009i
\(748\) −14.5381 −0.531567
\(749\) 21.6572 5.20504i 0.791336 0.190188i
\(750\) 0 0
\(751\) −8.92040 + 15.4506i −0.325510 + 0.563800i −0.981615 0.190869i \(-0.938869\pi\)
0.656105 + 0.754669i \(0.272203\pi\)
\(752\) −1.43486 + 0.828416i −0.0523239 + 0.0302092i
\(753\) 1.60375 + 24.8360i 0.0584440 + 0.905073i
\(754\) −16.6103 9.58995i −0.604911 0.349245i
\(755\) 0 0
\(756\) 13.6867 + 1.29424i 0.497779 + 0.0470709i
\(757\) 1.90604i 0.0692760i −0.999400 0.0346380i \(-0.988972\pi\)
0.999400 0.0346380i \(-0.0110278\pi\)
\(758\) −9.32860 + 16.1576i −0.338830 + 0.586871i
\(759\) 25.4086 1.64073i 0.922274 0.0595548i
\(760\) 0 0
\(761\) 14.1364 24.4850i 0.512445 0.887581i −0.487451 0.873150i \(-0.662073\pi\)
0.999896 0.0144304i \(-0.00459350\pi\)
\(762\) 1.40997 2.85220i 0.0510780 0.103324i
\(763\) −5.00275 + 16.9042i −0.181112 + 0.611973i
\(764\) 4.97173i 0.179871i
\(765\) 0 0
\(766\) −16.3214 + 9.42316i −0.589716 + 0.340473i
\(767\) −24.8328 43.0117i −0.896661 1.55306i
\(768\) 1.44108 0.960885i 0.0520004 0.0346729i
\(769\) 1.43146i 0.0516197i 0.999667 + 0.0258098i \(0.00821644\pi\)
−0.999667 + 0.0258098i \(0.991784\pi\)
\(770\) 0 0
\(771\) 12.6925 25.6753i 0.457109 0.924675i
\(772\) 5.22491 + 3.01660i 0.188049 + 0.108570i
\(773\) 30.1528 17.4088i 1.08452 0.626149i 0.152410 0.988317i \(-0.451297\pi\)
0.932113 + 0.362168i \(0.117963\pi\)
\(774\) 7.06972 + 2.94438i 0.254116 + 0.105834i
\(775\) 0 0
\(776\) −4.61723 −0.165749
\(777\) 30.2450 9.36742i 1.08503 0.336054i
\(778\) 10.8601i 0.389352i
\(779\) 64.0969 + 37.0064i 2.29651 + 1.32589i
\(780\) 0 0
\(781\) 3.29768 + 5.71175i 0.118000 + 0.204383i
\(782\) −34.7811 20.0809i −1.24377 0.718091i
\(783\) −19.5572 + 3.83132i −0.698918 + 0.136920i
\(784\) −5.87256 3.80960i −0.209734 0.136057i
\(785\) 0 0
\(786\) 7.98188 5.32218i 0.284704 0.189836i
\(787\) −24.8541 43.0486i −0.885953 1.53452i −0.844617 0.535370i \(-0.820172\pi\)
−0.0413355 0.999145i \(-0.513161\pi\)
\(788\) −7.10719 12.3100i −0.253183 0.438526i
\(789\) 44.5869 29.7298i 1.58733 1.05841i
\(790\) 0 0
\(791\) −8.11569 8.54796i −0.288561 0.303931i
\(792\) −5.49845 + 4.20226i −0.195379 + 0.149321i
\(793\) −25.9144 14.9617i −0.920249 0.531306i
\(794\) −13.5204 23.4180i −0.479822 0.831075i
\(795\) 0 0
\(796\) 1.94932 + 1.12544i 0.0690917 + 0.0398901i
\(797\) 8.43295i 0.298710i −0.988784 0.149355i \(-0.952280\pi\)
0.988784 0.149355i \(-0.0477198\pi\)
\(798\) −7.66738 + 33.7719i −0.271422 + 1.19551i
\(799\) −10.4419 −0.369406
\(800\) 0 0
\(801\) 6.79093 16.3056i 0.239946 0.576131i
\(802\) 21.2396 12.2627i 0.749998 0.433012i
\(803\) −7.35525 4.24656i −0.259561 0.149858i
\(804\) −2.12398 + 4.29655i −0.0749070 + 0.151527i
\(805\) 0 0
\(806\) 21.9113i 0.771794i
\(807\) 5.91449 3.94368i 0.208200 0.138824i
\(808\) −5.65702 9.79825i −0.199013 0.344701i
\(809\) −33.7531 + 19.4873i −1.18669 + 0.685138i −0.957554 0.288255i \(-0.906925\pi\)
−0.229141 + 0.973393i \(0.573592\pi\)
\(810\) 0 0
\(811\) 29.5668i 1.03823i −0.854704 0.519116i \(-0.826261\pi\)
0.854704 0.519116i \(-0.173739\pi\)
\(812\) 9.73018 + 2.87962i 0.341462 + 0.101055i
\(813\) 6.96702 14.0934i 0.244344 0.494277i
\(814\) −7.96919 + 13.8030i −0.279320 + 0.483796i
\(815\) 0 0
\(816\) 10.8932 0.703417i 0.381339 0.0246245i
\(817\) −9.64591 + 16.7072i −0.337468 + 0.584511i
\(818\) 5.40347i 0.188928i
\(819\) 30.8050 + 25.0316i 1.07642 + 0.874673i
\(820\) 0 0
\(821\) 29.1479 + 16.8285i 1.01727 + 0.587320i 0.913311 0.407262i \(-0.133516\pi\)
0.103956 + 0.994582i \(0.466850\pi\)
\(822\) −0.138516 2.14508i −0.00483130 0.0748182i
\(823\) 10.8604 6.27024i 0.378569 0.218567i −0.298627 0.954370i \(-0.596528\pi\)
0.677195 + 0.735803i \(0.263195\pi\)
\(824\) −3.68203 + 6.37747i −0.128270 + 0.222170i
\(825\) 0 0
\(826\) 18.0920 + 19.0556i 0.629501 + 0.663030i
\(827\) 15.6875 0.545506 0.272753 0.962084i \(-0.412066\pi\)
0.272753 + 0.962084i \(0.412066\pi\)
\(828\) −18.9589 + 2.45875i −0.658868 + 0.0854476i
\(829\) 4.91198 2.83593i 0.170600 0.0984959i −0.412269 0.911062i \(-0.635264\pi\)
0.582869 + 0.812566i \(0.301930\pi\)
\(830\) 0 0
\(831\) 0.208008 + 0.311958i 0.00721572 + 0.0108217i
\(832\) 5.00084 0.173373
\(833\) −20.0475 39.2979i −0.694606 1.36159i
\(834\) −9.62095 + 19.4620i −0.333146 + 0.673913i
\(835\) 0 0
\(836\) −8.71645 15.0973i −0.301465 0.522152i
\(837\) 14.9618 + 17.1606i 0.517154 + 0.593158i
\(838\) −14.1465 + 24.5024i −0.488682 + 0.846422i
\(839\) −14.5217 −0.501346 −0.250673 0.968072i \(-0.580652\pi\)
−0.250673 + 0.968072i \(0.580652\pi\)
\(840\) 0 0
\(841\) 14.2902 0.492766
\(842\) −12.5843 + 21.7967i −0.433685 + 0.751165i
\(843\) 32.5809 2.10387i 1.12215 0.0724613i
\(844\) −13.8017 23.9052i −0.475073 0.822851i
\(845\) 0 0
\(846\) −3.94920 + 3.01823i −0.135776 + 0.103769i
\(847\) 14.6084 3.51094i 0.501949 0.120637i
\(848\) 3.25278 0.111701
\(849\) −2.87973 + 1.92015i −0.0988320 + 0.0658995i
\(850\) 0 0
\(851\) −38.1310 + 22.0150i −1.30712 + 0.754663i
\(852\) −2.74726 4.12018i −0.0941197 0.141155i
\(853\) 3.66698 0.125555 0.0627775 0.998028i \(-0.480004\pi\)
0.0627775 + 0.998028i \(0.480004\pi\)
\(854\) 15.1805 + 4.49262i 0.519465 + 0.153734i
\(855\) 0 0
\(856\) 4.20937 7.29084i 0.143873 0.249196i
\(857\) 10.0138 5.78149i 0.342066 0.197492i −0.319119 0.947715i \(-0.603387\pi\)
0.661185 + 0.750223i \(0.270054\pi\)
\(858\) −19.9393 + 1.28756i −0.680717 + 0.0439565i
\(859\) 12.9614 + 7.48325i 0.442236 + 0.255325i 0.704546 0.709659i \(-0.251151\pi\)
−0.262310 + 0.964984i \(0.584484\pi\)
\(860\) 0 0
\(861\) −30.4886 + 32.9347i −1.03905 + 1.12241i
\(862\) 11.2182i 0.382093i
\(863\) −4.68639 + 8.11706i −0.159526 + 0.276308i −0.934698 0.355443i \(-0.884330\pi\)
0.775172 + 0.631751i \(0.217663\pi\)
\(864\) 3.91658 3.41473i 0.133245 0.116172i
\(865\) 0 0
\(866\) −0.319796 + 0.553903i −0.0108671 + 0.0188224i
\(867\) 35.2754 + 17.4383i 1.19802 + 0.592235i
\(868\) −2.70896 11.2715i −0.0919482 0.382579i
\(869\) 5.90286i 0.200241i
\(870\) 0 0
\(871\) −11.9842 + 6.91907i −0.406069 + 0.234444i
\(872\) 3.33156 + 5.77043i 0.112821 + 0.195411i
\(873\) −13.7366 + 1.78148i −0.464915 + 0.0602941i
\(874\) 48.1585i 1.62899i
\(875\) 0 0
\(876\) 5.71664 + 2.82600i 0.193148 + 0.0954818i
\(877\) 13.5293 + 7.81117i 0.456853 + 0.263764i 0.710720 0.703475i \(-0.248369\pi\)
−0.253867 + 0.967239i \(0.581703\pi\)
\(878\) 11.3999 6.58174i 0.384728 0.222123i
\(879\) −16.0420 + 1.03590i −0.541085 + 0.0349399i
\(880\) 0 0
\(881\) −4.54709 −0.153195 −0.0765977 0.997062i \(-0.524406\pi\)
−0.0765977 + 0.997062i \(0.524406\pi\)
\(882\) −18.9412 9.06804i −0.637785 0.305337i
\(883\) 48.8190i 1.64289i 0.570288 + 0.821445i \(0.306831\pi\)
−0.570288 + 0.821445i \(0.693169\pi\)
\(884\) 27.2943 + 15.7584i 0.918008 + 0.530012i
\(885\) 0 0
\(886\) −12.9223 22.3821i −0.434133 0.751941i
\(887\) −6.30758 3.64168i −0.211788 0.122276i 0.390354 0.920665i \(-0.372353\pi\)
−0.602142 + 0.798389i \(0.705686\pi\)
\(888\) 5.30334 10.7280i 0.177969 0.360008i
\(889\) −3.52457 + 3.34633i −0.118210 + 0.112232i
\(890\) 0 0
\(891\) −14.7370 + 14.6236i −0.493707 + 0.489908i
\(892\) 11.5388 + 19.9858i 0.386349 + 0.669176i
\(893\) −6.26049 10.8435i −0.209499 0.362863i
\(894\) 14.9851 + 22.4738i 0.501178 + 0.751636i
\(895\) 0 0
\(896\) −2.57250 + 0.618268i −0.0859411 + 0.0206549i
\(897\) −49.4813 24.4609i −1.65213 0.816726i
\(898\) −24.5593 14.1793i −0.819554 0.473170i
\(899\) 8.40232 + 14.5532i 0.280233 + 0.485378i
\(900\) 0 0
\(901\) 17.7535 + 10.2500i 0.591456 + 0.341477i
\(902\) 22.5921i 0.752236i
\(903\) −8.58461 7.94702i −0.285678 0.264460i
\(904\) −4.45505 −0.148173
\(905\) 0 0
\(906\) −0.339208 5.25302i −0.0112694 0.174520i
\(907\) −23.2928 + 13.4481i −0.773425 + 0.446537i −0.834095 0.551621i \(-0.814010\pi\)
0.0606703 + 0.998158i \(0.480676\pi\)
\(908\) 17.3509 + 10.0175i 0.575809 + 0.332444i
\(909\) −20.6106 26.9679i −0.683611 0.894470i
\(910\) 0 0
\(911\) 46.4059i 1.53750i 0.639552 + 0.768748i \(0.279120\pi\)
−0.639552 + 0.768748i \(0.720880\pi\)
\(912\) 7.26157 + 10.8905i 0.240455 + 0.360619i
\(913\) 2.11929 + 3.67072i 0.0701383 + 0.121483i
\(914\) 25.2797 14.5953i 0.836179 0.482768i
\(915\) 0 0
\(916\) 28.7648i 0.950417i
\(917\) −14.2486 + 3.42448i −0.470531 + 0.113086i
\(918\) 32.1368 6.29570i 1.06067 0.207789i
\(919\) −2.26073 + 3.91570i −0.0745746 + 0.129167i −0.900901 0.434024i \(-0.857093\pi\)
0.826327 + 0.563191i \(0.190427\pi\)
\(920\) 0 0
\(921\) −3.00553 46.5440i −0.0990355 1.53368i
\(922\) −15.5484 + 26.9306i −0.512060 + 0.886913i
\(923\) 14.2979i 0.470621i
\(924\) 10.0979 3.12749i 0.332195 0.102887i
\(925\) 0 0
\(926\) 29.0045 + 16.7457i 0.953146 + 0.550299i
\(927\) −8.49372 + 20.3942i −0.278970 + 0.669833i
\(928\) 3.32150 1.91767i 0.109033 0.0629505i
\(929\) −8.30472 + 14.3842i −0.272469 + 0.471930i −0.969493 0.245117i \(-0.921174\pi\)
0.697025 + 0.717047i \(0.254507\pi\)
\(930\) 0 0
\(931\) 28.7898 44.3800i 0.943547 1.45449i
\(932\) −25.7115 −0.842209
\(933\) 4.06570 2.71094i 0.133105 0.0887522i
\(934\) 12.8389 7.41254i 0.420102 0.242546i
\(935\) 0 0
\(936\) 14.8779 1.92950i 0.486300 0.0630675i
\(937\) −20.5347 −0.670839 −0.335419 0.942069i \(-0.608878\pi\)
−0.335419 + 0.942069i \(0.608878\pi\)
\(938\) 5.30940 5.04090i 0.173358 0.164591i
\(939\) −17.7670 8.78303i −0.579803 0.286623i
\(940\) 0 0
\(941\) −12.1992 21.1296i −0.397682 0.688805i 0.595758 0.803164i \(-0.296852\pi\)
−0.993439 + 0.114359i \(0.963519\pi\)
\(942\) 1.76629 + 27.3531i 0.0575490 + 0.891211i
\(943\) 31.2055 54.0495i 1.01619 1.76009i
\(944\) 9.93145 0.323241
\(945\) 0 0
\(946\) 5.88876 0.191460
\(947\) 9.55667 16.5526i 0.310550 0.537888i −0.667932 0.744223i \(-0.732820\pi\)
0.978482 + 0.206334i \(0.0661534\pi\)
\(948\) −0.285605 4.42292i −0.00927602 0.143650i
\(949\) 9.20598 + 15.9452i 0.298839 + 0.517604i
\(950\) 0 0
\(951\) −14.4553 7.14590i −0.468744 0.231722i
\(952\) −15.9888 4.73184i −0.518200 0.153360i
\(953\) −7.20297 −0.233327 −0.116664 0.993171i \(-0.537220\pi\)
−0.116664 + 0.993171i \(0.537220\pi\)
\(954\) 9.67731 1.25504i 0.313314 0.0406333i
\(955\) 0 0
\(956\) 9.28556 5.36102i 0.300317 0.173388i
\(957\) −12.7497 + 8.50129i −0.412139 + 0.274808i
\(958\) −23.0447 −0.744540
\(959\) −0.931789 + 3.14850i −0.0300890 + 0.101670i
\(960\) 0 0
\(961\) −5.90109 + 10.2210i −0.190358 + 0.329709i
\(962\) 29.9232 17.2762i 0.964762 0.557006i
\(963\) 9.71018 23.3150i 0.312906 0.751315i
\(964\) −1.02594 0.592325i −0.0330432 0.0190775i
\(965\) 0 0
\(966\) 28.4780 + 6.46549i 0.916265 + 0.208024i
\(967\) 12.2448i 0.393765i −0.980427 0.196883i \(-0.936918\pi\)
0.980427 0.196883i \(-0.0630818\pi\)
\(968\) 2.83934 4.91787i 0.0912597 0.158066i
\(969\) 5.31584 + 82.3219i 0.170769 + 2.64456i
\(970\) 0 0
\(971\) 13.4388 23.2768i 0.431273 0.746987i −0.565710 0.824604i \(-0.691398\pi\)
0.996983 + 0.0776173i \(0.0247312\pi\)
\(972\) 10.3346 11.6703i 0.331484 0.374324i
\(973\) 24.0499 22.8337i 0.771003 0.732014i
\(974\) 10.6277i 0.340533i
\(975\) 0 0
\(976\) 5.18202 2.99184i 0.165872 0.0957664i
\(977\) 18.3770 + 31.8298i 0.587931 + 1.01833i 0.994503 + 0.104707i \(0.0333906\pi\)
−0.406572 + 0.913619i \(0.633276\pi\)
\(978\) −8.27977 12.4175i −0.264758 0.397067i
\(979\) 13.5819i 0.434078i
\(980\) 0 0
\(981\) 12.1381 + 15.8821i 0.387540 + 0.507076i
\(982\) −19.4584 11.2343i −0.620943 0.358502i
\(983\) −11.5791 + 6.68519i −0.369315 + 0.213224i −0.673159 0.739498i \(-0.735063\pi\)
0.303844 + 0.952722i \(0.401730\pi\)
\(984\) 1.09310 + 16.9279i 0.0348468 + 0.539643i
\(985\) 0 0
\(986\) 24.1714 0.769775
\(987\) 7.25267 2.24628i 0.230855 0.0715000i
\(988\) 37.7922i 1.20233i
\(989\) 14.0883 + 8.13388i 0.447982 + 0.258642i
\(990\) 0 0
\(991\) −8.34843 14.4599i −0.265197 0.459334i 0.702419 0.711764i \(-0.252104\pi\)
−0.967615 + 0.252430i \(0.918770\pi\)
\(992\) −3.79452 2.19077i −0.120476 0.0695569i
\(993\) −28.4080 14.0434i −0.901501 0.445654i
\(994\) 1.76769 + 7.35502i 0.0560677 + 0.233287i
\(995\) 0 0
\(996\) −1.76556 2.64787i −0.0559438 0.0839011i
\(997\) 24.5927 + 42.5957i 0.778857 + 1.34902i 0.932601 + 0.360910i \(0.117534\pi\)
−0.153743 + 0.988111i \(0.549133\pi\)
\(998\) 19.8794 + 34.4322i 0.629272 + 1.08993i
\(999\) 11.6387 33.9629i 0.368231 1.07454i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.2.u.g.299.4 12
3.2 odd 2 1050.2.u.e.299.6 12
5.2 odd 4 1050.2.s.g.551.6 12
5.3 odd 4 210.2.r.a.131.1 yes 12
5.4 even 2 1050.2.u.f.299.3 12
7.3 odd 6 1050.2.u.h.899.1 12
15.2 even 4 1050.2.s.f.551.3 12
15.8 even 4 210.2.r.b.131.4 yes 12
15.14 odd 2 1050.2.u.h.299.1 12
21.17 even 6 1050.2.u.f.899.3 12
35.3 even 12 210.2.r.b.101.4 yes 12
35.17 even 12 1050.2.s.f.101.3 12
35.23 odd 12 1470.2.b.b.881.10 12
35.24 odd 6 1050.2.u.e.899.6 12
35.33 even 12 1470.2.b.a.881.9 12
105.17 odd 12 1050.2.s.g.101.6 12
105.23 even 12 1470.2.b.a.881.3 12
105.38 odd 12 210.2.r.a.101.1 12
105.59 even 6 inner 1050.2.u.g.899.4 12
105.68 odd 12 1470.2.b.b.881.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.r.a.101.1 12 105.38 odd 12
210.2.r.a.131.1 yes 12 5.3 odd 4
210.2.r.b.101.4 yes 12 35.3 even 12
210.2.r.b.131.4 yes 12 15.8 even 4
1050.2.s.f.101.3 12 35.17 even 12
1050.2.s.f.551.3 12 15.2 even 4
1050.2.s.g.101.6 12 105.17 odd 12
1050.2.s.g.551.6 12 5.2 odd 4
1050.2.u.e.299.6 12 3.2 odd 2
1050.2.u.e.899.6 12 35.24 odd 6
1050.2.u.f.299.3 12 5.4 even 2
1050.2.u.f.899.3 12 21.17 even 6
1050.2.u.g.299.4 12 1.1 even 1 trivial
1050.2.u.g.899.4 12 105.59 even 6 inner
1050.2.u.h.299.1 12 15.14 odd 2
1050.2.u.h.899.1 12 7.3 odd 6
1470.2.b.a.881.3 12 105.23 even 12
1470.2.b.a.881.9 12 35.33 even 12
1470.2.b.b.881.4 12 105.68 odd 12
1470.2.b.b.881.10 12 35.23 odd 12