Properties

Label 1050.2.s.f.101.3
Level $1050$
Weight $2$
Character 1050.101
Analytic conductor $8.384$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,2,Mod(101,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-2,6,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 11 x^{10} - 32 x^{9} + 64 x^{8} - 120 x^{7} + 237 x^{6} - 360 x^{5} + 576 x^{4} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.3
Root \(-0.111613 + 1.72845i\) of defining polynomial
Character \(\chi\) \(=\) 1050.101
Dual form 1050.2.s.f.551.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.960885 + 1.44108i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.55269 - 0.767566i) q^{6} +(1.91871 + 1.82168i) q^{7} +1.00000i q^{8} +(-1.15340 + 2.76942i) q^{9} +(1.99775 + 1.15340i) q^{11} +(1.72845 - 0.111613i) q^{12} +5.00084i q^{13} +(-2.57250 - 0.618268i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(3.15115 - 5.45795i) q^{17} +(-0.385834 - 2.97509i) q^{18} +(6.54470 - 3.77859i) q^{19} +(-0.781523 + 4.51544i) q^{21} -2.30680 q^{22} +(-5.51880 + 3.18628i) q^{23} +(-1.44108 + 0.960885i) q^{24} +(-2.50042 - 4.33086i) q^{26} +(-5.09922 + 0.998953i) q^{27} +(2.53698 - 0.750813i) q^{28} +3.83533i q^{29} +(-3.79452 - 2.19077i) q^{31} +(0.866025 + 0.500000i) q^{32} +(0.257468 + 3.98719i) q^{33} +6.30230i q^{34} +(1.82168 + 2.38358i) q^{36} +(-3.45465 - 5.98363i) q^{37} +(-3.77859 + 6.54470i) q^{38} +(-7.20659 + 4.80523i) q^{39} +9.79371 q^{41} +(-1.58090 - 4.30125i) q^{42} -2.55278 q^{43} +(1.99775 - 1.15340i) q^{44} +(3.18628 - 5.51880i) q^{46} +(0.828416 + 1.43486i) q^{47} +(0.767566 - 1.55269i) q^{48} +(0.362928 + 6.99059i) q^{49} +(10.8932 - 0.703417i) q^{51} +(4.33086 + 2.50042i) q^{52} +(2.81699 + 1.62639i) q^{53} +(3.91658 - 3.41473i) q^{54} +(-1.82168 + 1.91871i) q^{56} +(11.7339 + 5.80063i) q^{57} +(-1.91767 - 3.32150i) q^{58} +(-4.96573 + 8.60089i) q^{59} +(-5.18202 + 2.99184i) q^{61} +4.38153 q^{62} +(-7.25805 + 3.21259i) q^{63} -1.00000 q^{64} +(-2.21657 - 3.32428i) q^{66} +(-1.38358 + 2.39643i) q^{67} +(-3.15115 - 5.45795i) q^{68} +(-9.89460 - 4.89136i) q^{69} -2.85910i q^{71} +(-2.76942 - 1.15340i) q^{72} +(3.18851 + 1.84089i) q^{73} +(5.98363 + 3.45465i) q^{74} -7.55717i q^{76} +(1.73198 + 5.85231i) q^{77} +(3.83848 - 7.76475i) q^{78} +(-1.27945 - 2.21607i) q^{79} +(-6.33934 - 6.38849i) q^{81} +(-8.48160 + 4.89686i) q^{82} +1.83743 q^{83} +(3.51973 + 2.93454i) q^{84} +(2.21077 - 1.27639i) q^{86} +(-5.52701 + 3.68532i) q^{87} +(-1.15340 + 1.99775i) q^{88} +(-2.94387 - 5.09894i) q^{89} +(-9.10996 + 9.59518i) q^{91} +6.37256i q^{92} +(-0.489035 - 7.57326i) q^{93} +(-1.43486 - 0.828416i) q^{94} +(0.111613 + 1.72845i) q^{96} -4.61723i q^{97} +(-3.80960 - 5.87256i) q^{98} +(-5.49845 + 4.20226i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{3} + 6 q^{4} + 2 q^{6} - 8 q^{7} + 12 q^{11} + 2 q^{12} - 12 q^{14} - 6 q^{16} + 12 q^{17} + 4 q^{18} + 4 q^{21} - 24 q^{23} - 2 q^{24} + 4 q^{26} - 8 q^{27} - 4 q^{28} + 12 q^{31} + 2 q^{33}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0.960885 + 1.44108i 0.554767 + 0.832006i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) −1.55269 0.767566i −0.633883 0.313358i
\(7\) 1.91871 + 1.82168i 0.725206 + 0.688532i
\(8\) 1.00000i 0.353553i
\(9\) −1.15340 + 2.76942i −0.384467 + 0.923139i
\(10\) 0 0
\(11\) 1.99775 + 1.15340i 0.602344 + 0.347763i 0.769963 0.638089i \(-0.220275\pi\)
−0.167619 + 0.985852i \(0.553608\pi\)
\(12\) 1.72845 0.111613i 0.498961 0.0322198i
\(13\) 5.00084i 1.38698i 0.720464 + 0.693492i \(0.243929\pi\)
−0.720464 + 0.693492i \(0.756071\pi\)
\(14\) −2.57250 0.618268i −0.687529 0.165239i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.15115 5.45795i 0.764266 1.32375i −0.176368 0.984324i \(-0.556435\pi\)
0.940634 0.339423i \(-0.110232\pi\)
\(18\) −0.385834 2.97509i −0.0909420 0.701234i
\(19\) 6.54470 3.77859i 1.50146 0.866867i 0.501460 0.865181i \(-0.332797\pi\)
0.999999 0.00168616i \(-0.000536721\pi\)
\(20\) 0 0
\(21\) −0.781523 + 4.51544i −0.170542 + 0.985350i
\(22\) −2.30680 −0.491812
\(23\) −5.51880 + 3.18628i −1.15075 + 0.664385i −0.949070 0.315066i \(-0.897973\pi\)
−0.201679 + 0.979452i \(0.564640\pi\)
\(24\) −1.44108 + 0.960885i −0.294158 + 0.196140i
\(25\) 0 0
\(26\) −2.50042 4.33086i −0.490373 0.849351i
\(27\) −5.09922 + 0.998953i −0.981346 + 0.192249i
\(28\) 2.53698 0.750813i 0.479445 0.141890i
\(29\) 3.83533i 0.712204i 0.934447 + 0.356102i \(0.115894\pi\)
−0.934447 + 0.356102i \(0.884106\pi\)
\(30\) 0 0
\(31\) −3.79452 2.19077i −0.681516 0.393473i 0.118910 0.992905i \(-0.462060\pi\)
−0.800426 + 0.599432i \(0.795393\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0.257468 + 3.98719i 0.0448195 + 0.694081i
\(34\) 6.30230i 1.08083i
\(35\) 0 0
\(36\) 1.82168 + 2.38358i 0.303614 + 0.397264i
\(37\) −3.45465 5.98363i −0.567941 0.983703i −0.996769 0.0803166i \(-0.974407\pi\)
0.428828 0.903386i \(-0.358926\pi\)
\(38\) −3.77859 + 6.54470i −0.612968 + 1.06169i
\(39\) −7.20659 + 4.80523i −1.15398 + 0.769453i
\(40\) 0 0
\(41\) 9.79371 1.52952 0.764760 0.644315i \(-0.222857\pi\)
0.764760 + 0.644315i \(0.222857\pi\)
\(42\) −1.58090 4.30125i −0.243939 0.663697i
\(43\) −2.55278 −0.389296 −0.194648 0.980873i \(-0.562356\pi\)
−0.194648 + 0.980873i \(0.562356\pi\)
\(44\) 1.99775 1.15340i 0.301172 0.173882i
\(45\) 0 0
\(46\) 3.18628 5.51880i 0.469791 0.813703i
\(47\) 0.828416 + 1.43486i 0.120837 + 0.209296i 0.920098 0.391688i \(-0.128109\pi\)
−0.799261 + 0.600984i \(0.794776\pi\)
\(48\) 0.767566 1.55269i 0.110789 0.224111i
\(49\) 0.362928 + 6.99059i 0.0518469 + 0.998655i
\(50\) 0 0
\(51\) 10.8932 0.703417i 1.52535 0.0984980i
\(52\) 4.33086 + 2.50042i 0.600582 + 0.346746i
\(53\) 2.81699 + 1.62639i 0.386944 + 0.223402i 0.680835 0.732437i \(-0.261617\pi\)
−0.293891 + 0.955839i \(0.594950\pi\)
\(54\) 3.91658 3.41473i 0.532979 0.464686i
\(55\) 0 0
\(56\) −1.82168 + 1.91871i −0.243433 + 0.256399i
\(57\) 11.7339 + 5.80063i 1.55420 + 0.768312i
\(58\) −1.91767 3.32150i −0.251802 0.436134i
\(59\) −4.96573 + 8.60089i −0.646483 + 1.11974i 0.337474 + 0.941335i \(0.390427\pi\)
−0.983957 + 0.178406i \(0.942906\pi\)
\(60\) 0 0
\(61\) −5.18202 + 2.99184i −0.663489 + 0.383066i −0.793605 0.608433i \(-0.791798\pi\)
0.130116 + 0.991499i \(0.458465\pi\)
\(62\) 4.38153 0.556455
\(63\) −7.25805 + 3.21259i −0.914428 + 0.404748i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −2.21657 3.32428i −0.272841 0.409190i
\(67\) −1.38358 + 2.39643i −0.169031 + 0.292771i −0.938080 0.346420i \(-0.887397\pi\)
0.769048 + 0.639191i \(0.220731\pi\)
\(68\) −3.15115 5.45795i −0.382133 0.661874i
\(69\) −9.89460 4.89136i −1.19117 0.588851i
\(70\) 0 0
\(71\) 2.85910i 0.339312i −0.985503 0.169656i \(-0.945734\pi\)
0.985503 0.169656i \(-0.0542657\pi\)
\(72\) −2.76942 1.15340i −0.326379 0.135930i
\(73\) 3.18851 + 1.84089i 0.373187 + 0.215459i 0.674850 0.737955i \(-0.264208\pi\)
−0.301663 + 0.953415i \(0.597542\pi\)
\(74\) 5.98363 + 3.45465i 0.695583 + 0.401595i
\(75\) 0 0
\(76\) 7.55717i 0.866867i
\(77\) 1.73198 + 5.85231i 0.197377 + 0.666933i
\(78\) 3.83848 7.76475i 0.434622 0.879185i
\(79\) −1.27945 2.21607i −0.143949 0.249327i 0.785031 0.619456i \(-0.212647\pi\)
−0.928980 + 0.370129i \(0.879313\pi\)
\(80\) 0 0
\(81\) −6.33934 6.38849i −0.704371 0.709832i
\(82\) −8.48160 + 4.89686i −0.936636 + 0.540767i
\(83\) 1.83743 0.201684 0.100842 0.994902i \(-0.467846\pi\)
0.100842 + 0.994902i \(0.467846\pi\)
\(84\) 3.51973 + 2.93454i 0.384034 + 0.320185i
\(85\) 0 0
\(86\) 2.21077 1.27639i 0.238394 0.137637i
\(87\) −5.52701 + 3.68532i −0.592558 + 0.395107i
\(88\) −1.15340 + 1.99775i −0.122953 + 0.212961i
\(89\) −2.94387 5.09894i −0.312050 0.540486i 0.666756 0.745276i \(-0.267682\pi\)
−0.978806 + 0.204790i \(0.934349\pi\)
\(90\) 0 0
\(91\) −9.10996 + 9.59518i −0.954983 + 1.00585i
\(92\) 6.37256i 0.664385i
\(93\) −0.489035 7.57326i −0.0507105 0.785311i
\(94\) −1.43486 0.828416i −0.147994 0.0854446i
\(95\) 0 0
\(96\) 0.111613 + 1.72845i 0.0113914 + 0.176409i
\(97\) 4.61723i 0.468808i −0.972139 0.234404i \(-0.924686\pi\)
0.972139 0.234404i \(-0.0753139\pi\)
\(98\) −3.80960 5.87256i −0.384827 0.593218i
\(99\) −5.49845 + 4.20226i −0.552615 + 0.422343i
\(100\) 0 0
\(101\) −5.65702 + 9.79825i −0.562894 + 0.974962i 0.434348 + 0.900745i \(0.356979\pi\)
−0.997242 + 0.0742165i \(0.976354\pi\)
\(102\) −9.08209 + 6.05578i −0.899261 + 0.599612i
\(103\) −6.37747 + 3.68203i −0.628391 + 0.362802i −0.780129 0.625619i \(-0.784846\pi\)
0.151738 + 0.988421i \(0.451513\pi\)
\(104\) −5.00084 −0.490373
\(105\) 0 0
\(106\) −3.25278 −0.315938
\(107\) 7.29084 4.20937i 0.704832 0.406935i −0.104312 0.994545i \(-0.533264\pi\)
0.809145 + 0.587609i \(0.199931\pi\)
\(108\) −1.68449 + 4.91553i −0.162090 + 0.472998i
\(109\) 3.33156 5.77043i 0.319105 0.552707i −0.661196 0.750213i \(-0.729951\pi\)
0.980302 + 0.197506i \(0.0632843\pi\)
\(110\) 0 0
\(111\) 5.30334 10.7280i 0.503371 1.01826i
\(112\) 0.618268 2.57250i 0.0584209 0.243078i
\(113\) 4.45505i 0.419096i −0.977798 0.209548i \(-0.932801\pi\)
0.977798 0.209548i \(-0.0671992\pi\)
\(114\) −13.0622 + 0.843477i −1.22339 + 0.0789988i
\(115\) 0 0
\(116\) 3.32150 + 1.91767i 0.308393 + 0.178051i
\(117\) −13.8494 5.76797i −1.28038 0.533249i
\(118\) 9.93145i 0.914264i
\(119\) 15.9888 4.73184i 1.46569 0.433767i
\(120\) 0 0
\(121\) −2.83934 4.91787i −0.258121 0.447079i
\(122\) 2.99184 5.18202i 0.270868 0.469158i
\(123\) 9.41063 + 14.1135i 0.848528 + 1.27257i
\(124\) −3.79452 + 2.19077i −0.340758 + 0.196737i
\(125\) 0 0
\(126\) 4.67936 6.41121i 0.416871 0.571156i
\(127\) 1.83694 0.163002 0.0815011 0.996673i \(-0.474029\pi\)
0.0815011 + 0.996673i \(0.474029\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) −2.45293 3.67875i −0.215968 0.323896i
\(130\) 0 0
\(131\) −2.76942 4.79677i −0.241965 0.419096i 0.719309 0.694690i \(-0.244459\pi\)
−0.961274 + 0.275595i \(0.911125\pi\)
\(132\) 3.58174 + 1.77062i 0.311751 + 0.154113i
\(133\) 19.4408 + 4.67236i 1.68573 + 0.405145i
\(134\) 2.76716i 0.239047i
\(135\) 0 0
\(136\) 5.45795 + 3.15115i 0.468015 + 0.270209i
\(137\) −1.07477 0.620520i −0.0918240 0.0530146i 0.453385 0.891315i \(-0.350216\pi\)
−0.545209 + 0.838300i \(0.683550\pi\)
\(138\) 11.0147 0.711259i 0.937630 0.0605464i
\(139\) 12.5344i 1.06315i 0.847011 + 0.531576i \(0.178400\pi\)
−0.847011 + 0.531576i \(0.821600\pi\)
\(140\) 0 0
\(141\) −1.27173 + 2.57255i −0.107099 + 0.216647i
\(142\) 1.42955 + 2.47605i 0.119965 + 0.207786i
\(143\) −5.76797 + 9.99042i −0.482342 + 0.835441i
\(144\) 2.97509 0.385834i 0.247924 0.0321529i
\(145\) 0 0
\(146\) −3.68177 −0.304706
\(147\) −9.72523 + 7.24016i −0.802124 + 0.597158i
\(148\) −6.90930 −0.567941
\(149\) 13.5058 7.79757i 1.10644 0.638802i 0.168533 0.985696i \(-0.446097\pi\)
0.937904 + 0.346894i \(0.112764\pi\)
\(150\) 0 0
\(151\) −1.51958 + 2.63198i −0.123661 + 0.214188i −0.921209 0.389068i \(-0.872797\pi\)
0.797548 + 0.603256i \(0.206130\pi\)
\(152\) 3.77859 + 6.54470i 0.306484 + 0.530846i
\(153\) 11.4808 + 15.0220i 0.928168 + 1.21446i
\(154\) −4.42609 4.20226i −0.356665 0.338628i
\(155\) 0 0
\(156\) 0.558158 + 8.64371i 0.0446884 + 0.692050i
\(157\) −13.7050 7.91260i −1.09378 0.631494i −0.159200 0.987246i \(-0.550891\pi\)
−0.934580 + 0.355752i \(0.884225\pi\)
\(158\) 2.21607 + 1.27945i 0.176301 + 0.101787i
\(159\) 0.363052 + 5.62228i 0.0287919 + 0.445876i
\(160\) 0 0
\(161\) −16.3934 3.93995i −1.29198 0.310512i
\(162\) 8.68427 + 2.36293i 0.682301 + 0.185649i
\(163\) −4.30841 7.46238i −0.337461 0.584499i 0.646494 0.762919i \(-0.276235\pi\)
−0.983954 + 0.178420i \(0.942901\pi\)
\(164\) 4.89686 8.48160i 0.382380 0.662302i
\(165\) 0 0
\(166\) −1.59126 + 0.918714i −0.123506 + 0.0713060i
\(167\) 8.64948 0.669317 0.334658 0.942339i \(-0.391379\pi\)
0.334658 + 0.942339i \(0.391379\pi\)
\(168\) −4.51544 0.781523i −0.348374 0.0602958i
\(169\) −12.0084 −0.923724
\(170\) 0 0
\(171\) 2.91582 + 22.4832i 0.222978 + 1.71934i
\(172\) −1.27639 + 2.21077i −0.0973239 + 0.168570i
\(173\) −8.96573 15.5291i −0.681652 1.18066i −0.974477 0.224489i \(-0.927929\pi\)
0.292825 0.956166i \(-0.405405\pi\)
\(174\) 2.94387 5.95508i 0.223174 0.451454i
\(175\) 0 0
\(176\) 2.30680i 0.173882i
\(177\) −17.1660 + 1.10848i −1.29028 + 0.0833182i
\(178\) 5.09894 + 2.94387i 0.382181 + 0.220653i
\(179\) 10.4070 + 6.00848i 0.777855 + 0.449095i 0.835670 0.549233i \(-0.185080\pi\)
−0.0578145 + 0.998327i \(0.518413\pi\)
\(180\) 0 0
\(181\) 9.52612i 0.708071i 0.935232 + 0.354036i \(0.115191\pi\)
−0.935232 + 0.354036i \(0.884809\pi\)
\(182\) 3.09186 12.8647i 0.229184 0.953591i
\(183\) −9.29079 4.59287i −0.686795 0.339514i
\(184\) −3.18628 5.51880i −0.234896 0.406851i
\(185\) 0 0
\(186\) 4.21015 + 6.31412i 0.308703 + 0.462974i
\(187\) 12.5904 7.26907i 0.920701 0.531567i
\(188\) 1.65683 0.120837
\(189\) −11.6037 7.37248i −0.844047 0.536269i
\(190\) 0 0
\(191\) 4.30564 2.48586i 0.311545 0.179871i −0.336073 0.941836i \(-0.609099\pi\)
0.647618 + 0.761965i \(0.275765\pi\)
\(192\) −0.960885 1.44108i −0.0693459 0.104001i
\(193\) 3.01660 5.22491i 0.217140 0.376097i −0.736793 0.676119i \(-0.763661\pi\)
0.953932 + 0.300022i \(0.0969939\pi\)
\(194\) 2.30861 + 3.99864i 0.165749 + 0.287085i
\(195\) 0 0
\(196\) 6.23549 + 3.18099i 0.445392 + 0.227213i
\(197\) 14.2144i 1.01273i 0.862318 + 0.506366i \(0.169012\pi\)
−0.862318 + 0.506366i \(0.830988\pi\)
\(198\) 2.66066 6.38849i 0.189085 0.454010i
\(199\) 1.94932 + 1.12544i 0.138183 + 0.0797802i 0.567498 0.823375i \(-0.307911\pi\)
−0.429315 + 0.903155i \(0.641245\pi\)
\(200\) 0 0
\(201\) −4.78291 + 0.308851i −0.337360 + 0.0217847i
\(202\) 11.3140i 0.796053i
\(203\) −6.98677 + 7.35891i −0.490375 + 0.516494i
\(204\) 4.83743 9.78550i 0.338688 0.685122i
\(205\) 0 0
\(206\) 3.68203 6.37747i 0.256540 0.444339i
\(207\) −2.45875 18.9589i −0.170895 1.31774i
\(208\) 4.33086 2.50042i 0.300291 0.173373i
\(209\) 17.4329 1.20586
\(210\) 0 0
\(211\) 27.6034 1.90029 0.950147 0.311804i \(-0.100933\pi\)
0.950147 + 0.311804i \(0.100933\pi\)
\(212\) 2.81699 1.62639i 0.193472 0.111701i
\(213\) 4.12018 2.74726i 0.282310 0.188239i
\(214\) −4.20937 + 7.29084i −0.287747 + 0.498392i
\(215\) 0 0
\(216\) −0.998953 5.09922i −0.0679701 0.346958i
\(217\) −3.28971 11.1159i −0.223320 0.754594i
\(218\) 6.66311i 0.451283i
\(219\) 0.410933 + 6.36376i 0.0277683 + 0.430023i
\(220\) 0 0
\(221\) 27.2943 + 15.7584i 1.83602 + 1.06002i
\(222\) 0.771166 + 11.9424i 0.0517573 + 0.801520i
\(223\) 23.0777i 1.54539i −0.634775 0.772697i \(-0.718907\pi\)
0.634775 0.772697i \(-0.281093\pi\)
\(224\) 0.750813 + 2.53698i 0.0501658 + 0.169509i
\(225\) 0 0
\(226\) 2.22752 + 3.85818i 0.148173 + 0.256643i
\(227\) 10.0175 17.3509i 0.664887 1.15162i −0.314429 0.949281i \(-0.601813\pi\)
0.979316 0.202337i \(-0.0648538\pi\)
\(228\) 10.8905 7.26157i 0.721238 0.480909i
\(229\) 24.9111 14.3824i 1.64617 0.950417i 0.667595 0.744524i \(-0.267324\pi\)
0.978575 0.205892i \(-0.0660097\pi\)
\(230\) 0 0
\(231\) −6.76940 + 8.11931i −0.445394 + 0.534211i
\(232\) −3.83533 −0.251802
\(233\) 22.2668 12.8558i 1.45875 0.842209i 0.459799 0.888023i \(-0.347921\pi\)
0.998950 + 0.0458133i \(0.0145879\pi\)
\(234\) 14.8779 1.92950i 0.972601 0.126135i
\(235\) 0 0
\(236\) 4.96573 + 8.60089i 0.323241 + 0.559870i
\(237\) 1.96412 3.97317i 0.127583 0.258085i
\(238\) −11.4808 + 12.0923i −0.744190 + 0.783828i
\(239\) 10.7220i 0.693551i −0.937948 0.346776i \(-0.887277\pi\)
0.937948 0.346776i \(-0.112723\pi\)
\(240\) 0 0
\(241\) 1.02594 + 0.592325i 0.0660864 + 0.0381550i 0.532679 0.846317i \(-0.321185\pi\)
−0.466593 + 0.884472i \(0.654519\pi\)
\(242\) 4.91787 + 2.83934i 0.316133 + 0.182519i
\(243\) 3.11493 15.2741i 0.199823 0.979832i
\(244\) 5.98368i 0.383066i
\(245\) 0 0
\(246\) −15.2066 7.51732i −0.969536 0.479287i
\(247\) 18.8961 + 32.7290i 1.20233 + 2.08250i
\(248\) 2.19077 3.79452i 0.139114 0.240952i
\(249\) 1.76556 + 2.64787i 0.111888 + 0.167802i
\(250\) 0 0
\(251\) −14.3689 −0.906958 −0.453479 0.891267i \(-0.649817\pi\)
−0.453479 + 0.891267i \(0.649817\pi\)
\(252\) −0.846843 + 7.89195i −0.0533461 + 0.497146i
\(253\) −14.7002 −0.924195
\(254\) −1.59084 + 0.918471i −0.0998181 + 0.0576300i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −8.26802 14.3206i −0.515745 0.893297i −0.999833 0.0182774i \(-0.994182\pi\)
0.484088 0.875019i \(-0.339152\pi\)
\(258\) 3.96368 + 1.95943i 0.246768 + 0.121989i
\(259\) 4.27180 17.7742i 0.265437 1.10443i
\(260\) 0 0
\(261\) −10.6216 4.42368i −0.657463 0.273819i
\(262\) 4.79677 + 2.76942i 0.296345 + 0.171095i
\(263\) 26.7948 + 15.4700i 1.65224 + 0.953920i 0.976149 + 0.217100i \(0.0696599\pi\)
0.676089 + 0.736820i \(0.263673\pi\)
\(264\) −3.98719 + 0.257468i −0.245395 + 0.0158461i
\(265\) 0 0
\(266\) −19.1724 + 5.67402i −1.17554 + 0.347897i
\(267\) 4.51923 9.14184i 0.276573 0.559471i
\(268\) 1.38358 + 2.39643i 0.0845157 + 0.146386i
\(269\) −2.05211 + 3.55436i −0.125119 + 0.216713i −0.921780 0.387714i \(-0.873265\pi\)
0.796660 + 0.604427i \(0.206598\pi\)
\(270\) 0 0
\(271\) −7.86071 + 4.53838i −0.477504 + 0.275687i −0.719376 0.694621i \(-0.755572\pi\)
0.241872 + 0.970308i \(0.422239\pi\)
\(272\) −6.30230 −0.382133
\(273\) −22.5810 3.90827i −1.36666 0.236539i
\(274\) 1.24104 0.0749740
\(275\) 0 0
\(276\) −9.18334 + 6.12330i −0.552772 + 0.368579i
\(277\) 0.108238 0.187473i 0.00650338 0.0112642i −0.862755 0.505622i \(-0.831263\pi\)
0.869259 + 0.494357i \(0.164597\pi\)
\(278\) −6.26718 10.8551i −0.375881 0.651044i
\(279\) 10.4437 7.98177i 0.625250 0.477856i
\(280\) 0 0
\(281\) 18.8498i 1.12448i −0.826973 0.562241i \(-0.809939\pi\)
0.826973 0.562241i \(-0.190061\pi\)
\(282\) −0.184924 2.86375i −0.0110120 0.170534i
\(283\) 1.73059 + 0.999159i 0.102873 + 0.0593939i 0.550554 0.834800i \(-0.314417\pi\)
−0.447681 + 0.894193i \(0.647750\pi\)
\(284\) −2.47605 1.42955i −0.146927 0.0848281i
\(285\) 0 0
\(286\) 11.5359i 0.682135i
\(287\) 18.7913 + 17.8411i 1.10922 + 1.05312i
\(288\) −2.38358 + 1.82168i −0.140454 + 0.107344i
\(289\) −11.3595 19.6752i −0.668204 1.15736i
\(290\) 0 0
\(291\) 6.65378 4.43662i 0.390051 0.260080i
\(292\) 3.18851 1.84089i 0.186593 0.107730i
\(293\) −9.28117 −0.542212 −0.271106 0.962550i \(-0.587389\pi\)
−0.271106 + 0.962550i \(0.587389\pi\)
\(294\) 4.80222 11.1328i 0.280071 0.649277i
\(295\) 0 0
\(296\) 5.98363 3.45465i 0.347791 0.200797i
\(297\) −11.3392 3.88579i −0.657965 0.225476i
\(298\) −7.79757 + 13.5058i −0.451701 + 0.782370i
\(299\) −15.9341 27.5986i −0.921492 1.59607i
\(300\) 0 0
\(301\) −4.89806 4.65037i −0.282319 0.268043i
\(302\) 3.03915i 0.174883i
\(303\) −19.5558 + 1.26279i −1.12345 + 0.0725454i
\(304\) −6.54470 3.77859i −0.375365 0.216717i
\(305\) 0 0
\(306\) −17.4537 7.26907i −0.997761 0.415545i
\(307\) 26.9282i 1.53687i 0.639927 + 0.768436i \(0.278965\pi\)
−0.639927 + 0.768436i \(0.721035\pi\)
\(308\) 5.93424 + 1.42622i 0.338135 + 0.0812665i
\(309\) −11.4341 5.65241i −0.650464 0.321554i
\(310\) 0 0
\(311\) 1.41065 2.44331i 0.0799905 0.138548i −0.823255 0.567672i \(-0.807844\pi\)
0.903246 + 0.429124i \(0.141178\pi\)
\(312\) −4.80523 7.20659i −0.272043 0.407993i
\(313\) 9.90967 5.72135i 0.560128 0.323390i −0.193069 0.981185i \(-0.561844\pi\)
0.753197 + 0.657795i \(0.228511\pi\)
\(314\) 15.8252 0.893068
\(315\) 0 0
\(316\) −2.55889 −0.143949
\(317\) 8.06254 4.65491i 0.452837 0.261446i −0.256190 0.966626i \(-0.582467\pi\)
0.709028 + 0.705181i \(0.249134\pi\)
\(318\) −3.12555 4.68751i −0.175272 0.262862i
\(319\) −4.42368 + 7.66203i −0.247678 + 0.428991i
\(320\) 0 0
\(321\) 13.0717 + 6.46194i 0.729590 + 0.360670i
\(322\) 16.1671 4.78460i 0.900956 0.266635i
\(323\) 47.6275i 2.65007i
\(324\) −8.70226 + 2.29578i −0.483459 + 0.127543i
\(325\) 0 0
\(326\) 7.46238 + 4.30841i 0.413303 + 0.238621i
\(327\) 11.5169 0.743688i 0.636884 0.0411261i
\(328\) 9.79371i 0.540767i
\(329\) −1.02437 + 4.26220i −0.0564752 + 0.234983i
\(330\) 0 0
\(331\) −9.14801 15.8448i −0.502820 0.870910i −0.999995 0.00325921i \(-0.998963\pi\)
0.497175 0.867650i \(-0.334371\pi\)
\(332\) 0.918714 1.59126i 0.0504210 0.0873317i
\(333\) 20.5558 2.66584i 1.12645 0.146087i
\(334\) −7.49067 + 4.32474i −0.409871 + 0.236639i
\(335\) 0 0
\(336\) 4.30125 1.58090i 0.234652 0.0862453i
\(337\) −7.84516 −0.427353 −0.213676 0.976904i \(-0.568544\pi\)
−0.213676 + 0.976904i \(0.568544\pi\)
\(338\) 10.3996 6.00420i 0.565663 0.326586i
\(339\) 6.42006 4.28079i 0.348690 0.232500i
\(340\) 0 0
\(341\) −5.05366 8.75320i −0.273671 0.474012i
\(342\) −13.7668 18.0131i −0.744423 0.974039i
\(343\) −12.0383 + 14.0741i −0.650006 + 0.759929i
\(344\) 2.55278i 0.137637i
\(345\) 0 0
\(346\) 15.5291 + 8.96573i 0.834849 + 0.482000i
\(347\) 0.201172 + 0.116147i 0.0107995 + 0.00623509i 0.505390 0.862891i \(-0.331349\pi\)
−0.494591 + 0.869126i \(0.664682\pi\)
\(348\) 0.428072 + 6.62919i 0.0229471 + 0.355362i
\(349\) 11.5685i 0.619249i −0.950859 0.309624i \(-0.899797\pi\)
0.950859 0.309624i \(-0.100203\pi\)
\(350\) 0 0
\(351\) −4.99561 25.5004i −0.266646 1.36111i
\(352\) 1.15340 + 1.99775i 0.0614764 + 0.106480i
\(353\) −17.3537 + 30.0575i −0.923646 + 1.59980i −0.129921 + 0.991524i \(0.541472\pi\)
−0.793725 + 0.608277i \(0.791861\pi\)
\(354\) 14.3120 9.54298i 0.760673 0.507204i
\(355\) 0 0
\(356\) −5.88774 −0.312050
\(357\) 22.1824 + 18.4943i 1.17401 + 0.978824i
\(358\) −12.0170 −0.635116
\(359\) 15.1834 8.76612i 0.801347 0.462658i −0.0425949 0.999092i \(-0.513562\pi\)
0.843942 + 0.536434i \(0.180229\pi\)
\(360\) 0 0
\(361\) 19.0554 33.0050i 1.00292 1.73710i
\(362\) −4.76306 8.24987i −0.250341 0.433603i
\(363\) 4.35875 8.81721i 0.228775 0.462783i
\(364\) 3.75470 + 12.6870i 0.196799 + 0.664982i
\(365\) 0 0
\(366\) 10.3425 0.667855i 0.540611 0.0349093i
\(367\) 8.69505 + 5.02009i 0.453878 + 0.262047i 0.709467 0.704739i \(-0.248936\pi\)
−0.255589 + 0.966786i \(0.582269\pi\)
\(368\) 5.51880 + 3.18628i 0.287687 + 0.166096i
\(369\) −11.2961 + 27.1229i −0.588050 + 1.41196i
\(370\) 0 0
\(371\) 2.44223 + 8.25225i 0.126794 + 0.428436i
\(372\) −6.80316 3.36311i −0.352727 0.174369i
\(373\) −0.00241034 0.00417483i −0.000124803 0.000216164i 0.865963 0.500108i \(-0.166706\pi\)
−0.866088 + 0.499892i \(0.833373\pi\)
\(374\) −7.26907 + 12.5904i −0.375875 + 0.651034i
\(375\) 0 0
\(376\) −1.43486 + 0.828416i −0.0739972 + 0.0427223i
\(377\) −19.1799 −0.987815
\(378\) 13.7354 + 0.582885i 0.706471 + 0.0299803i
\(379\) 18.6572 0.958356 0.479178 0.877718i \(-0.340935\pi\)
0.479178 + 0.877718i \(0.340935\pi\)
\(380\) 0 0
\(381\) 1.76509 + 2.64717i 0.0904283 + 0.135619i
\(382\) −2.48586 + 4.30564i −0.127188 + 0.220296i
\(383\) 9.42316 + 16.3214i 0.481501 + 0.833984i 0.999775 0.0212308i \(-0.00675849\pi\)
−0.518274 + 0.855215i \(0.673425\pi\)
\(384\) 1.55269 + 0.767566i 0.0792353 + 0.0391697i
\(385\) 0 0
\(386\) 6.03321i 0.307082i
\(387\) 2.94438 7.06972i 0.149671 0.359374i
\(388\) −3.99864 2.30861i −0.203000 0.117202i
\(389\) −9.40510 5.43003i −0.476857 0.275314i 0.242249 0.970214i \(-0.422115\pi\)
−0.719106 + 0.694901i \(0.755448\pi\)
\(390\) 0 0
\(391\) 40.1618i 2.03107i
\(392\) −6.99059 + 0.362928i −0.353078 + 0.0183306i
\(393\) 4.25142 8.60008i 0.214456 0.433817i
\(394\) −7.10719 12.3100i −0.358055 0.620170i
\(395\) 0 0
\(396\) 0.890043 + 6.86293i 0.0447263 + 0.344875i
\(397\) 23.4180 13.5204i 1.17532 0.678570i 0.220391 0.975412i \(-0.429267\pi\)
0.954927 + 0.296841i \(0.0959332\pi\)
\(398\) −2.25088 −0.112826
\(399\) 11.9472 + 32.5053i 0.598106 + 1.62730i
\(400\) 0 0
\(401\) −21.2396 + 12.2627i −1.06066 + 0.612371i −0.925614 0.378469i \(-0.876451\pi\)
−0.135043 + 0.990840i \(0.543117\pi\)
\(402\) 3.98769 2.65893i 0.198888 0.132615i
\(403\) 10.9557 18.9758i 0.545741 0.945251i
\(404\) 5.65702 + 9.79825i 0.281447 + 0.487481i
\(405\) 0 0
\(406\) 2.37127 9.86639i 0.117684 0.489661i
\(407\) 15.9384i 0.790036i
\(408\) 0.703417 + 10.8932i 0.0348243 + 0.539294i
\(409\) 4.67954 + 2.70173i 0.231388 + 0.133592i 0.611212 0.791467i \(-0.290682\pi\)
−0.379824 + 0.925059i \(0.624015\pi\)
\(410\) 0 0
\(411\) −0.138516 2.14508i −0.00683249 0.105809i
\(412\) 7.36407i 0.362802i
\(413\) −25.1959 + 7.45666i −1.23981 + 0.366918i
\(414\) 11.6088 + 15.1895i 0.570541 + 0.746524i
\(415\) 0 0
\(416\) −2.50042 + 4.33086i −0.122593 + 0.212338i
\(417\) −18.0630 + 12.0441i −0.884548 + 0.589801i
\(418\) −15.0973 + 8.71645i −0.738434 + 0.426335i
\(419\) −28.2930 −1.38220 −0.691101 0.722758i \(-0.742874\pi\)
−0.691101 + 0.722758i \(0.742874\pi\)
\(420\) 0 0
\(421\) −25.1687 −1.22665 −0.613323 0.789832i \(-0.710168\pi\)
−0.613323 + 0.789832i \(0.710168\pi\)
\(422\) −23.9052 + 13.8017i −1.16369 + 0.671855i
\(423\) −4.92922 + 0.639263i −0.239667 + 0.0310820i
\(424\) −1.62639 + 2.81699i −0.0789846 + 0.136805i
\(425\) 0 0
\(426\) −2.19455 + 4.43929i −0.106326 + 0.215084i
\(427\) −15.3930 3.69952i −0.744919 0.179032i
\(428\) 8.41874i 0.406935i
\(429\) −19.9393 + 1.28756i −0.962679 + 0.0621639i
\(430\) 0 0
\(431\) −9.71524 5.60910i −0.467967 0.270181i 0.247421 0.968908i \(-0.420417\pi\)
−0.715388 + 0.698727i \(0.753750\pi\)
\(432\) 3.41473 + 3.91658i 0.164291 + 0.188437i
\(433\) 0.639592i 0.0307368i −0.999882 0.0153684i \(-0.995108\pi\)
0.999882 0.0153684i \(-0.00489211\pi\)
\(434\) 8.40691 + 7.98177i 0.403544 + 0.383137i
\(435\) 0 0
\(436\) −3.33156 5.77043i −0.159553 0.276353i
\(437\) −24.0793 + 41.7065i −1.15187 + 1.99509i
\(438\) −3.53776 5.30571i −0.169041 0.253517i
\(439\) −11.3999 + 6.58174i −0.544088 + 0.314129i −0.746734 0.665123i \(-0.768379\pi\)
0.202646 + 0.979252i \(0.435046\pi\)
\(440\) 0 0
\(441\) −19.7784 7.05784i −0.941831 0.336088i
\(442\) −31.5168 −1.49910
\(443\) 22.3821 12.9223i 1.06341 0.613957i 0.137033 0.990566i \(-0.456243\pi\)
0.926372 + 0.376609i \(0.122910\pi\)
\(444\) −6.63904 9.95683i −0.315075 0.472530i
\(445\) 0 0
\(446\) 11.5388 + 19.9858i 0.546380 + 0.946357i
\(447\) 24.2144 + 11.9703i 1.14530 + 0.566176i
\(448\) −1.91871 1.82168i −0.0906507 0.0860665i
\(449\) 28.3586i 1.33833i 0.743116 + 0.669163i \(0.233347\pi\)
−0.743116 + 0.669163i \(0.766653\pi\)
\(450\) 0 0
\(451\) 19.5654 + 11.2961i 0.921297 + 0.531911i
\(452\) −3.85818 2.22752i −0.181474 0.104774i
\(453\) −5.25302 + 0.339208i −0.246809 + 0.0159374i
\(454\) 20.0351i 0.940293i
\(455\) 0 0
\(456\) −5.80063 + 11.7339i −0.271639 + 0.549492i
\(457\) −14.5953 25.2797i −0.682737 1.18254i −0.974142 0.225936i \(-0.927456\pi\)
0.291405 0.956600i \(-0.405877\pi\)
\(458\) −14.3824 + 24.9111i −0.672046 + 1.16402i
\(459\) −10.6162 + 30.9792i −0.495521 + 1.44598i
\(460\) 0 0
\(461\) 31.0968 1.44832 0.724162 0.689630i \(-0.242227\pi\)
0.724162 + 0.689630i \(0.242227\pi\)
\(462\) 1.80282 10.4162i 0.0838747 0.484607i
\(463\) 33.4915 1.55648 0.778240 0.627967i \(-0.216113\pi\)
0.778240 + 0.627967i \(0.216113\pi\)
\(464\) 3.32150 1.91767i 0.154197 0.0890255i
\(465\) 0 0
\(466\) −12.8558 + 22.2668i −0.595532 + 1.03149i
\(467\) 7.41254 + 12.8389i 0.343012 + 0.594113i 0.984990 0.172609i \(-0.0552197\pi\)
−0.641979 + 0.766722i \(0.721886\pi\)
\(468\) −11.9199 + 9.10996i −0.550998 + 0.421108i
\(469\) −7.02025 + 2.07762i −0.324165 + 0.0959357i
\(470\) 0 0
\(471\) −1.76629 27.3531i −0.0813865 1.26036i
\(472\) −8.60089 4.96573i −0.395888 0.228566i
\(473\) −5.09982 2.94438i −0.234490 0.135383i
\(474\) 0.285605 + 4.42292i 0.0131183 + 0.203152i
\(475\) 0 0
\(476\) 3.89651 16.2126i 0.178596 0.743105i
\(477\) −7.75328 + 5.92555i −0.354998 + 0.271312i
\(478\) 5.36102 + 9.28556i 0.245207 + 0.424712i
\(479\) −11.5223 + 19.9573i −0.526469 + 0.911871i 0.473055 + 0.881033i \(0.343151\pi\)
−0.999524 + 0.0308386i \(0.990182\pi\)
\(480\) 0 0
\(481\) 29.9232 17.2762i 1.36438 0.787725i
\(482\) −1.18465 −0.0539593
\(483\) −10.0744 27.4100i −0.458401 1.24720i
\(484\) −5.67867 −0.258121
\(485\) 0 0
\(486\) 4.93943 + 14.7852i 0.224057 + 0.670670i
\(487\) −5.31384 + 9.20383i −0.240793 + 0.417066i −0.960940 0.276756i \(-0.910741\pi\)
0.720147 + 0.693821i \(0.244074\pi\)
\(488\) −2.99184 5.18202i −0.135434 0.234579i
\(489\) 6.61397 13.3792i 0.299094 0.605030i
\(490\) 0 0
\(491\) 22.4687i 1.01400i −0.861947 0.506998i \(-0.830755\pi\)
0.861947 0.506998i \(-0.169245\pi\)
\(492\) 16.9279 1.09310i 0.763171 0.0492809i
\(493\) 20.9331 + 12.0857i 0.942778 + 0.544313i
\(494\) −32.7290 18.8961i −1.47255 0.850176i
\(495\) 0 0
\(496\) 4.38153i 0.196737i
\(497\) 5.20837 5.48579i 0.233627 0.246071i
\(498\) −2.85295 1.41035i −0.127844 0.0631992i
\(499\) 19.8794 + 34.4322i 0.889925 + 1.54140i 0.839963 + 0.542644i \(0.182577\pi\)
0.0499622 + 0.998751i \(0.484090\pi\)
\(500\) 0 0
\(501\) 8.31116 + 12.4646i 0.371315 + 0.556875i
\(502\) 12.4438 7.18445i 0.555396 0.320658i
\(503\) −18.6717 −0.832530 −0.416265 0.909243i \(-0.636661\pi\)
−0.416265 + 0.909243i \(0.636661\pi\)
\(504\) −3.21259 7.25805i −0.143100 0.323299i
\(505\) 0 0
\(506\) 12.7308 7.35011i 0.565952 0.326752i
\(507\) −11.5387 17.3050i −0.512452 0.768543i
\(508\) 0.918471 1.59084i 0.0407506 0.0705820i
\(509\) 2.01643 + 3.49256i 0.0893768 + 0.154805i 0.907248 0.420596i \(-0.138179\pi\)
−0.817871 + 0.575402i \(0.804846\pi\)
\(510\) 0 0
\(511\) 2.76432 + 9.34059i 0.122286 + 0.413203i
\(512\) 1.00000i 0.0441942i
\(513\) −29.5983 + 25.8057i −1.30680 + 1.13935i
\(514\) 14.3206 + 8.26802i 0.631656 + 0.364687i
\(515\) 0 0
\(516\) −4.41236 + 0.284923i −0.194243 + 0.0125430i
\(517\) 3.82198i 0.168091i
\(518\) 5.18759 + 17.5288i 0.227930 + 0.770170i
\(519\) 13.7636 27.8420i 0.604154 1.22213i
\(520\) 0 0
\(521\) −5.27733 + 9.14060i −0.231204 + 0.400457i −0.958163 0.286224i \(-0.907600\pi\)
0.726959 + 0.686681i \(0.240933\pi\)
\(522\) 11.4104 1.47980i 0.499422 0.0647692i
\(523\) 17.7815 10.2661i 0.777529 0.448907i −0.0580246 0.998315i \(-0.518480\pi\)
0.835554 + 0.549408i \(0.185147\pi\)
\(524\) −5.53883 −0.241965
\(525\) 0 0
\(526\) −30.9400 −1.34905
\(527\) −23.9142 + 13.8069i −1.04172 + 0.601436i
\(528\) 3.32428 2.21657i 0.144671 0.0964638i
\(529\) 8.80476 15.2503i 0.382816 0.663056i
\(530\) 0 0
\(531\) −18.0920 23.6724i −0.785125 1.02730i
\(532\) 13.7668 14.5001i 0.596866 0.628657i
\(533\) 48.9768i 2.12142i
\(534\) 0.657147 + 10.1767i 0.0284375 + 0.440388i
\(535\) 0 0
\(536\) −2.39643 1.38358i −0.103510 0.0597616i
\(537\) 1.34125 + 20.7707i 0.0578790 + 0.896323i
\(538\) 4.10422i 0.176946i
\(539\) −7.33790 + 14.3840i −0.316066 + 0.619564i
\(540\) 0 0
\(541\) 4.59255 + 7.95454i 0.197449 + 0.341992i 0.947701 0.319160i \(-0.103401\pi\)
−0.750251 + 0.661153i \(0.770068\pi\)
\(542\) 4.53838 7.86071i 0.194940 0.337646i
\(543\) −13.7279 + 9.15351i −0.589119 + 0.392815i
\(544\) 5.45795 3.15115i 0.234008 0.135104i
\(545\) 0 0
\(546\) 21.5099 7.90584i 0.920537 0.338339i
\(547\) 5.21319 0.222900 0.111450 0.993770i \(-0.464450\pi\)
0.111450 + 0.993770i \(0.464450\pi\)
\(548\) −1.07477 + 0.620520i −0.0459120 + 0.0265073i
\(549\) −2.30871 17.8019i −0.0985332 0.759769i
\(550\) 0 0
\(551\) 14.4921 + 25.1011i 0.617386 + 1.06934i
\(552\) 4.89136 9.89460i 0.208190 0.421142i
\(553\) 1.58208 6.58275i 0.0672770 0.279927i
\(554\) 0.216476i 0.00919717i
\(555\) 0 0
\(556\) 10.8551 + 6.26718i 0.460358 + 0.265788i
\(557\) −22.3550 12.9066i −0.947210 0.546872i −0.0549970 0.998487i \(-0.517515\pi\)
−0.892213 + 0.451614i \(0.850848\pi\)
\(558\) −5.05366 + 12.1343i −0.213938 + 0.513685i
\(559\) 12.7661i 0.539947i
\(560\) 0 0
\(561\) 22.5732 + 11.1590i 0.953042 + 0.471133i
\(562\) 9.42488 + 16.3244i 0.397565 + 0.688602i
\(563\) −18.7468 + 32.4704i −0.790084 + 1.36847i 0.135831 + 0.990732i \(0.456630\pi\)
−0.925914 + 0.377733i \(0.876704\pi\)
\(564\) 1.59203 + 2.38762i 0.0670364 + 0.100537i
\(565\) 0 0
\(566\) −1.99832 −0.0839956
\(567\) −0.525554 23.8060i −0.0220712 0.999756i
\(568\) 2.85910 0.119965
\(569\) −35.0352 + 20.2276i −1.46875 + 0.847985i −0.999387 0.0350177i \(-0.988851\pi\)
−0.469367 + 0.883003i \(0.655518\pi\)
\(570\) 0 0
\(571\) 14.5551 25.2101i 0.609111 1.05501i −0.382276 0.924048i \(-0.624860\pi\)
0.991387 0.130963i \(-0.0418070\pi\)
\(572\) 5.76797 + 9.99042i 0.241171 + 0.417720i
\(573\) 7.71954 + 3.81613i 0.322488 + 0.159421i
\(574\) −25.1943 6.05514i −1.05159 0.252737i
\(575\) 0 0
\(576\) 1.15340 2.76942i 0.0480583 0.115392i
\(577\) 13.1423 + 7.58769i 0.547120 + 0.315880i 0.747959 0.663744i \(-0.231034\pi\)
−0.200840 + 0.979624i \(0.564367\pi\)
\(578\) 19.6752 + 11.3595i 0.818380 + 0.472492i
\(579\) 10.4281 0.673383i 0.433377 0.0279848i
\(580\) 0 0
\(581\) 3.52550 + 3.34722i 0.146262 + 0.138866i
\(582\) −3.54403 + 7.16912i −0.146905 + 0.297169i
\(583\) 3.75176 + 6.49824i 0.155382 + 0.269130i
\(584\) −1.84089 + 3.18851i −0.0761764 + 0.131941i
\(585\) 0 0
\(586\) 8.03773 4.64059i 0.332036 0.191701i
\(587\) 3.22807 0.133237 0.0666183 0.997779i \(-0.478779\pi\)
0.0666183 + 0.997779i \(0.478779\pi\)
\(588\) 1.40754 + 12.0424i 0.0580461 + 0.496619i
\(589\) −33.1120 −1.36436
\(590\) 0 0
\(591\) −20.4840 + 13.6584i −0.842599 + 0.561831i
\(592\) −3.45465 + 5.98363i −0.141985 + 0.245926i
\(593\) −21.8653 37.8717i −0.897899 1.55521i −0.830175 0.557502i \(-0.811760\pi\)
−0.0677234 0.997704i \(-0.521574\pi\)
\(594\) 11.7629 2.30439i 0.482637 0.0945501i
\(595\) 0 0
\(596\) 15.5951i 0.638802i
\(597\) 0.251227 + 3.89053i 0.0102820 + 0.159229i
\(598\) 27.5986 + 15.9341i 1.12859 + 0.651593i
\(599\) 6.96777 + 4.02284i 0.284695 + 0.164369i 0.635547 0.772062i \(-0.280775\pi\)
−0.350852 + 0.936431i \(0.614108\pi\)
\(600\) 0 0
\(601\) 8.38546i 0.342050i −0.985267 0.171025i \(-0.945292\pi\)
0.985267 0.171025i \(-0.0547079\pi\)
\(602\) 6.56703 + 1.57830i 0.267652 + 0.0643269i
\(603\) −5.04090 6.59576i −0.205281 0.268600i
\(604\) 1.51958 + 2.63198i 0.0618306 + 0.107094i
\(605\) 0 0
\(606\) 16.3044 10.8715i 0.662321 0.441624i
\(607\) −14.6650 + 8.46682i −0.595232 + 0.343658i −0.767164 0.641451i \(-0.778333\pi\)
0.171931 + 0.985109i \(0.444999\pi\)
\(608\) 7.55717 0.306484
\(609\) −17.3182 2.99740i −0.701770 0.121461i
\(610\) 0 0
\(611\) −7.17550 + 4.14278i −0.290290 + 0.167599i
\(612\) 18.7499 2.43164i 0.757919 0.0982933i
\(613\) 16.9432 29.3464i 0.684328 1.18529i −0.289319 0.957233i \(-0.593429\pi\)
0.973647 0.228058i \(-0.0732377\pi\)
\(614\) −13.4641 23.3205i −0.543366 0.941138i
\(615\) 0 0
\(616\) −5.85231 + 1.73198i −0.235796 + 0.0697833i
\(617\) 37.5359i 1.51114i −0.655068 0.755570i \(-0.727360\pi\)
0.655068 0.755570i \(-0.272640\pi\)
\(618\) 12.7284 0.821924i 0.512013 0.0330626i
\(619\) 14.6497 + 8.45802i 0.588822 + 0.339957i 0.764632 0.644468i \(-0.222921\pi\)
−0.175809 + 0.984424i \(0.556254\pi\)
\(620\) 0 0
\(621\) 24.9587 21.7606i 1.00156 0.873222i
\(622\) 2.82130i 0.113124i
\(623\) 3.64021 15.1462i 0.145842 0.606820i
\(624\) 7.76475 + 3.83848i 0.310839 + 0.153662i
\(625\) 0 0
\(626\) −5.72135 + 9.90967i −0.228671 + 0.396070i
\(627\) 16.7510 + 25.1221i 0.668971 + 1.00328i
\(628\) −13.7050 + 7.91260i −0.546890 + 0.315747i
\(629\) −43.5445 −1.73623
\(630\) 0 0
\(631\) −29.1879 −1.16195 −0.580977 0.813920i \(-0.697329\pi\)
−0.580977 + 0.813920i \(0.697329\pi\)
\(632\) 2.21607 1.27945i 0.0881504 0.0508937i
\(633\) 26.5236 + 39.7785i 1.05422 + 1.58105i
\(634\) −4.65491 + 8.06254i −0.184870 + 0.320204i
\(635\) 0 0
\(636\) 5.05056 + 2.49673i 0.200268 + 0.0990016i
\(637\) −34.9588 + 1.81495i −1.38512 + 0.0719108i
\(638\) 8.84735i 0.350270i
\(639\) 7.91803 + 3.29768i 0.313232 + 0.130454i
\(640\) 0 0
\(641\) −3.95871 2.28556i −0.156360 0.0902743i 0.419779 0.907627i \(-0.362108\pi\)
−0.576138 + 0.817352i \(0.695441\pi\)
\(642\) −14.5514 + 0.939639i −0.574297 + 0.0370846i
\(643\) 24.0758i 0.949457i 0.880132 + 0.474728i \(0.157454\pi\)
−0.880132 + 0.474728i \(0.842546\pi\)
\(644\) −11.6088 + 12.2271i −0.457451 + 0.481816i
\(645\) 0 0
\(646\) 23.8138 + 41.2467i 0.936940 + 1.62283i
\(647\) 8.71205 15.0897i 0.342506 0.593238i −0.642391 0.766377i \(-0.722058\pi\)
0.984897 + 0.173139i \(0.0553909\pi\)
\(648\) 6.38849 6.33934i 0.250964 0.249033i
\(649\) −19.8405 + 11.4549i −0.778809 + 0.449646i
\(650\) 0 0
\(651\) 12.8578 15.4218i 0.503936 0.604428i
\(652\) −8.61682 −0.337461
\(653\) 32.8146 18.9455i 1.28414 0.741396i 0.306534 0.951860i \(-0.400831\pi\)
0.977602 + 0.210464i \(0.0674973\pi\)
\(654\) −9.60205 + 6.40249i −0.375470 + 0.250357i
\(655\) 0 0
\(656\) −4.89686 8.48160i −0.191190 0.331151i
\(657\) −8.77580 + 6.70703i −0.342377 + 0.261666i
\(658\) −1.24397 4.20336i −0.0484950 0.163864i
\(659\) 24.7262i 0.963197i 0.876392 + 0.481599i \(0.159944\pi\)
−0.876392 + 0.481599i \(0.840056\pi\)
\(660\) 0 0
\(661\) −37.8348 21.8439i −1.47160 0.849631i −0.472113 0.881538i \(-0.656509\pi\)
−0.999491 + 0.0319070i \(0.989842\pi\)
\(662\) 15.8448 + 9.14801i 0.615826 + 0.355547i
\(663\) 3.51767 + 54.4752i 0.136615 + 2.11564i
\(664\) 1.83743i 0.0713060i
\(665\) 0 0
\(666\) −16.4689 + 12.5866i −0.638156 + 0.487720i
\(667\) −12.2205 21.1664i −0.473178 0.819568i
\(668\) 4.32474 7.49067i 0.167329 0.289823i
\(669\) 33.2567 22.1750i 1.28578 0.857334i
\(670\) 0 0
\(671\) −13.8031 −0.532865
\(672\) −2.93454 + 3.51973i −0.113202 + 0.135776i
\(673\) −34.1588 −1.31673 −0.658363 0.752701i \(-0.728751\pi\)
−0.658363 + 0.752701i \(0.728751\pi\)
\(674\) 6.79410 3.92258i 0.261699 0.151092i
\(675\) 0 0
\(676\) −6.00420 + 10.3996i −0.230931 + 0.399984i
\(677\) 6.56630 + 11.3732i 0.252364 + 0.437106i 0.964176 0.265263i \(-0.0854588\pi\)
−0.711813 + 0.702369i \(0.752125\pi\)
\(678\) −3.41954 + 6.91730i −0.131327 + 0.265657i
\(679\) 8.41113 8.85914i 0.322790 0.339983i
\(680\) 0 0
\(681\) 34.6296 2.23617i 1.32701 0.0856902i
\(682\) 8.75320 + 5.05366i 0.335177 + 0.193515i
\(683\) −39.7352 22.9411i −1.52043 0.877818i −0.999710 0.0240882i \(-0.992332\pi\)
−0.520716 0.853730i \(-0.674335\pi\)
\(684\) 20.9290 + 8.71645i 0.800239 + 0.333282i
\(685\) 0 0
\(686\) 3.38843 18.2077i 0.129371 0.695171i
\(687\) 44.6628 + 22.0789i 1.70399 + 0.842363i
\(688\) 1.27639 + 2.21077i 0.0486620 + 0.0842850i
\(689\) −8.13333 + 14.0873i −0.309855 + 0.536685i
\(690\) 0 0
\(691\) −15.2114 + 8.78233i −0.578671 + 0.334096i −0.760605 0.649215i \(-0.775098\pi\)
0.181934 + 0.983311i \(0.441764\pi\)
\(692\) −17.9315 −0.681652
\(693\) −18.2052 1.95350i −0.691557 0.0742073i
\(694\) −0.232294 −0.00881775
\(695\) 0 0
\(696\) −3.68532 5.52701i −0.139692 0.209501i
\(697\) 30.8614 53.4536i 1.16896 2.02470i
\(698\) 5.78426 + 10.0186i 0.218938 + 0.379211i
\(699\) 39.9220 + 19.7353i 1.50999 + 0.746458i
\(700\) 0 0
\(701\) 39.2501i 1.48246i −0.671253 0.741228i \(-0.734244\pi\)
0.671253 0.741228i \(-0.265756\pi\)
\(702\) 17.0765 + 19.5862i 0.644512 + 0.739234i
\(703\) −45.2193 26.1074i −1.70548 0.984659i
\(704\) −1.99775 1.15340i −0.0752930 0.0434704i
\(705\) 0 0
\(706\) 34.7075i 1.30623i
\(707\) −28.7035 + 8.49472i −1.07951 + 0.319477i
\(708\) −7.62305 + 15.4205i −0.286492 + 0.579536i
\(709\) 23.8340 + 41.2817i 0.895105 + 1.55037i 0.833674 + 0.552257i \(0.186233\pi\)
0.0614314 + 0.998111i \(0.480433\pi\)
\(710\) 0 0
\(711\) 7.61293 0.987309i 0.285507 0.0370270i
\(712\) 5.09894 2.94387i 0.191091 0.110326i
\(713\) 27.9216 1.04567
\(714\) −28.4577 4.92539i −1.06500 0.184328i
\(715\) 0 0
\(716\) 10.4070 6.00848i 0.388928 0.224547i
\(717\) 15.4513 10.3026i 0.577039 0.384759i
\(718\) −8.76612 + 15.1834i −0.327149 + 0.566638i
\(719\) −16.7107 28.9438i −0.623205 1.07942i −0.988885 0.148682i \(-0.952497\pi\)
0.365680 0.930740i \(-0.380836\pi\)
\(720\) 0 0
\(721\) −18.9441 4.55297i −0.705513 0.169561i
\(722\) 38.1109i 1.41834i
\(723\) 0.132222 + 2.04761i 0.00491739 + 0.0761514i
\(724\) 8.24987 + 4.76306i 0.306604 + 0.177018i
\(725\) 0 0
\(726\) 0.633812 + 9.81530i 0.0235230 + 0.364280i
\(727\) 31.9845i 1.18624i 0.805115 + 0.593119i \(0.202104\pi\)
−0.805115 + 0.593119i \(0.797896\pi\)
\(728\) −9.59518 9.10996i −0.355621 0.337637i
\(729\) 25.0042 10.1878i 0.926081 0.377325i
\(730\) 0 0
\(731\) −8.04420 + 13.9330i −0.297525 + 0.515329i
\(732\) −8.62293 + 5.74962i −0.318713 + 0.212512i
\(733\) −33.9483 + 19.6001i −1.25391 + 0.723945i −0.971884 0.235461i \(-0.924340\pi\)
−0.282026 + 0.959407i \(0.591007\pi\)
\(734\) −10.0402 −0.370590
\(735\) 0 0
\(736\) −6.37256 −0.234896
\(737\) −5.52810 + 3.19165i −0.203630 + 0.117566i
\(738\) −3.77875 29.1371i −0.139098 1.07255i
\(739\) 16.8814 29.2394i 0.620992 1.07559i −0.368310 0.929703i \(-0.620063\pi\)
0.989301 0.145886i \(-0.0466033\pi\)
\(740\) 0 0
\(741\) −29.0080 + 58.6796i −1.06564 + 2.15565i
\(742\) −6.24116 5.92555i −0.229120 0.217534i
\(743\) 14.3933i 0.528038i −0.964517 0.264019i \(-0.914952\pi\)
0.964517 0.264019i \(-0.0850482\pi\)
\(744\) 7.57326 0.489035i 0.277649 0.0179289i
\(745\) 0 0
\(746\) 0.00417483 + 0.00241034i 0.000152851 + 8.82487e-5i
\(747\) −2.11929 + 5.08860i −0.0775408 + 0.186182i
\(748\) 14.5381i 0.531567i
\(749\) 21.6572 + 5.20504i 0.791336 + 0.190188i
\(750\) 0 0
\(751\) −8.92040 15.4506i −0.325510 0.563800i 0.656105 0.754669i \(-0.272203\pi\)
−0.981615 + 0.190869i \(0.938869\pi\)
\(752\) 0.828416 1.43486i 0.0302092 0.0523239i
\(753\) −13.8069 20.7067i −0.503150 0.754594i
\(754\) 16.6103 9.58995i 0.604911 0.349245i
\(755\) 0 0
\(756\) −12.1866 + 6.36289i −0.443223 + 0.231416i
\(757\) 1.90604 0.0692760 0.0346380 0.999400i \(-0.488972\pi\)
0.0346380 + 0.999400i \(0.488972\pi\)
\(758\) −16.1576 + 9.32860i −0.586871 + 0.338830i
\(759\) −14.1252 21.1841i −0.512713 0.768936i
\(760\) 0 0
\(761\) −14.1364 24.4850i −0.512445 0.887581i −0.999896 0.0144304i \(-0.995407\pi\)
0.487451 0.873150i \(-0.337927\pi\)
\(762\) −2.85220 1.40997i −0.103324 0.0510780i
\(763\) 16.9042 5.00275i 0.611973 0.181112i
\(764\) 4.97173i 0.179871i
\(765\) 0 0
\(766\) −16.3214 9.42316i −0.589716 0.340473i
\(767\) −43.0117 24.8328i −1.55306 0.896661i
\(768\) −1.72845 + 0.111613i −0.0623701 + 0.00402748i
\(769\) 1.43146i 0.0516197i 0.999667 + 0.0258098i \(0.00821644\pi\)
−0.999667 + 0.0258098i \(0.991784\pi\)
\(770\) 0 0
\(771\) 12.6925 25.6753i 0.457109 0.924675i
\(772\) −3.01660 5.22491i −0.108570 0.188049i
\(773\) 17.4088 30.1528i 0.626149 1.08452i −0.362168 0.932113i \(-0.617963\pi\)
0.988317 0.152410i \(-0.0487033\pi\)
\(774\) 0.984951 + 7.59475i 0.0354033 + 0.272987i
\(775\) 0 0
\(776\) 4.61723 0.165749
\(777\) 29.7186 10.9229i 1.06615 0.391858i
\(778\) 10.8601 0.389352
\(779\) 64.0969 37.0064i 2.29651 1.32589i
\(780\) 0 0
\(781\) 3.29768 5.71175i 0.118000 0.204383i
\(782\) −20.0809 34.7811i −0.718091 1.24377i
\(783\) −3.83132 19.5572i −0.136920 0.698918i
\(784\) 5.87256 3.80960i 0.209734 0.136057i
\(785\) 0 0
\(786\) 0.618204 + 9.57360i 0.0220506 + 0.341479i
\(787\) 43.0486 + 24.8541i 1.53452 + 0.885953i 0.999145 + 0.0413355i \(0.0131612\pi\)
0.535370 + 0.844617i \(0.320172\pi\)
\(788\) 12.3100 + 7.10719i 0.438526 + 0.253183i
\(789\) 3.45330 + 53.4782i 0.122941 + 1.90388i
\(790\) 0 0
\(791\) 8.11569 8.54796i 0.288561 0.303931i
\(792\) −4.20226 5.49845i −0.149321 0.195379i
\(793\) −14.9617 25.9144i −0.531306 0.920249i
\(794\) −13.5204 + 23.4180i −0.479822 + 0.831075i
\(795\) 0 0
\(796\) 1.94932 1.12544i 0.0690917 0.0398901i
\(797\) −8.43295 −0.298710 −0.149355 0.988784i \(-0.547720\pi\)
−0.149355 + 0.988784i \(0.547720\pi\)
\(798\) −26.5992 22.1768i −0.941601 0.785051i
\(799\) 10.4419 0.369406
\(800\) 0 0
\(801\) 17.5165 2.27169i 0.618917 0.0802664i
\(802\) 12.2627 21.2396i 0.433012 0.749998i
\(803\) 4.24656 + 7.35525i 0.149858 + 0.259561i
\(804\) −2.12398 + 4.29655i −0.0749070 + 0.151527i
\(805\) 0 0
\(806\) 21.9113i 0.771794i
\(807\) −7.09394 + 0.458083i −0.249719 + 0.0161253i
\(808\) −9.79825 5.65702i −0.344701 0.199013i
\(809\) −33.7531 19.4873i −1.18669 0.685138i −0.229141 0.973393i \(-0.573592\pi\)
−0.957554 + 0.288255i \(0.906925\pi\)
\(810\) 0 0
\(811\) 29.5668i 1.03823i 0.854704 + 0.519116i \(0.173739\pi\)
−0.854704 + 0.519116i \(0.826261\pi\)
\(812\) 2.87962 + 9.73018i 0.101055 + 0.341462i
\(813\) −14.0934 6.96702i −0.494277 0.244344i
\(814\) 7.96919 + 13.8030i 0.279320 + 0.483796i
\(815\) 0 0
\(816\) −6.05578 9.08209i −0.211995 0.317937i
\(817\) −16.7072 + 9.64591i −0.584511 + 0.337468i
\(818\) −5.40347 −0.188928
\(819\) −16.0656 36.2964i −0.561379 1.26830i
\(820\) 0 0
\(821\) −29.1479 + 16.8285i −1.01727 + 0.587320i −0.913311 0.407262i \(-0.866484\pi\)
−0.103956 + 0.994582i \(0.533150\pi\)
\(822\) 1.19250 + 1.78843i 0.0415931 + 0.0623788i
\(823\) −6.27024 + 10.8604i −0.218567 + 0.378569i −0.954370 0.298627i \(-0.903472\pi\)
0.735803 + 0.677195i \(0.236805\pi\)
\(824\) −3.68203 6.37747i −0.128270 0.222170i
\(825\) 0 0
\(826\) 18.0920 19.0556i 0.629501 0.663030i
\(827\) 15.6875i 0.545506i 0.962084 + 0.272753i \(0.0879342\pi\)
−0.962084 + 0.272753i \(0.912066\pi\)
\(828\) −17.6483 7.35011i −0.613320 0.255434i
\(829\) −4.91198 2.83593i −0.170600 0.0984959i 0.412269 0.911062i \(-0.364736\pi\)
−0.582869 + 0.812566i \(0.698070\pi\)
\(830\) 0 0
\(831\) 0.374168 0.0241614i 0.0129797 0.000838151i
\(832\) 5.00084i 0.173373i
\(833\) 39.2979 + 20.0475i 1.36159 + 0.694606i
\(834\) 9.62095 19.4620i 0.333146 0.673913i
\(835\) 0 0
\(836\) 8.71645 15.0973i 0.301465 0.522152i
\(837\) 21.5376 + 7.38066i 0.744447 + 0.255113i
\(838\) 24.5024 14.1465i 0.846422 0.488682i
\(839\) −14.5217 −0.501346 −0.250673 0.968072i \(-0.580652\pi\)
−0.250673 + 0.968072i \(0.580652\pi\)
\(840\) 0 0
\(841\) 14.2902 0.492766
\(842\) 21.7967 12.5843i 0.751165 0.433685i
\(843\) 27.1639 18.1125i 0.935576 0.623826i
\(844\) 13.8017 23.9052i 0.475073 0.822851i
\(845\) 0 0
\(846\) 3.94920 3.01823i 0.135776 0.103769i
\(847\) 3.51094 14.6084i 0.120637 0.501949i
\(848\) 3.25278i 0.111701i
\(849\) 0.223038 + 3.45400i 0.00765464 + 0.118541i
\(850\) 0 0
\(851\) 38.1310 + 22.0150i 1.30712 + 0.754663i
\(852\) −0.319112 4.94181i −0.0109326 0.169304i
\(853\) 3.66698i 0.125555i 0.998028 + 0.0627775i \(0.0199958\pi\)
−0.998028 + 0.0627775i \(0.980004\pi\)
\(854\) 15.1805 4.49262i 0.519465 0.153734i
\(855\) 0 0
\(856\) 4.20937 + 7.29084i 0.143873 + 0.249196i
\(857\) −5.78149 + 10.0138i −0.197492 + 0.342066i −0.947715 0.319119i \(-0.896613\pi\)
0.750223 + 0.661185i \(0.229946\pi\)
\(858\) 16.6242 11.0847i 0.567540 0.378426i
\(859\) −12.9614 + 7.48325i −0.442236 + 0.255325i −0.704546 0.709659i \(-0.748849\pi\)
0.262310 + 0.964984i \(0.415516\pi\)
\(860\) 0 0
\(861\) −7.65401 + 44.2229i −0.260848 + 1.50711i
\(862\) 11.2182 0.382093
\(863\) −8.11706 + 4.68639i −0.276308 + 0.159526i −0.631751 0.775172i \(-0.717663\pi\)
0.355443 + 0.934698i \(0.384330\pi\)
\(864\) −4.91553 1.68449i −0.167230 0.0573076i
\(865\) 0 0
\(866\) 0.319796 + 0.553903i 0.0108671 + 0.0188224i
\(867\) 17.4383 35.2754i 0.592235 1.19802i
\(868\) −11.2715 2.70896i −0.382579 0.0919482i
\(869\) 5.90286i 0.200241i
\(870\) 0 0
\(871\) −11.9842 6.91907i −0.406069 0.234444i
\(872\) 5.77043 + 3.33156i 0.195411 + 0.112821i
\(873\) 12.7870 + 5.32551i 0.432775 + 0.180241i
\(874\) 48.1585i 1.62899i
\(875\) 0 0
\(876\) 5.71664 + 2.82600i 0.193148 + 0.0954818i
\(877\) −7.81117 13.5293i −0.263764 0.456853i 0.703475 0.710720i \(-0.251631\pi\)
−0.967239 + 0.253867i \(0.918297\pi\)
\(878\) 6.58174 11.3999i 0.222123 0.384728i
\(879\) −8.91814 13.3749i −0.300801 0.451123i
\(880\) 0 0
\(881\) 4.54709 0.153195 0.0765977 0.997062i \(-0.475594\pi\)
0.0765977 + 0.997062i \(0.475594\pi\)
\(882\) 20.6576 3.77695i 0.695576 0.127177i
\(883\) 48.8190 1.64289 0.821445 0.570288i \(-0.193169\pi\)
0.821445 + 0.570288i \(0.193169\pi\)
\(884\) 27.2943 15.7584i 0.918008 0.530012i
\(885\) 0 0
\(886\) −12.9223 + 22.3821i −0.434133 + 0.751941i
\(887\) −3.64168 6.30758i −0.122276 0.211788i 0.798389 0.602142i \(-0.205686\pi\)
−0.920665 + 0.390354i \(0.872353\pi\)
\(888\) 10.7280 + 5.30334i 0.360008 + 0.177969i
\(889\) 3.52457 + 3.34633i 0.118210 + 0.112232i
\(890\) 0 0
\(891\) −5.29591 20.0744i −0.177420 0.672517i
\(892\) −19.9858 11.5388i −0.669176 0.386349i
\(893\) 10.8435 + 6.26049i 0.362863 + 0.209499i
\(894\) −26.9554 + 1.74062i −0.901525 + 0.0582149i
\(895\) 0 0
\(896\) 2.57250 + 0.618268i 0.0859411 + 0.0206549i
\(897\) 24.4609 49.4813i 0.816726 1.65213i
\(898\) −14.1793 24.5593i −0.473170 0.819554i
\(899\) 8.40232 14.5532i 0.280233 0.485378i
\(900\) 0 0
\(901\) 17.7535 10.2500i 0.591456 0.341477i
\(902\) −22.5921 −0.752236
\(903\) 1.99506 11.5269i 0.0663914 0.383593i
\(904\) 4.45505 0.148173
\(905\) 0 0
\(906\) 4.37965 2.92027i 0.145504 0.0970196i
\(907\) −13.4481 + 23.2928i −0.446537 + 0.773425i −0.998158 0.0606703i \(-0.980676\pi\)
0.551621 + 0.834095i \(0.314010\pi\)
\(908\) −10.0175 17.3509i −0.332444 0.575809i
\(909\) −20.6106 26.9679i −0.683611 0.894470i
\(910\) 0 0
\(911\) 46.4059i 1.53750i 0.639552 + 0.768748i \(0.279120\pi\)
−0.639552 + 0.768748i \(0.720880\pi\)
\(912\) −0.843477 13.0622i −0.0279303 0.432533i
\(913\) 3.67072 + 2.11929i 0.121483 + 0.0701383i
\(914\) 25.2797 + 14.5953i 0.836179 + 0.482768i
\(915\) 0 0
\(916\) 28.7648i 0.950417i
\(917\) 3.42448 14.2486i 0.113086 0.470531i
\(918\) −6.29570 32.1368i −0.207789 1.06067i
\(919\) 2.26073 + 3.91570i 0.0745746 + 0.129167i 0.900901 0.434024i \(-0.142907\pi\)
−0.826327 + 0.563191i \(0.809573\pi\)
\(920\) 0 0
\(921\) −38.8055 + 25.8749i −1.27869 + 0.852606i
\(922\) −26.9306 + 15.5484i −0.886913 + 0.512060i
\(923\) 14.2979 0.470621
\(924\) 3.64683 + 9.92212i 0.119972 + 0.326414i
\(925\) 0 0
\(926\) −29.0045 + 16.7457i −0.953146 + 0.550299i
\(927\) −2.84131 21.9087i −0.0933209 0.719577i
\(928\) −1.91767 + 3.32150i −0.0629505 + 0.109033i
\(929\) −8.30472 14.3842i −0.272469 0.471930i 0.697025 0.717047i \(-0.254507\pi\)
−0.969493 + 0.245117i \(0.921174\pi\)
\(930\) 0 0
\(931\) 28.7898 + 44.3800i 0.943547 + 1.45449i
\(932\) 25.7115i 0.842209i
\(933\) 4.87647 0.314892i 0.159648 0.0103091i
\(934\) −12.8389 7.41254i −0.420102 0.242546i
\(935\) 0 0
\(936\) 5.76797 13.8494i 0.188532 0.452682i
\(937\) 20.5347i 0.670839i 0.942069 + 0.335419i \(0.108878\pi\)
−0.942069 + 0.335419i \(0.891122\pi\)
\(938\) 5.04090 5.30940i 0.164591 0.173358i
\(939\) 17.7670 + 8.78303i 0.579803 + 0.286623i
\(940\) 0 0
\(941\) 12.1992 21.1296i 0.397682 0.688805i −0.595758 0.803164i \(-0.703148\pi\)
0.993439 + 0.114359i \(0.0364814\pi\)
\(942\) 15.2062 + 22.8053i 0.495445 + 0.743037i
\(943\) −54.0495 + 31.2055i −1.76009 + 1.01619i
\(944\) 9.93145 0.323241
\(945\) 0 0
\(946\) 5.88876 0.191460
\(947\) −16.5526 + 9.55667i −0.537888 + 0.310550i −0.744223 0.667932i \(-0.767180\pi\)
0.206334 + 0.978482i \(0.433847\pi\)
\(948\) −2.45880 3.68756i −0.0798582 0.119766i
\(949\) −9.20598 + 15.9452i −0.298839 + 0.517604i
\(950\) 0 0
\(951\) 14.4553 + 7.14590i 0.468744 + 0.231722i
\(952\) 4.73184 + 15.9888i 0.153360 + 0.518200i
\(953\) 7.20297i 0.233327i 0.993171 + 0.116664i \(0.0372199\pi\)
−0.993171 + 0.116664i \(0.962780\pi\)
\(954\) 3.75176 9.00831i 0.121468 0.291655i
\(955\) 0 0
\(956\) −9.28556 5.36102i −0.300317 0.173388i
\(957\) −15.2922 + 0.987477i −0.494327 + 0.0319206i
\(958\) 23.0447i 0.744540i
\(959\) −0.931789 3.14850i −0.0300890 0.101670i
\(960\) 0 0
\(961\) −5.90109 10.2210i −0.190358 0.329709i
\(962\) −17.2762 + 29.9232i −0.557006 + 0.964762i
\(963\) 3.24824 + 25.0465i 0.104673 + 0.807111i
\(964\) 1.02594 0.592325i 0.0330432 0.0190775i
\(965\) 0 0
\(966\) 22.4297 + 18.7005i 0.721663 + 0.601680i
\(967\) 12.2448 0.393765 0.196883 0.980427i \(-0.436918\pi\)
0.196883 + 0.980427i \(0.436918\pi\)
\(968\) 4.91787 2.83934i 0.158066 0.0912597i
\(969\) 68.6349 45.7646i 2.20487 1.47017i
\(970\) 0 0
\(971\) −13.4388 23.2768i −0.431273 0.746987i 0.565710 0.824604i \(-0.308602\pi\)
−0.996983 + 0.0776173i \(0.975269\pi\)
\(972\) −11.6703 10.3346i −0.374324 0.331484i
\(973\) −22.8337 + 24.0499i −0.732014 + 0.771003i
\(974\) 10.6277i 0.340533i
\(975\) 0 0
\(976\) 5.18202 + 2.99184i 0.165872 + 0.0957664i
\(977\) 31.8298 + 18.3770i 1.01833 + 0.587931i 0.913619 0.406572i \(-0.133276\pi\)
0.104707 + 0.994503i \(0.466609\pi\)
\(978\) 0.961746 + 14.8937i 0.0307533 + 0.476249i
\(979\) 13.5819i 0.434078i
\(980\) 0 0
\(981\) 12.1381 + 15.8821i 0.387540 + 0.507076i
\(982\) 11.2343 + 19.4584i 0.358502 + 0.620943i
\(983\) −6.68519 + 11.5791i −0.213224 + 0.369315i −0.952722 0.303844i \(-0.901730\pi\)
0.739498 + 0.673159i \(0.235063\pi\)
\(984\) −14.1135 + 9.41063i −0.449921 + 0.300000i
\(985\) 0 0
\(986\) −24.1714 −0.769775
\(987\) −7.12645 + 2.61929i −0.226837 + 0.0833730i
\(988\) 37.7922 1.20233
\(989\) 14.0883 8.13388i 0.447982 0.258642i
\(990\) 0 0
\(991\) −8.34843 + 14.4599i −0.265197 + 0.459334i −0.967615 0.252430i \(-0.918770\pi\)
0.702419 + 0.711764i \(0.252104\pi\)
\(992\) −2.19077 3.79452i −0.0695569 0.120476i
\(993\) 14.0434 28.4080i 0.445654 0.901501i
\(994\) −1.76769 + 7.35502i −0.0560677 + 0.233287i
\(995\) 0 0
\(996\) 3.17590 0.205080i 0.100632 0.00649822i
\(997\) −42.5957 24.5927i −1.34902 0.778857i −0.360910 0.932601i \(-0.617534\pi\)
−0.988111 + 0.153743i \(0.950867\pi\)
\(998\) −34.4322 19.8794i −1.08993 0.629272i
\(999\) 23.5934 + 27.0608i 0.746462 + 0.856167i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.2.s.f.101.3 12
3.2 odd 2 1050.2.s.g.101.6 12
5.2 odd 4 1050.2.u.e.899.6 12
5.3 odd 4 1050.2.u.h.899.1 12
5.4 even 2 210.2.r.b.101.4 yes 12
7.5 odd 6 1050.2.s.g.551.6 12
15.2 even 4 1050.2.u.g.899.4 12
15.8 even 4 1050.2.u.f.899.3 12
15.14 odd 2 210.2.r.a.101.1 12
21.5 even 6 inner 1050.2.s.f.551.3 12
35.4 even 6 1470.2.b.a.881.9 12
35.12 even 12 1050.2.u.f.299.3 12
35.19 odd 6 210.2.r.a.131.1 yes 12
35.24 odd 6 1470.2.b.b.881.10 12
35.33 even 12 1050.2.u.g.299.4 12
105.47 odd 12 1050.2.u.h.299.1 12
105.59 even 6 1470.2.b.a.881.3 12
105.68 odd 12 1050.2.u.e.299.6 12
105.74 odd 6 1470.2.b.b.881.4 12
105.89 even 6 210.2.r.b.131.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.r.a.101.1 12 15.14 odd 2
210.2.r.a.131.1 yes 12 35.19 odd 6
210.2.r.b.101.4 yes 12 5.4 even 2
210.2.r.b.131.4 yes 12 105.89 even 6
1050.2.s.f.101.3 12 1.1 even 1 trivial
1050.2.s.f.551.3 12 21.5 even 6 inner
1050.2.s.g.101.6 12 3.2 odd 2
1050.2.s.g.551.6 12 7.5 odd 6
1050.2.u.e.299.6 12 105.68 odd 12
1050.2.u.e.899.6 12 5.2 odd 4
1050.2.u.f.299.3 12 35.12 even 12
1050.2.u.f.899.3 12 15.8 even 4
1050.2.u.g.299.4 12 35.33 even 12
1050.2.u.g.899.4 12 15.2 even 4
1050.2.u.h.299.1 12 105.47 odd 12
1050.2.u.h.899.1 12 5.3 odd 4
1470.2.b.a.881.3 12 105.59 even 6
1470.2.b.a.881.9 12 35.4 even 6
1470.2.b.b.881.4 12 105.74 odd 6
1470.2.b.b.881.10 12 35.24 odd 6