Properties

Label 1050.2.u.e.899.1
Level $1050$
Weight $2$
Character 1050.899
Analytic conductor $8.384$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,2,Mod(299,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.299"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.u (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-6,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 11 x^{10} - 32 x^{9} + 64 x^{8} - 120 x^{7} + 237 x^{6} - 360 x^{5} + 576 x^{4} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 899.1
Root \(-0.384890 - 1.68874i\) of defining polynomial
Character \(\chi\) \(=\) 1050.899
Dual form 1050.2.u.e.299.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-1.65494 + 0.511048i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.27005 + 1.17770i) q^{6} +(-0.226058 + 2.63608i) q^{7} +1.00000 q^{8} +(2.47766 - 1.69151i) q^{9} +(-4.29143 - 2.47766i) q^{11} +(0.384890 - 1.68874i) q^{12} -6.37523 q^{13} +(2.39594 - 1.12227i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(3.14155 + 1.81377i) q^{17} +(-2.70372 - 1.29996i) q^{18} +(3.64345 - 2.10355i) q^{19} +(-0.973048 - 4.47808i) q^{21} +4.95532i q^{22} +(-0.958379 - 1.65996i) q^{23} +(-1.65494 + 0.511048i) q^{24} +(3.18762 + 5.52111i) q^{26} +(-3.23594 + 4.06555i) q^{27} +(-2.16988 - 1.51381i) q^{28} -0.800269i q^{29} +(4.36166 + 2.51820i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(8.36827 + 1.90726i) q^{33} -3.62755i q^{34} +(0.226058 + 2.99147i) q^{36} +(5.04710 - 2.91394i) q^{37} +(-3.64345 - 2.10355i) q^{38} +(10.5506 - 3.25805i) q^{39} +7.45163 q^{41} +(-3.39161 + 3.08172i) q^{42} +4.64827i q^{43} +(4.29143 - 2.47766i) q^{44} +(-0.958379 + 1.65996i) q^{46} +(-0.526352 + 0.303890i) q^{47} +(1.27005 + 1.17770i) q^{48} +(-6.89780 - 1.19181i) q^{49} +(-6.12600 - 1.39621i) q^{51} +(3.18762 - 5.52111i) q^{52} +(7.15326 - 12.3898i) q^{53} +(5.13884 + 0.769634i) q^{54} +(-0.226058 + 2.63608i) q^{56} +(-4.95469 + 5.34323i) q^{57} +(-0.693053 + 0.400134i) q^{58} +(0.875658 - 1.51668i) q^{59} +(2.96447 - 1.71154i) q^{61} -5.03641i q^{62} +(3.89885 + 6.91368i) q^{63} +1.00000 q^{64} +(-2.53241 - 8.20077i) q^{66} +(-6.91343 - 3.99147i) q^{67} +(-3.14155 + 1.81377i) q^{68} +(2.43438 + 2.25736i) q^{69} -2.48759i q^{71} +(2.47766 - 1.69151i) q^{72} +(7.54666 - 13.0712i) q^{73} +(-5.04710 - 2.91394i) q^{74} +4.20710i q^{76} +(7.50142 - 10.7525i) q^{77} +(-8.09687 - 7.50809i) q^{78} +(1.33404 + 2.31062i) q^{79} +(3.27761 - 8.38196i) q^{81} +(-3.72581 - 6.45330i) q^{82} -7.27215i q^{83} +(4.36465 + 1.39635i) q^{84} +(4.02552 - 2.32413i) q^{86} +(0.408975 + 1.32440i) q^{87} +(-4.29143 - 2.47766i) q^{88} +(-0.942474 - 1.63241i) q^{89} +(1.44117 - 16.8056i) q^{91} +1.91676 q^{92} +(-8.50521 - 1.93847i) q^{93} +(0.526352 + 0.303890i) q^{94} +(0.384890 - 1.68874i) q^{96} +17.6562 q^{97} +(2.41676 + 6.56957i) q^{98} +(-14.8237 + 1.12019i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} + 2 q^{3} - 6 q^{4} + 2 q^{6} - 6 q^{7} + 12 q^{8} + 12 q^{11} - 4 q^{12} - 8 q^{13} + 12 q^{14} - 6 q^{16} + 12 q^{17} - 6 q^{18} + 4 q^{21} + 2 q^{23} + 2 q^{24} + 4 q^{26} - 28 q^{27}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −1.65494 + 0.511048i −0.955481 + 0.295053i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 1.27005 + 1.17770i 0.518496 + 0.480793i
\(7\) −0.226058 + 2.63608i −0.0854419 + 0.996343i
\(8\) 1.00000 0.353553
\(9\) 2.47766 1.69151i 0.825887 0.563836i
\(10\) 0 0
\(11\) −4.29143 2.47766i −1.29392 0.747043i −0.314570 0.949234i \(-0.601860\pi\)
−0.979346 + 0.202191i \(0.935194\pi\)
\(12\) 0.384890 1.68874i 0.111108 0.487499i
\(13\) −6.37523 −1.76817 −0.884086 0.467325i \(-0.845218\pi\)
−0.884086 + 0.467325i \(0.845218\pi\)
\(14\) 2.39594 1.12227i 0.640341 0.299938i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.14155 + 1.81377i 0.761937 + 0.439905i 0.829991 0.557777i \(-0.188346\pi\)
−0.0680536 + 0.997682i \(0.521679\pi\)
\(18\) −2.70372 1.29996i −0.637273 0.306404i
\(19\) 3.64345 2.10355i 0.835865 0.482587i −0.0199914 0.999800i \(-0.506364\pi\)
0.855857 + 0.517213i \(0.173031\pi\)
\(20\) 0 0
\(21\) −0.973048 4.47808i −0.212336 0.977197i
\(22\) 4.95532i 1.05648i
\(23\) −0.958379 1.65996i −0.199836 0.346126i 0.748639 0.662978i \(-0.230708\pi\)
−0.948475 + 0.316852i \(0.897374\pi\)
\(24\) −1.65494 + 0.511048i −0.337813 + 0.104317i
\(25\) 0 0
\(26\) 3.18762 + 5.52111i 0.625143 + 1.08278i
\(27\) −3.23594 + 4.06555i −0.622757 + 0.782415i
\(28\) −2.16988 1.51381i −0.410069 0.286083i
\(29\) 0.800269i 0.148606i −0.997236 0.0743031i \(-0.976327\pi\)
0.997236 0.0743031i \(-0.0236732\pi\)
\(30\) 0 0
\(31\) 4.36166 + 2.51820i 0.783377 + 0.452283i 0.837626 0.546245i \(-0.183943\pi\)
−0.0542489 + 0.998527i \(0.517276\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 8.36827 + 1.90726i 1.45673 + 0.332011i
\(34\) 3.62755i 0.622119i
\(35\) 0 0
\(36\) 0.226058 + 2.99147i 0.0376763 + 0.498578i
\(37\) 5.04710 2.91394i 0.829738 0.479050i −0.0240249 0.999711i \(-0.507648\pi\)
0.853763 + 0.520662i \(0.174315\pi\)
\(38\) −3.64345 2.10355i −0.591046 0.341241i
\(39\) 10.5506 3.25805i 1.68945 0.521705i
\(40\) 0 0
\(41\) 7.45163 1.16375 0.581874 0.813279i \(-0.302320\pi\)
0.581874 + 0.813279i \(0.302320\pi\)
\(42\) −3.39161 + 3.08172i −0.523336 + 0.475520i
\(43\) 4.64827i 0.708854i 0.935084 + 0.354427i \(0.115324\pi\)
−0.935084 + 0.354427i \(0.884676\pi\)
\(44\) 4.29143 2.47766i 0.646958 0.373521i
\(45\) 0 0
\(46\) −0.958379 + 1.65996i −0.141305 + 0.244748i
\(47\) −0.526352 + 0.303890i −0.0767764 + 0.0443269i −0.537897 0.843011i \(-0.680781\pi\)
0.461120 + 0.887338i \(0.347448\pi\)
\(48\) 1.27005 + 1.17770i 0.183316 + 0.169986i
\(49\) −6.89780 1.19181i −0.985399 0.170259i
\(50\) 0 0
\(51\) −6.12600 1.39621i −0.857812 0.195508i
\(52\) 3.18762 5.52111i 0.442043 0.765641i
\(53\) 7.15326 12.3898i 0.982576 1.70187i 0.330329 0.943866i \(-0.392840\pi\)
0.652247 0.758006i \(-0.273826\pi\)
\(54\) 5.13884 + 0.769634i 0.699307 + 0.104734i
\(55\) 0 0
\(56\) −0.226058 + 2.63608i −0.0302083 + 0.352260i
\(57\) −4.95469 + 5.34323i −0.656264 + 0.707727i
\(58\) −0.693053 + 0.400134i −0.0910023 + 0.0525402i
\(59\) 0.875658 1.51668i 0.114001 0.197456i −0.803379 0.595468i \(-0.796967\pi\)
0.917380 + 0.398013i \(0.130300\pi\)
\(60\) 0 0
\(61\) 2.96447 1.71154i 0.379561 0.219140i −0.298066 0.954545i \(-0.596342\pi\)
0.677627 + 0.735405i \(0.263008\pi\)
\(62\) 5.03641i 0.639624i
\(63\) 3.89885 + 6.91368i 0.491209 + 0.871042i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −2.53241 8.20077i −0.311718 1.00944i
\(67\) −6.91343 3.99147i −0.844610 0.487636i 0.0142186 0.999899i \(-0.495474\pi\)
−0.858829 + 0.512263i \(0.828807\pi\)
\(68\) −3.14155 + 1.81377i −0.380969 + 0.219952i
\(69\) 2.43438 + 2.25736i 0.293065 + 0.271754i
\(70\) 0 0
\(71\) 2.48759i 0.295222i −0.989045 0.147611i \(-0.952842\pi\)
0.989045 0.147611i \(-0.0471584\pi\)
\(72\) 2.47766 1.69151i 0.291995 0.199346i
\(73\) 7.54666 13.0712i 0.883270 1.52987i 0.0355852 0.999367i \(-0.488670\pi\)
0.847684 0.530501i \(-0.177996\pi\)
\(74\) −5.04710 2.91394i −0.586713 0.338739i
\(75\) 0 0
\(76\) 4.20710i 0.482587i
\(77\) 7.50142 10.7525i 0.854866 1.22536i
\(78\) −8.09687 7.50809i −0.916790 0.850124i
\(79\) 1.33404 + 2.31062i 0.150091 + 0.259965i 0.931261 0.364354i \(-0.118710\pi\)
−0.781170 + 0.624319i \(0.785377\pi\)
\(80\) 0 0
\(81\) 3.27761 8.38196i 0.364178 0.931329i
\(82\) −3.72581 6.45330i −0.411447 0.712648i
\(83\) 7.27215i 0.798222i −0.916903 0.399111i \(-0.869319\pi\)
0.916903 0.399111i \(-0.130681\pi\)
\(84\) 4.36465 + 1.39635i 0.476223 + 0.152355i
\(85\) 0 0
\(86\) 4.02552 2.32413i 0.434083 0.250618i
\(87\) 0.408975 + 1.32440i 0.0438468 + 0.141990i
\(88\) −4.29143 2.47766i −0.457468 0.264120i
\(89\) −0.942474 1.63241i −0.0999021 0.173035i 0.811742 0.584016i \(-0.198520\pi\)
−0.911644 + 0.410981i \(0.865186\pi\)
\(90\) 0 0
\(91\) 1.44117 16.8056i 0.151076 1.76171i
\(92\) 1.91676 0.199836
\(93\) −8.50521 1.93847i −0.881949 0.201009i
\(94\) 0.526352 + 0.303890i 0.0542891 + 0.0313438i
\(95\) 0 0
\(96\) 0.384890 1.68874i 0.0392827 0.172357i
\(97\) 17.6562 1.79271 0.896356 0.443334i \(-0.146205\pi\)
0.896356 + 0.443334i \(0.146205\pi\)
\(98\) 2.41676 + 6.56957i 0.244129 + 0.663627i
\(99\) −14.8237 + 1.12019i −1.48984 + 0.112583i
\(100\) 0 0
\(101\) 0.574210 0.994562i 0.0571361 0.0989626i −0.836043 0.548664i \(-0.815136\pi\)
0.893179 + 0.449702i \(0.148470\pi\)
\(102\) 1.85385 + 6.00338i 0.183558 + 0.594423i
\(103\) 3.64182 + 6.30781i 0.358839 + 0.621527i 0.987767 0.155936i \(-0.0498394\pi\)
−0.628928 + 0.777463i \(0.716506\pi\)
\(104\) −6.37523 −0.625143
\(105\) 0 0
\(106\) −14.3065 −1.38957
\(107\) −1.34318 2.32646i −0.129850 0.224908i 0.793768 0.608221i \(-0.208116\pi\)
−0.923618 + 0.383313i \(0.874783\pi\)
\(108\) −1.90290 4.83518i −0.183106 0.465266i
\(109\) 4.51172 7.81452i 0.432144 0.748495i −0.564914 0.825150i \(-0.691091\pi\)
0.997058 + 0.0766547i \(0.0244239\pi\)
\(110\) 0 0
\(111\) −6.86349 + 7.40171i −0.651454 + 0.702540i
\(112\) 2.39594 1.12227i 0.226395 0.106044i
\(113\) −12.4267 −1.16901 −0.584504 0.811391i \(-0.698711\pi\)
−0.584504 + 0.811391i \(0.698711\pi\)
\(114\) 7.10471 + 1.61927i 0.665417 + 0.151659i
\(115\) 0 0
\(116\) 0.693053 + 0.400134i 0.0643483 + 0.0371515i
\(117\) −15.7957 + 10.7838i −1.46031 + 0.996958i
\(118\) −1.75132 −0.161222
\(119\) −5.49142 + 7.87134i −0.503397 + 0.721565i
\(120\) 0 0
\(121\) 6.77761 + 11.7392i 0.616146 + 1.06720i
\(122\) −2.96447 1.71154i −0.268390 0.154955i
\(123\) −12.3320 + 3.80814i −1.11194 + 0.343368i
\(124\) −4.36166 + 2.51820i −0.391688 + 0.226141i
\(125\) 0 0
\(126\) 4.03800 6.83334i 0.359734 0.608762i
\(127\) 8.06679i 0.715812i 0.933758 + 0.357906i \(0.116509\pi\)
−0.933758 + 0.357906i \(0.883491\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −2.37549 7.69261i −0.209150 0.677297i
\(130\) 0 0
\(131\) 1.69151 + 2.92978i 0.147788 + 0.255976i 0.930410 0.366522i \(-0.119451\pi\)
−0.782622 + 0.622497i \(0.786118\pi\)
\(132\) −5.83587 + 6.29351i −0.507947 + 0.547780i
\(133\) 4.72148 + 10.0799i 0.409404 + 0.874042i
\(134\) 7.98294i 0.689621i
\(135\) 0 0
\(136\) 3.14155 + 1.81377i 0.269386 + 0.155530i
\(137\) 7.41370 12.8409i 0.633395 1.09707i −0.353458 0.935451i \(-0.614994\pi\)
0.986853 0.161622i \(-0.0516725\pi\)
\(138\) 0.737742 3.23691i 0.0628007 0.275544i
\(139\) 7.24669i 0.614656i 0.951604 + 0.307328i \(0.0994349\pi\)
−0.951604 + 0.307328i \(0.900565\pi\)
\(140\) 0 0
\(141\) 0.715780 0.771911i 0.0602796 0.0650066i
\(142\) −2.15432 + 1.24379i −0.180786 + 0.104377i
\(143\) 27.3589 + 15.7957i 2.28787 + 1.32090i
\(144\) −2.70372 1.29996i −0.225310 0.108330i
\(145\) 0 0
\(146\) −15.0933 −1.24913
\(147\) 12.0245 1.55272i 0.991766 0.128066i
\(148\) 5.82789i 0.479050i
\(149\) 5.70973 3.29651i 0.467759 0.270061i −0.247542 0.968877i \(-0.579623\pi\)
0.715301 + 0.698816i \(0.246289\pi\)
\(150\) 0 0
\(151\) −5.88717 + 10.1969i −0.479091 + 0.829811i −0.999713 0.0239772i \(-0.992367\pi\)
0.520621 + 0.853788i \(0.325700\pi\)
\(152\) 3.64345 2.10355i 0.295523 0.170620i
\(153\) 10.8517 0.820036i 0.877308 0.0662960i
\(154\) −13.0626 1.12019i −1.05261 0.0902675i
\(155\) 0 0
\(156\) −2.45377 + 10.7661i −0.196458 + 0.861981i
\(157\) −0.772397 + 1.33783i −0.0616440 + 0.106770i −0.895200 0.445664i \(-0.852968\pi\)
0.833556 + 0.552434i \(0.186301\pi\)
\(158\) 1.33404 2.31062i 0.106130 0.183823i
\(159\) −5.50644 + 24.1601i −0.436689 + 1.91602i
\(160\) 0 0
\(161\) 4.59243 2.15111i 0.361934 0.169531i
\(162\) −8.89780 + 1.35249i −0.699077 + 0.106262i
\(163\) 2.92508 1.68880i 0.229110 0.132277i −0.381051 0.924554i \(-0.624438\pi\)
0.610161 + 0.792277i \(0.291105\pi\)
\(164\) −3.72581 + 6.45330i −0.290937 + 0.503918i
\(165\) 0 0
\(166\) −6.29787 + 3.63608i −0.488809 + 0.282214i
\(167\) 12.7685i 0.988053i −0.869447 0.494027i \(-0.835525\pi\)
0.869447 0.494027i \(-0.164475\pi\)
\(168\) −0.973048 4.47808i −0.0750723 0.345491i
\(169\) 27.6436 2.12643
\(170\) 0 0
\(171\) 5.46907 11.3748i 0.418230 0.869853i
\(172\) −4.02552 2.32413i −0.306943 0.177214i
\(173\) −0.214390 + 0.123778i −0.0162998 + 0.00941068i −0.508128 0.861282i \(-0.669662\pi\)
0.491828 + 0.870692i \(0.336329\pi\)
\(174\) 0.942474 1.01638i 0.0714488 0.0770517i
\(175\) 0 0
\(176\) 4.95532i 0.373521i
\(177\) −0.674065 + 2.95753i −0.0506658 + 0.222301i
\(178\) −0.942474 + 1.63241i −0.0706414 + 0.122355i
\(179\) −16.9709 9.79815i −1.26846 0.732348i −0.293767 0.955877i \(-0.594909\pi\)
−0.974697 + 0.223528i \(0.928242\pi\)
\(180\) 0 0
\(181\) 14.8103i 1.10084i 0.834887 + 0.550422i \(0.185533\pi\)
−0.834887 + 0.550422i \(0.814467\pi\)
\(182\) −15.2747 + 7.15471i −1.13223 + 0.530342i
\(183\) −4.03134 + 4.34748i −0.298005 + 0.321375i
\(184\) −0.958379 1.65996i −0.0706526 0.122374i
\(185\) 0 0
\(186\) 2.57384 + 8.33496i 0.188723 + 0.611149i
\(187\) −8.98783 15.5674i −0.657255 1.13840i
\(188\) 0.607779i 0.0443269i
\(189\) −9.98558 9.44924i −0.726344 0.687331i
\(190\) 0 0
\(191\) 0.463759 0.267752i 0.0335564 0.0193738i −0.483128 0.875550i \(-0.660499\pi\)
0.516684 + 0.856176i \(0.327166\pi\)
\(192\) −1.65494 + 0.511048i −0.119435 + 0.0368817i
\(193\) −4.79383 2.76772i −0.345068 0.199225i 0.317443 0.948277i \(-0.397176\pi\)
−0.662511 + 0.749052i \(0.730509\pi\)
\(194\) −8.82809 15.2907i −0.633820 1.09781i
\(195\) 0 0
\(196\) 4.48104 5.37776i 0.320074 0.384126i
\(197\) −0.666454 −0.0474829 −0.0237414 0.999718i \(-0.507558\pi\)
−0.0237414 + 0.999718i \(0.507558\pi\)
\(198\) 8.38196 + 12.2776i 0.595680 + 0.872531i
\(199\) 7.81326 + 4.51099i 0.553867 + 0.319775i 0.750680 0.660666i \(-0.229726\pi\)
−0.196813 + 0.980441i \(0.563059\pi\)
\(200\) 0 0
\(201\) 13.4812 + 3.07256i 0.950887 + 0.216722i
\(202\) −1.14842 −0.0808026
\(203\) 2.10957 + 0.180907i 0.148063 + 0.0126972i
\(204\) 4.27215 4.60717i 0.299110 0.322566i
\(205\) 0 0
\(206\) 3.64182 6.30781i 0.253737 0.439486i
\(207\) −5.18237 2.49171i −0.360200 0.173186i
\(208\) 3.18762 + 5.52111i 0.221021 + 0.382820i
\(209\) −20.8475 −1.44205
\(210\) 0 0
\(211\) 11.4386 0.787467 0.393733 0.919225i \(-0.371183\pi\)
0.393733 + 0.919225i \(0.371183\pi\)
\(212\) 7.15326 + 12.3898i 0.491288 + 0.850936i
\(213\) 1.27128 + 4.11681i 0.0871064 + 0.282079i
\(214\) −1.34318 + 2.32646i −0.0918181 + 0.159034i
\(215\) 0 0
\(216\) −3.23594 + 4.06555i −0.220178 + 0.276625i
\(217\) −7.62417 + 10.9284i −0.517562 + 0.741868i
\(218\) −9.02343 −0.611144
\(219\) −5.80927 + 25.4888i −0.392554 + 1.72237i
\(220\) 0 0
\(221\) −20.0281 11.5632i −1.34724 0.777827i
\(222\) 9.84182 + 2.24310i 0.660540 + 0.150547i
\(223\) −5.23397 −0.350493 −0.175246 0.984525i \(-0.556072\pi\)
−0.175246 + 0.984525i \(0.556072\pi\)
\(224\) −2.16988 1.51381i −0.144981 0.101146i
\(225\) 0 0
\(226\) 6.21336 + 10.7619i 0.413306 + 0.715868i
\(227\) 11.6587 + 6.73117i 0.773817 + 0.446763i 0.834234 0.551410i \(-0.185910\pi\)
−0.0604178 + 0.998173i \(0.519243\pi\)
\(228\) −2.15003 6.96250i −0.142389 0.461103i
\(229\) −14.3082 + 8.26082i −0.945509 + 0.545890i −0.891683 0.452660i \(-0.850475\pi\)
−0.0538263 + 0.998550i \(0.517142\pi\)
\(230\) 0 0
\(231\) −6.91939 + 21.6283i −0.455262 + 1.42303i
\(232\) 0.800269i 0.0525402i
\(233\) −9.31796 16.1392i −0.610440 1.05731i −0.991166 0.132625i \(-0.957659\pi\)
0.380727 0.924688i \(-0.375674\pi\)
\(234\) 17.2368 + 8.28757i 1.12681 + 0.541775i
\(235\) 0 0
\(236\) 0.875658 + 1.51668i 0.0570005 + 0.0987278i
\(237\) −3.38859 3.14218i −0.220113 0.204107i
\(238\) 9.56249 + 0.820036i 0.619844 + 0.0531551i
\(239\) 24.8065i 1.60460i −0.596922 0.802299i \(-0.703610\pi\)
0.596922 0.802299i \(-0.296390\pi\)
\(240\) 0 0
\(241\) −19.3439 11.1682i −1.24605 0.719408i −0.275731 0.961235i \(-0.588920\pi\)
−0.970319 + 0.241827i \(0.922253\pi\)
\(242\) 6.77761 11.7392i 0.435681 0.754622i
\(243\) −1.14066 + 15.5467i −0.0731735 + 0.997319i
\(244\) 3.42307i 0.219140i
\(245\) 0 0
\(246\) 9.46395 + 8.77576i 0.603399 + 0.559522i
\(247\) −23.2279 + 13.4106i −1.47795 + 0.853297i
\(248\) 4.36166 + 2.51820i 0.276966 + 0.159906i
\(249\) 3.71642 + 12.0350i 0.235518 + 0.762686i
\(250\) 0 0
\(251\) −2.72107 −0.171752 −0.0858762 0.996306i \(-0.527369\pi\)
−0.0858762 + 0.996306i \(0.527369\pi\)
\(252\) −7.93685 0.0803398i −0.499974 0.00506093i
\(253\) 9.49815i 0.597144i
\(254\) 6.98605 4.03340i 0.438344 0.253078i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 9.96256 5.75189i 0.621448 0.358793i −0.155985 0.987759i \(-0.549855\pi\)
0.777432 + 0.628966i \(0.216522\pi\)
\(258\) −5.47425 + 5.90354i −0.340812 + 0.367538i
\(259\) 6.54044 + 13.9633i 0.406403 + 0.867635i
\(260\) 0 0
\(261\) −1.35366 1.98279i −0.0837895 0.122732i
\(262\) 1.69151 2.92978i 0.104502 0.181002i
\(263\) −6.39277 + 11.0726i −0.394195 + 0.682766i −0.992998 0.118130i \(-0.962310\pi\)
0.598803 + 0.800896i \(0.295643\pi\)
\(264\) 8.36827 + 1.90726i 0.515032 + 0.117383i
\(265\) 0 0
\(266\) 6.36874 9.12889i 0.390493 0.559728i
\(267\) 2.39398 + 2.21990i 0.146509 + 0.135856i
\(268\) 6.91343 3.99147i 0.422305 0.243818i
\(269\) −5.84575 + 10.1251i −0.356422 + 0.617341i −0.987360 0.158492i \(-0.949337\pi\)
0.630938 + 0.775833i \(0.282670\pi\)
\(270\) 0 0
\(271\) 19.1130 11.0349i 1.16103 0.670323i 0.209482 0.977812i \(-0.432822\pi\)
0.951552 + 0.307489i \(0.0994888\pi\)
\(272\) 3.62755i 0.219952i
\(273\) 6.20340 + 28.5488i 0.375447 + 1.72785i
\(274\) −14.8274 −0.895756
\(275\) 0 0
\(276\) −3.17212 + 0.979554i −0.190939 + 0.0589622i
\(277\) 6.76068 + 3.90328i 0.406210 + 0.234525i 0.689160 0.724609i \(-0.257980\pi\)
−0.282950 + 0.959135i \(0.591313\pi\)
\(278\) 6.27582 3.62334i 0.376398 0.217314i
\(279\) 15.0663 1.13852i 0.901994 0.0681615i
\(280\) 0 0
\(281\) 23.0892i 1.37738i 0.725054 + 0.688692i \(0.241815\pi\)
−0.725054 + 0.688692i \(0.758185\pi\)
\(282\) −1.02638 0.233928i −0.0611203 0.0139302i
\(283\) 12.3752 21.4345i 0.735631 1.27415i −0.218815 0.975766i \(-0.570219\pi\)
0.954446 0.298384i \(-0.0964477\pi\)
\(284\) 2.15432 + 1.24379i 0.127835 + 0.0738056i
\(285\) 0 0
\(286\) 31.5913i 1.86803i
\(287\) −1.68450 + 19.6431i −0.0994329 + 1.15949i
\(288\) 0.226058 + 2.99147i 0.0133206 + 0.176274i
\(289\) −1.92045 3.32632i −0.112968 0.195666i
\(290\) 0 0
\(291\) −29.2199 + 9.02314i −1.71290 + 0.528946i
\(292\) 7.54666 + 13.0712i 0.441635 + 0.764934i
\(293\) 25.3384i 1.48029i 0.672449 + 0.740143i \(0.265242\pi\)
−0.672449 + 0.740143i \(0.734758\pi\)
\(294\) −7.35696 9.63718i −0.429066 0.562052i
\(295\) 0 0
\(296\) 5.04710 2.91394i 0.293357 0.169370i
\(297\) 23.9599 9.42947i 1.39029 0.547153i
\(298\) −5.70973 3.29651i −0.330756 0.190962i
\(299\) 6.10989 + 10.5826i 0.353344 + 0.612010i
\(300\) 0 0
\(301\) −12.2532 1.05078i −0.706262 0.0605659i
\(302\) 11.7743 0.677538
\(303\) −0.442016 + 1.93939i −0.0253932 + 0.111415i
\(304\) −3.64345 2.10355i −0.208966 0.120647i
\(305\) 0 0
\(306\) −6.13602 8.98783i −0.350773 0.513800i
\(307\) 13.1396 0.749919 0.374960 0.927041i \(-0.377657\pi\)
0.374960 + 0.927041i \(0.377657\pi\)
\(308\) 5.56119 + 11.8726i 0.316878 + 0.676507i
\(309\) −9.25059 8.57792i −0.526248 0.487981i
\(310\) 0 0
\(311\) −3.80332 + 6.58755i −0.215667 + 0.373545i −0.953479 0.301461i \(-0.902526\pi\)
0.737812 + 0.675006i \(0.235859\pi\)
\(312\) 10.5506 3.25805i 0.597312 0.184451i
\(313\) −6.21272 10.7608i −0.351164 0.608234i 0.635290 0.772274i \(-0.280881\pi\)
−0.986454 + 0.164040i \(0.947547\pi\)
\(314\) 1.54479 0.0871777
\(315\) 0 0
\(316\) −2.66807 −0.150091
\(317\) −13.8679 24.0199i −0.778898 1.34909i −0.932577 0.360971i \(-0.882445\pi\)
0.153679 0.988121i \(-0.450888\pi\)
\(318\) 23.6765 7.31132i 1.32771 0.409998i
\(319\) −1.98279 + 3.43430i −0.111015 + 0.192284i
\(320\) 0 0
\(321\) 3.41182 + 3.16373i 0.190429 + 0.176582i
\(322\) −4.15913 2.90161i −0.231779 0.161700i
\(323\) 15.2614 0.849169
\(324\) 5.62019 + 7.02947i 0.312233 + 0.390526i
\(325\) 0 0
\(326\) −2.92508 1.68880i −0.162005 0.0935337i
\(327\) −3.47303 + 15.2383i −0.192059 + 0.842678i
\(328\) 7.45163 0.411447
\(329\) −0.682090 1.45620i −0.0376048 0.0802830i
\(330\) 0 0
\(331\) −5.89462 10.2098i −0.323997 0.561180i 0.657312 0.753619i \(-0.271694\pi\)
−0.981309 + 0.192439i \(0.938360\pi\)
\(332\) 6.29787 + 3.63608i 0.345640 + 0.199556i
\(333\) 7.57604 15.7570i 0.415165 0.863477i
\(334\) −11.0578 + 6.38423i −0.605056 + 0.349329i
\(335\) 0 0
\(336\) −3.39161 + 3.08172i −0.185027 + 0.168122i
\(337\) 5.58238i 0.304092i −0.988373 0.152046i \(-0.951414\pi\)
0.988373 0.152046i \(-0.0485861\pi\)
\(338\) −13.8218 23.9401i −0.751807 1.30217i
\(339\) 20.5655 6.35064i 1.11696 0.344920i
\(340\) 0 0
\(341\) −12.4785 21.6134i −0.675749 1.17043i
\(342\) −12.5854 + 0.951048i −0.680541 + 0.0514268i
\(343\) 4.70101 17.9137i 0.253831 0.967249i
\(344\) 4.64827i 0.250618i
\(345\) 0 0
\(346\) 0.214390 + 0.123778i 0.0115257 + 0.00665435i
\(347\) −15.9546 + 27.6342i −0.856489 + 1.48348i 0.0187674 + 0.999824i \(0.494026\pi\)
−0.875257 + 0.483659i \(0.839308\pi\)
\(348\) −1.35145 0.308016i −0.0724453 0.0165114i
\(349\) 1.64353i 0.0879759i −0.999032 0.0439879i \(-0.985994\pi\)
0.999032 0.0439879i \(-0.0140063\pi\)
\(350\) 0 0
\(351\) 20.6299 25.9188i 1.10114 1.38344i
\(352\) 4.29143 2.47766i 0.228734 0.132060i
\(353\) 12.6446 + 7.30038i 0.673006 + 0.388560i 0.797215 0.603696i \(-0.206306\pi\)
−0.124209 + 0.992256i \(0.539639\pi\)
\(354\) 2.89833 0.895006i 0.154044 0.0475690i
\(355\) 0 0
\(356\) 1.88495 0.0999021
\(357\) 5.06534 15.8330i 0.268086 0.837970i
\(358\) 19.5963i 1.03570i
\(359\) 0.438209 0.253000i 0.0231278 0.0133528i −0.488392 0.872625i \(-0.662416\pi\)
0.511519 + 0.859272i \(0.329083\pi\)
\(360\) 0 0
\(361\) −0.650173 + 1.12613i −0.0342196 + 0.0592701i
\(362\) 12.8261 7.40517i 0.674127 0.389207i
\(363\) −17.2158 15.9639i −0.903595 0.837889i
\(364\) 13.8335 + 9.65089i 0.725072 + 0.505844i
\(365\) 0 0
\(366\) 5.78070 + 1.31751i 0.302162 + 0.0688672i
\(367\) 0.678660 1.17547i 0.0354258 0.0613592i −0.847769 0.530366i \(-0.822055\pi\)
0.883195 + 0.469007i \(0.155388\pi\)
\(368\) −0.958379 + 1.65996i −0.0499590 + 0.0865314i
\(369\) 18.4626 12.6045i 0.961125 0.656163i
\(370\) 0 0
\(371\) 31.0434 + 21.6574i 1.61170 + 1.12439i
\(372\) 5.93136 6.39649i 0.307527 0.331643i
\(373\) 29.5397 17.0548i 1.52951 0.883062i 0.530125 0.847919i \(-0.322145\pi\)
0.999382 0.0351422i \(-0.0111884\pi\)
\(374\) −8.98783 + 15.5674i −0.464750 + 0.804970i
\(375\) 0 0
\(376\) −0.526352 + 0.303890i −0.0271445 + 0.0156719i
\(377\) 5.10190i 0.262761i
\(378\) −3.19049 + 13.3724i −0.164101 + 0.687801i
\(379\) 1.53951 0.0790795 0.0395398 0.999218i \(-0.487411\pi\)
0.0395398 + 0.999218i \(0.487411\pi\)
\(380\) 0 0
\(381\) −4.12252 13.3501i −0.211203 0.683945i
\(382\) −0.463759 0.267752i −0.0237280 0.0136994i
\(383\) −28.1685 + 16.2631i −1.43934 + 0.831004i −0.997804 0.0662394i \(-0.978900\pi\)
−0.441537 + 0.897243i \(0.645567\pi\)
\(384\) 1.27005 + 1.17770i 0.0648120 + 0.0600991i
\(385\) 0 0
\(386\) 5.53544i 0.281747i
\(387\) 7.86258 + 11.5168i 0.399677 + 0.585433i
\(388\) −8.82809 + 15.2907i −0.448178 + 0.776267i
\(389\) −6.15025 3.55085i −0.311830 0.180035i 0.335915 0.941892i \(-0.390954\pi\)
−0.647745 + 0.761857i \(0.724288\pi\)
\(390\) 0 0
\(391\) 6.95313i 0.351635i
\(392\) −6.89780 1.19181i −0.348391 0.0601956i
\(393\) −4.29660 3.98417i −0.216735 0.200975i
\(394\) 0.333227 + 0.577166i 0.0167877 + 0.0290772i
\(395\) 0 0
\(396\) 6.44174 13.3978i 0.323709 0.673265i
\(397\) 6.51194 + 11.2790i 0.326825 + 0.566077i 0.981880 0.189504i \(-0.0606879\pi\)
−0.655055 + 0.755581i \(0.727355\pi\)
\(398\) 9.02198i 0.452231i
\(399\) −12.9651 14.2688i −0.649067 0.714334i
\(400\) 0 0
\(401\) −20.2676 + 11.7015i −1.01211 + 0.584345i −0.911810 0.410612i \(-0.865315\pi\)
−0.100305 + 0.994957i \(0.531982\pi\)
\(402\) −4.07966 13.2113i −0.203475 0.658920i
\(403\) −27.8066 16.0541i −1.38514 0.799714i
\(404\) 0.574210 + 0.994562i 0.0285680 + 0.0494813i
\(405\) 0 0
\(406\) −0.898114 1.91739i −0.0445727 0.0951587i
\(407\) −28.8791 −1.43148
\(408\) −6.12600 1.39621i −0.303282 0.0691226i
\(409\) −11.4311 6.59972i −0.565229 0.326335i 0.190013 0.981782i \(-0.439147\pi\)
−0.755242 + 0.655447i \(0.772480\pi\)
\(410\) 0 0
\(411\) −5.70692 + 25.0397i −0.281502 + 1.23512i
\(412\) −7.28364 −0.358839
\(413\) 3.80015 + 2.65116i 0.186993 + 0.130455i
\(414\) 0.433299 + 5.73392i 0.0212955 + 0.281807i
\(415\) 0 0
\(416\) 3.18762 5.52111i 0.156286 0.270695i
\(417\) −3.70340 11.9928i −0.181356 0.587292i
\(418\) 10.4238 + 18.0545i 0.509843 + 0.883073i
\(419\) 27.9492 1.36541 0.682704 0.730695i \(-0.260804\pi\)
0.682704 + 0.730695i \(0.260804\pi\)
\(420\) 0 0
\(421\) 24.6795 1.20281 0.601403 0.798946i \(-0.294609\pi\)
0.601403 + 0.798946i \(0.294609\pi\)
\(422\) −5.71931 9.90613i −0.278412 0.482223i
\(423\) −0.790091 + 1.64326i −0.0384155 + 0.0798982i
\(424\) 7.15326 12.3898i 0.347393 0.601703i
\(425\) 0 0
\(426\) 2.92963 3.15936i 0.141941 0.153072i
\(427\) 3.84160 + 8.20147i 0.185908 + 0.396897i
\(428\) 2.68637 0.129850
\(429\) −53.3497 12.1592i −2.57575 0.587052i
\(430\) 0 0
\(431\) −2.89638 1.67223i −0.139514 0.0805483i 0.428619 0.903486i \(-0.359000\pi\)
−0.568132 + 0.822937i \(0.692334\pi\)
\(432\) 5.13884 + 0.769634i 0.247242 + 0.0370290i
\(433\) −14.6756 −0.705264 −0.352632 0.935762i \(-0.614713\pi\)
−0.352632 + 0.935762i \(0.614713\pi\)
\(434\) 13.2764 + 1.13852i 0.637285 + 0.0546507i
\(435\) 0 0
\(436\) 4.51172 + 7.81452i 0.216072 + 0.374248i
\(437\) −6.98361 4.03199i −0.334072 0.192876i
\(438\) 24.9786 7.71340i 1.19352 0.368561i
\(439\) 5.70453 3.29351i 0.272262 0.157191i −0.357653 0.933855i \(-0.616423\pi\)
0.629915 + 0.776664i \(0.283090\pi\)
\(440\) 0 0
\(441\) −19.1064 + 8.71477i −0.909827 + 0.414989i
\(442\) 23.1265i 1.10001i
\(443\) −20.3605 35.2654i −0.967357 1.67551i −0.703144 0.711047i \(-0.748221\pi\)
−0.264213 0.964464i \(-0.585112\pi\)
\(444\) −2.97833 9.64481i −0.141345 0.457723i
\(445\) 0 0
\(446\) 2.61699 + 4.53275i 0.123918 + 0.214632i
\(447\) −7.76459 + 8.37348i −0.367253 + 0.396052i
\(448\) −0.226058 + 2.63608i −0.0106802 + 0.124543i
\(449\) 18.3485i 0.865919i 0.901413 + 0.432960i \(0.142531\pi\)
−0.901413 + 0.432960i \(0.857469\pi\)
\(450\) 0 0
\(451\) −31.9782 18.4626i −1.50579 0.869370i
\(452\) 6.21336 10.7619i 0.292252 0.506195i
\(453\) 4.53183 19.8839i 0.212924 0.934226i
\(454\) 13.4623i 0.631819i
\(455\) 0 0
\(456\) −4.95469 + 5.34323i −0.232024 + 0.250219i
\(457\) −7.48533 + 4.32166i −0.350149 + 0.202159i −0.664751 0.747065i \(-0.731462\pi\)
0.314602 + 0.949224i \(0.398129\pi\)
\(458\) 14.3082 + 8.26082i 0.668576 + 0.386003i
\(459\) −17.5398 + 6.90285i −0.818690 + 0.322197i
\(460\) 0 0
\(461\) 24.7864 1.15442 0.577210 0.816596i \(-0.304141\pi\)
0.577210 + 0.816596i \(0.304141\pi\)
\(462\) 22.1903 4.82176i 1.03239 0.224329i
\(463\) 17.9797i 0.835589i 0.908542 + 0.417794i \(0.137197\pi\)
−0.908542 + 0.417794i \(0.862803\pi\)
\(464\) −0.693053 + 0.400134i −0.0321742 + 0.0185758i
\(465\) 0 0
\(466\) −9.31796 + 16.1392i −0.431646 + 0.747633i
\(467\) −1.10282 + 0.636712i −0.0510323 + 0.0294635i −0.525299 0.850918i \(-0.676047\pi\)
0.474267 + 0.880381i \(0.342713\pi\)
\(468\) −1.44117 19.0713i −0.0666182 0.881572i
\(469\) 12.0847 17.3220i 0.558018 0.799857i
\(470\) 0 0
\(471\) 0.594576 2.60876i 0.0273966 0.120205i
\(472\) 0.875658 1.51668i 0.0403054 0.0698111i
\(473\) 11.5168 19.9477i 0.529545 0.917198i
\(474\) −1.02692 + 4.50570i −0.0471678 + 0.206954i
\(475\) 0 0
\(476\) −4.07107 8.69138i −0.186597 0.398369i
\(477\) −3.23411 42.7976i −0.148080 1.95957i
\(478\) −21.4831 + 12.4032i −0.982612 + 0.567311i
\(479\) 7.11334 12.3207i 0.325017 0.562945i −0.656499 0.754327i \(-0.727963\pi\)
0.981516 + 0.191381i \(0.0612967\pi\)
\(480\) 0 0
\(481\) −32.1764 + 18.5771i −1.46712 + 0.847042i
\(482\) 22.3364i 1.01740i
\(483\) −6.50089 + 5.90692i −0.295801 + 0.268774i
\(484\) −13.5552 −0.616146
\(485\) 0 0
\(486\) 14.0341 6.78549i 0.636602 0.307796i
\(487\) −34.5502 19.9476i −1.56562 0.903910i −0.996670 0.0815361i \(-0.974017\pi\)
−0.568947 0.822374i \(-0.692649\pi\)
\(488\) 2.96447 1.71154i 0.134195 0.0774776i
\(489\) −3.97778 + 4.28971i −0.179881 + 0.193988i
\(490\) 0 0
\(491\) 15.9778i 0.721069i 0.932746 + 0.360535i \(0.117406\pi\)
−0.932746 + 0.360535i \(0.882594\pi\)
\(492\) 2.86806 12.5839i 0.129302 0.567326i
\(493\) 1.45151 2.51408i 0.0653725 0.113229i
\(494\) 23.2279 + 13.4106i 1.04507 + 0.603372i
\(495\) 0 0
\(496\) 5.03641i 0.226141i
\(497\) 6.55747 + 0.562340i 0.294143 + 0.0252244i
\(498\) 8.56439 9.23600i 0.383780 0.413875i
\(499\) −6.90313 11.9566i −0.309027 0.535250i 0.669123 0.743152i \(-0.266670\pi\)
−0.978150 + 0.207902i \(0.933337\pi\)
\(500\) 0 0
\(501\) 6.52529 + 21.1310i 0.291528 + 0.944066i
\(502\) 1.36054 + 2.35652i 0.0607237 + 0.105176i
\(503\) 2.11183i 0.0941620i 0.998891 + 0.0470810i \(0.0149919\pi\)
−0.998891 + 0.0470810i \(0.985008\pi\)
\(504\) 3.89885 + 6.91368i 0.173668 + 0.307960i
\(505\) 0 0
\(506\) 8.22564 4.74908i 0.365674 0.211122i
\(507\) −45.7485 + 14.1272i −2.03176 + 0.627411i
\(508\) −6.98605 4.03340i −0.309956 0.178953i
\(509\) −8.09556 14.0219i −0.358830 0.621511i 0.628936 0.777457i \(-0.283491\pi\)
−0.987766 + 0.155946i \(0.950157\pi\)
\(510\) 0 0
\(511\) 32.7507 + 22.8484i 1.44880 + 1.01075i
\(512\) 1.00000 0.0441942
\(513\) −3.23792 + 21.6196i −0.142958 + 0.954528i
\(514\) −9.96256 5.75189i −0.439430 0.253705i
\(515\) 0 0
\(516\) 7.84974 + 1.78907i 0.345566 + 0.0787596i
\(517\) 3.01174 0.132456
\(518\) 8.82232 12.6458i 0.387630 0.555625i
\(519\) 0.291546 0.314409i 0.0127975 0.0138010i
\(520\) 0 0
\(521\) 12.4676 21.5945i 0.546216 0.946073i −0.452314 0.891859i \(-0.649401\pi\)
0.998529 0.0542143i \(-0.0172654\pi\)
\(522\) −1.04032 + 2.16370i −0.0455336 + 0.0947026i
\(523\) −9.85929 17.0768i −0.431116 0.746716i 0.565853 0.824506i \(-0.308547\pi\)
−0.996970 + 0.0777903i \(0.975214\pi\)
\(524\) −3.38301 −0.147788
\(525\) 0 0
\(526\) 12.7855 0.557476
\(527\) 9.13490 + 15.8221i 0.397923 + 0.689222i
\(528\) −2.53241 8.20077i −0.110209 0.356893i
\(529\) 9.66302 16.7368i 0.420131 0.727689i
\(530\) 0 0
\(531\) −0.395899 5.23901i −0.0171806 0.227354i
\(532\) −11.0902 0.951048i −0.480822 0.0412332i
\(533\) −47.5059 −2.05771
\(534\) 0.725498 3.18320i 0.0313954 0.137750i
\(535\) 0 0
\(536\) −6.91343 3.99147i −0.298615 0.172405i
\(537\) 33.0932 + 7.54243i 1.42808 + 0.325480i
\(538\) 11.6915 0.504057
\(539\) 26.6485 + 22.2050i 1.14783 + 0.956436i
\(540\) 0 0
\(541\) 4.27923 + 7.41184i 0.183978 + 0.318660i 0.943232 0.332135i \(-0.107769\pi\)
−0.759253 + 0.650795i \(0.774436\pi\)
\(542\) −19.1130 11.0349i −0.820975 0.473990i
\(543\) −7.56879 24.5102i −0.324808 1.05184i
\(544\) −3.14155 + 1.81377i −0.134693 + 0.0777649i
\(545\) 0 0
\(546\) 21.6223 19.6467i 0.925348 0.840801i
\(547\) 33.5472i 1.43437i −0.696881 0.717187i \(-0.745430\pi\)
0.696881 0.717187i \(-0.254570\pi\)
\(548\) 7.41370 + 12.8409i 0.316698 + 0.548536i
\(549\) 4.44987 9.25502i 0.189916 0.394995i
\(550\) 0 0
\(551\) −1.68340 2.91574i −0.0717154 0.124215i
\(552\) 2.43438 + 2.25736i 0.103614 + 0.0960796i
\(553\) −6.39254 + 2.99429i −0.271838 + 0.127330i
\(554\) 7.80656i 0.331669i
\(555\) 0 0
\(556\) −6.27582 3.62334i −0.266154 0.153664i
\(557\) 2.67514 4.63348i 0.113349 0.196327i −0.803769 0.594941i \(-0.797175\pi\)
0.917119 + 0.398614i \(0.130509\pi\)
\(558\) −8.51912 12.4785i −0.360643 0.528257i
\(559\) 29.6338i 1.25338i
\(560\) 0 0
\(561\) 22.8300 + 21.1699i 0.963883 + 0.893793i
\(562\) 19.9958 11.5446i 0.843472 0.486979i
\(563\) −25.4066 14.6685i −1.07076 0.618205i −0.142372 0.989813i \(-0.545473\pi\)
−0.928390 + 0.371609i \(0.878806\pi\)
\(564\) 0.310604 + 1.00584i 0.0130788 + 0.0423535i
\(565\) 0 0
\(566\) −24.7505 −1.04034
\(567\) 21.3546 + 10.5348i 0.896807 + 0.442421i
\(568\) 2.48759i 0.104377i
\(569\) 36.5568 21.1061i 1.53254 0.884812i 0.533295 0.845929i \(-0.320954\pi\)
0.999244 0.0388825i \(-0.0123798\pi\)
\(570\) 0 0
\(571\) 15.6790 27.1568i 0.656145 1.13648i −0.325461 0.945556i \(-0.605519\pi\)
0.981605 0.190921i \(-0.0611473\pi\)
\(572\) −27.3589 + 15.7957i −1.14393 + 0.660450i
\(573\) −0.630661 + 0.680116i −0.0263462 + 0.0284123i
\(574\) 17.8536 8.36271i 0.745196 0.349053i
\(575\) 0 0
\(576\) 2.47766 1.69151i 0.103236 0.0704795i
\(577\) 16.0385 27.7794i 0.667689 1.15647i −0.310859 0.950456i \(-0.600617\pi\)
0.978549 0.206016i \(-0.0660499\pi\)
\(578\) −1.92045 + 3.32632i −0.0798802 + 0.138357i
\(579\) 9.34795 + 2.13054i 0.388488 + 0.0885422i
\(580\) 0 0
\(581\) 19.1699 + 1.64393i 0.795303 + 0.0682017i
\(582\) 22.4242 + 20.7936i 0.929515 + 0.861924i
\(583\) −61.3955 + 35.4467i −2.54274 + 1.46805i
\(584\) 7.54666 13.0712i 0.312283 0.540890i
\(585\) 0 0
\(586\) 21.9437 12.6692i 0.906487 0.523360i
\(587\) 1.93731i 0.0799612i 0.999200 + 0.0399806i \(0.0127296\pi\)
−0.999200 + 0.0399806i \(0.987270\pi\)
\(588\) −4.66756 + 11.1899i −0.192487 + 0.461464i
\(589\) 21.1887 0.873063
\(590\) 0 0
\(591\) 1.10294 0.340590i 0.0453690 0.0140100i
\(592\) −5.04710 2.91394i −0.207435 0.119762i
\(593\) −9.75274 + 5.63074i −0.400497 + 0.231227i −0.686698 0.726942i \(-0.740941\pi\)
0.286201 + 0.958169i \(0.407607\pi\)
\(594\) −20.1461 16.0351i −0.826604 0.657929i
\(595\) 0 0
\(596\) 6.59303i 0.270061i
\(597\) −15.2358 3.47247i −0.623560 0.142119i
\(598\) 6.10989 10.5826i 0.249852 0.432756i
\(599\) 38.4047 + 22.1730i 1.56917 + 0.905963i 0.996265 + 0.0863446i \(0.0275186\pi\)
0.572909 + 0.819619i \(0.305815\pi\)
\(600\) 0 0
\(601\) 17.7126i 0.722514i 0.932466 + 0.361257i \(0.117652\pi\)
−0.932466 + 0.361257i \(0.882348\pi\)
\(602\) 5.21659 + 11.1370i 0.212613 + 0.453909i
\(603\) −23.8807 + 1.80461i −0.972499 + 0.0734893i
\(604\) −5.88717 10.1969i −0.239546 0.414905i
\(605\) 0 0
\(606\) 1.90057 0.586898i 0.0772053 0.0238411i
\(607\) −9.17497 15.8915i −0.372400 0.645016i 0.617534 0.786544i \(-0.288132\pi\)
−0.989934 + 0.141528i \(0.954799\pi\)
\(608\) 4.20710i 0.170620i
\(609\) −3.58366 + 0.778699i −0.145217 + 0.0315545i
\(610\) 0 0
\(611\) 3.35562 1.93737i 0.135754 0.0783775i
\(612\) −4.71568 + 9.80787i −0.190620 + 0.396460i
\(613\) 0.547045 + 0.315836i 0.0220949 + 0.0127565i 0.511007 0.859577i \(-0.329273\pi\)
−0.488912 + 0.872333i \(0.662606\pi\)
\(614\) −6.56982 11.3793i −0.265136 0.459230i
\(615\) 0 0
\(616\) 7.50142 10.7525i 0.302241 0.433229i
\(617\) −15.5902 −0.627638 −0.313819 0.949483i \(-0.601608\pi\)
−0.313819 + 0.949483i \(0.601608\pi\)
\(618\) −2.80340 + 12.3002i −0.112769 + 0.494787i
\(619\) −10.9863 6.34296i −0.441578 0.254945i 0.262689 0.964881i \(-0.415391\pi\)
−0.704267 + 0.709936i \(0.748724\pi\)
\(620\) 0 0
\(621\) 9.84991 + 1.47520i 0.395263 + 0.0591978i
\(622\) 7.60664 0.304999
\(623\) 4.51622 2.11541i 0.180938 0.0847522i
\(624\) −8.09687 7.50809i −0.324134 0.300564i
\(625\) 0 0
\(626\) −6.21272 + 10.7608i −0.248310 + 0.430086i
\(627\) 34.5014 10.6541i 1.37785 0.425483i
\(628\) −0.772397 1.33783i −0.0308220 0.0533852i
\(629\) 21.1409 0.842945
\(630\) 0 0
\(631\) −5.96052 −0.237284 −0.118642 0.992937i \(-0.537854\pi\)
−0.118642 + 0.992937i \(0.537854\pi\)
\(632\) 1.33404 + 2.31062i 0.0530651 + 0.0919115i
\(633\) −18.9302 + 5.84568i −0.752409 + 0.232345i
\(634\) −13.8679 + 24.0199i −0.550764 + 0.953952i
\(635\) 0 0
\(636\) −18.1700 16.8488i −0.720488 0.668097i
\(637\) 43.9751 + 7.59808i 1.74235 + 0.301047i
\(638\) 3.96559 0.156999
\(639\) −4.20778 6.16340i −0.166457 0.243820i
\(640\) 0 0
\(641\) 11.2070 + 6.47036i 0.442649 + 0.255564i 0.704721 0.709485i \(-0.251072\pi\)
−0.262071 + 0.965048i \(0.584406\pi\)
\(642\) 1.03396 4.53659i 0.0408070 0.179045i
\(643\) 27.7420 1.09404 0.547019 0.837120i \(-0.315763\pi\)
0.547019 + 0.837120i \(0.315763\pi\)
\(644\) −0.433299 + 5.05272i −0.0170744 + 0.199105i
\(645\) 0 0
\(646\) −7.63072 13.2168i −0.300227 0.520008i
\(647\) 40.5050 + 23.3856i 1.59242 + 0.919382i 0.992891 + 0.119027i \(0.0379774\pi\)
0.599526 + 0.800356i \(0.295356\pi\)
\(648\) 3.27761 8.38196i 0.128756 0.329275i
\(649\) −7.51566 + 4.33917i −0.295015 + 0.170327i
\(650\) 0 0
\(651\) 7.03261 21.9822i 0.275630 0.861549i
\(652\) 3.37759i 0.132277i
\(653\) 15.7992 + 27.3651i 0.618271 + 1.07088i 0.989801 + 0.142456i \(0.0455001\pi\)
−0.371530 + 0.928421i \(0.621167\pi\)
\(654\) 14.9332 4.61140i 0.583936 0.180320i
\(655\) 0 0
\(656\) −3.72581 6.45330i −0.145469 0.251959i
\(657\) −3.41197 45.1512i −0.133113 1.76152i
\(658\) −0.920062 + 1.31881i −0.0358678 + 0.0514125i
\(659\) 29.8627i 1.16329i 0.813444 + 0.581643i \(0.197590\pi\)
−0.813444 + 0.581643i \(0.802410\pi\)
\(660\) 0 0
\(661\) −12.0007 6.92861i −0.466773 0.269492i 0.248115 0.968731i \(-0.420189\pi\)
−0.714888 + 0.699239i \(0.753522\pi\)
\(662\) −5.89462 + 10.2098i −0.229101 + 0.396814i
\(663\) 39.0547 + 8.90115i 1.51676 + 0.345692i
\(664\) 7.27215i 0.282214i
\(665\) 0 0
\(666\) −17.4340 + 1.31744i −0.675552 + 0.0510498i
\(667\) −1.32841 + 0.766960i −0.0514364 + 0.0296968i
\(668\) 11.0578 + 6.38423i 0.427840 + 0.247013i
\(669\) 8.66191 2.67481i 0.334889 0.103414i
\(670\) 0 0
\(671\) −16.9624 −0.654827
\(672\) 4.36465 + 1.39635i 0.168370 + 0.0538656i
\(673\) 21.1836i 0.816568i −0.912855 0.408284i \(-0.866127\pi\)
0.912855 0.408284i \(-0.133873\pi\)
\(674\) −4.83448 + 2.79119i −0.186217 + 0.107513i
\(675\) 0 0
\(676\) −13.8218 + 23.9401i −0.531608 + 0.920771i
\(677\) −41.8606 + 24.1682i −1.60883 + 0.928860i −0.619202 + 0.785232i \(0.712544\pi\)
−0.989632 + 0.143628i \(0.954123\pi\)
\(678\) −15.7826 14.6349i −0.606126 0.562050i
\(679\) −3.99132 + 46.5430i −0.153173 + 1.78616i
\(680\) 0 0
\(681\) −22.7344 5.18152i −0.871186 0.198556i
\(682\) −12.4785 + 21.6134i −0.477827 + 0.827620i
\(683\) 13.1638 22.8004i 0.503699 0.872433i −0.496291 0.868156i \(-0.665305\pi\)
0.999991 0.00427708i \(-0.00136144\pi\)
\(684\) 7.11633 + 10.4238i 0.272100 + 0.398562i
\(685\) 0 0
\(686\) −17.8642 + 4.88565i −0.682059 + 0.186535i
\(687\) 19.4575 20.9833i 0.742349 0.800563i
\(688\) 4.02552 2.32413i 0.153471 0.0886068i
\(689\) −45.6037 + 78.9880i −1.73736 + 3.00920i
\(690\) 0 0
\(691\) −16.5539 + 9.55742i −0.629741 + 0.363581i −0.780652 0.624966i \(-0.785113\pi\)
0.150911 + 0.988547i \(0.451779\pi\)
\(692\) 0.247556i 0.00941068i
\(693\) 0.398110 39.3296i 0.0151229 1.49401i
\(694\) 31.9093 1.21126
\(695\) 0 0
\(696\) 0.408975 + 1.32440i 0.0155022 + 0.0502012i
\(697\) 23.4096 + 13.5156i 0.886704 + 0.511939i
\(698\) −1.42333 + 0.821763i −0.0538740 + 0.0311042i
\(699\) 23.6686 + 21.9475i 0.895227 + 0.830130i
\(700\) 0 0
\(701\) 36.3536i 1.37306i −0.727103 0.686528i \(-0.759134\pi\)
0.727103 0.686528i \(-0.240866\pi\)
\(702\) −32.7613 4.90660i −1.23650 0.185188i
\(703\) 12.2592 21.2336i 0.462366 0.800842i
\(704\) −4.29143 2.47766i −0.161740 0.0933804i
\(705\) 0 0
\(706\) 14.6008i 0.549507i
\(707\) 2.49194 + 1.73849i 0.0937189 + 0.0653827i
\(708\) −2.22426 2.06252i −0.0835928 0.0775143i
\(709\) 2.54606 + 4.40991i 0.0956193 + 0.165618i 0.909867 0.414900i \(-0.136184\pi\)
−0.814248 + 0.580518i \(0.802850\pi\)
\(710\) 0 0
\(711\) 7.21372 + 3.46840i 0.270536 + 0.130075i
\(712\) −0.942474 1.63241i −0.0353207 0.0611773i
\(713\) 9.65357i 0.361529i
\(714\) −16.2444 + 3.52978i −0.607933 + 0.132099i
\(715\) 0 0
\(716\) 16.9709 9.79815i 0.634232 0.366174i
\(717\) 12.6773 + 41.0533i 0.473442 + 1.53316i
\(718\) −0.438209 0.253000i −0.0163538 0.00944189i
\(719\) −20.5822 35.6494i −0.767587 1.32950i −0.938868 0.344278i \(-0.888124\pi\)
0.171281 0.985222i \(-0.445209\pi\)
\(720\) 0 0
\(721\) −17.4511 + 8.17418i −0.649914 + 0.304422i
\(722\) 1.30035 0.0483938
\(723\) 37.7205 + 8.59708i 1.40284 + 0.319729i
\(724\) −12.8261 7.40517i −0.476679 0.275211i
\(725\) 0 0
\(726\) −5.21727 + 22.8913i −0.193631 + 0.849576i
\(727\) −46.1288 −1.71082 −0.855412 0.517948i \(-0.826696\pi\)
−0.855412 + 0.517948i \(0.826696\pi\)
\(728\) 1.44117 16.8056i 0.0534134 0.622857i
\(729\) −6.05736 26.3118i −0.224347 0.974509i
\(730\) 0 0
\(731\) −8.43091 + 14.6028i −0.311828 + 0.540103i
\(732\) −1.74935 5.66498i −0.0646579 0.209384i
\(733\) 4.99864 + 8.65789i 0.184629 + 0.319787i 0.943451 0.331511i \(-0.107558\pi\)
−0.758823 + 0.651297i \(0.774225\pi\)
\(734\) −1.35732 −0.0500996
\(735\) 0 0
\(736\) 1.91676 0.0706526
\(737\) 19.7790 + 34.2583i 0.728570 + 1.26192i
\(738\) −20.1471 9.68684i −0.741625 0.356578i
\(739\) 0.418026 0.724042i 0.0153773 0.0266343i −0.858234 0.513258i \(-0.828438\pi\)
0.873612 + 0.486624i \(0.161772\pi\)
\(740\) 0 0
\(741\) 31.5873 34.0643i 1.16039 1.25138i
\(742\) 3.23411 37.7131i 0.118728 1.38449i
\(743\) 53.3336 1.95662 0.978310 0.207146i \(-0.0664175\pi\)
0.978310 + 0.207146i \(0.0664175\pi\)
\(744\) −8.50521 1.93847i −0.311816 0.0710676i
\(745\) 0 0
\(746\) −29.5397 17.0548i −1.08153 0.624419i
\(747\) −12.3009 18.0179i −0.450066 0.659241i
\(748\) 17.9757 0.657255
\(749\) 6.43637 3.01482i 0.235180 0.110159i
\(750\) 0 0
\(751\) −16.8660 29.2127i −0.615448 1.06599i −0.990306 0.138905i \(-0.955642\pi\)
0.374858 0.927082i \(-0.377691\pi\)
\(752\) 0.526352 + 0.303890i 0.0191941 + 0.0110817i
\(753\) 4.50321 1.39060i 0.164106 0.0506762i
\(754\) 4.41837 2.55095i 0.160908 0.0929001i
\(755\) 0 0
\(756\) 13.1761 3.92315i 0.479209 0.142684i
\(757\) 37.1033i 1.34854i 0.738483 + 0.674272i \(0.235542\pi\)
−0.738483 + 0.674272i \(0.764458\pi\)
\(758\) −0.769757 1.33326i −0.0279588 0.0484261i
\(759\) −4.85401 15.7189i −0.176189 0.570559i
\(760\) 0 0
\(761\) 8.95519 + 15.5108i 0.324625 + 0.562268i 0.981436 0.191787i \(-0.0614284\pi\)
−0.656811 + 0.754055i \(0.728095\pi\)
\(762\) −9.50024 + 10.2452i −0.344157 + 0.371146i
\(763\) 19.5798 + 13.6598i 0.708835 + 0.494517i
\(764\) 0.535503i 0.0193738i
\(765\) 0 0
\(766\) 28.1685 + 16.2631i 1.01777 + 0.587608i
\(767\) −5.58252 + 9.66922i −0.201573 + 0.349135i
\(768\) 0.384890 1.68874i 0.0138885 0.0609373i
\(769\) 0.619084i 0.0223247i −0.999938 0.0111624i \(-0.996447\pi\)
0.999938 0.0111624i \(-0.00355317\pi\)
\(770\) 0 0
\(771\) −13.5480 + 14.6104i −0.487918 + 0.526180i
\(772\) 4.79383 2.76772i 0.172534 0.0996125i
\(773\) 42.3803 + 24.4683i 1.52431 + 0.880062i 0.999585 + 0.0287914i \(0.00916585\pi\)
0.524727 + 0.851271i \(0.324167\pi\)
\(774\) 6.04258 12.5676i 0.217196 0.451733i
\(775\) 0 0
\(776\) 17.6562 0.633820
\(777\) −17.9599 19.7659i −0.644309 0.709098i
\(778\) 7.10169i 0.254608i
\(779\) 27.1496 15.6749i 0.972737 0.561610i
\(780\) 0 0
\(781\) −6.16340 + 10.6753i −0.220544 + 0.381993i
\(782\) −6.02159 + 3.47656i −0.215331 + 0.124322i
\(783\) 3.25353 + 2.58962i 0.116272 + 0.0925456i
\(784\) 2.41676 + 6.56957i 0.0863128 + 0.234628i
\(785\) 0 0
\(786\) −1.30209 + 5.71305i −0.0464440 + 0.203778i
\(787\) 0.0336053 0.0582062i 0.00119790 0.00207483i −0.865426 0.501037i \(-0.832952\pi\)
0.866624 + 0.498962i \(0.166285\pi\)
\(788\) 0.333227 0.577166i 0.0118707 0.0205607i
\(789\) 4.92103 21.5915i 0.175193 0.768678i
\(790\) 0 0
\(791\) 2.80916 32.7578i 0.0998822 1.16473i
\(792\) −14.8237 + 1.12019i −0.526737 + 0.0398042i
\(793\) −18.8992 + 10.9114i −0.671129 + 0.387477i
\(794\) 6.51194 11.2790i 0.231100 0.400277i
\(795\) 0 0
\(796\) −7.81326 + 4.51099i −0.276934 + 0.159888i
\(797\) 7.61311i 0.269670i −0.990868 0.134835i \(-0.956950\pi\)
0.990868 0.134835i \(-0.0430505\pi\)
\(798\) −5.87460 + 18.3625i −0.207959 + 0.650026i
\(799\) −2.20475 −0.0779984
\(800\) 0 0
\(801\) −5.09637 2.45036i −0.180071 0.0865793i
\(802\) 20.2676 + 11.7015i 0.715673 + 0.413194i
\(803\) −64.7720 + 37.3961i −2.28575 + 1.31968i
\(804\) −9.40149 + 10.1387i −0.331565 + 0.357566i
\(805\) 0 0
\(806\) 32.1083i 1.13097i
\(807\) 4.49995 19.7440i 0.158406 0.695021i
\(808\) 0.574210 0.994562i 0.0202007 0.0349886i
\(809\) −16.9690 9.79703i −0.596597 0.344445i 0.171105 0.985253i \(-0.445266\pi\)
−0.767702 + 0.640807i \(0.778600\pi\)
\(810\) 0 0
\(811\) 38.1099i 1.33822i 0.743164 + 0.669110i \(0.233324\pi\)
−0.743164 + 0.669110i \(0.766676\pi\)
\(812\) −1.21145 + 1.73649i −0.0425137 + 0.0609387i
\(813\) −25.9916 + 28.0298i −0.911564 + 0.983048i
\(814\) 14.4395 + 25.0100i 0.506105 + 0.876600i
\(815\) 0 0
\(816\) 1.85385 + 6.00338i 0.0648977 + 0.210160i
\(817\) 9.77786 + 16.9357i 0.342084 + 0.592507i
\(818\) 13.1994i 0.461508i
\(819\) −24.8561 44.0763i −0.868541 1.54015i
\(820\) 0 0
\(821\) −32.4054 + 18.7093i −1.13096 + 0.652958i −0.944175 0.329444i \(-0.893139\pi\)
−0.186781 + 0.982402i \(0.559805\pi\)
\(822\) 24.5385 7.57751i 0.855878 0.264296i
\(823\) 29.7795 + 17.1932i 1.03805 + 0.599318i 0.919280 0.393604i \(-0.128772\pi\)
0.118768 + 0.992922i \(0.462105\pi\)
\(824\) 3.64182 + 6.30781i 0.126869 + 0.219743i
\(825\) 0 0
\(826\) 0.395899 4.61660i 0.0137751 0.160632i
\(827\) −4.15552 −0.144502 −0.0722508 0.997386i \(-0.523018\pi\)
−0.0722508 + 0.997386i \(0.523018\pi\)
\(828\) 4.74908 3.24221i 0.165042 0.112675i
\(829\) 24.3399 + 14.0526i 0.845359 + 0.488068i 0.859082 0.511837i \(-0.171035\pi\)
−0.0137231 + 0.999906i \(0.504368\pi\)
\(830\) 0 0
\(831\) −13.1833 3.00467i −0.457323 0.104231i
\(832\) −6.37523 −0.221021
\(833\) −19.5081 16.2552i −0.675915 0.563208i
\(834\) −8.53440 + 9.20366i −0.295522 + 0.318697i
\(835\) 0 0
\(836\) 10.4238 18.0545i 0.360513 0.624427i
\(837\) −24.3519 + 9.58376i −0.841727 + 0.331263i
\(838\) −13.9746 24.2047i −0.482745 0.836138i
\(839\) −23.6646 −0.816992 −0.408496 0.912760i \(-0.633947\pi\)
−0.408496 + 0.912760i \(0.633947\pi\)
\(840\) 0 0
\(841\) 28.3596 0.977916
\(842\) −12.3398 21.3731i −0.425256 0.736565i
\(843\) −11.7997 38.2112i −0.406402 1.31606i
\(844\) −5.71931 + 9.90613i −0.196867 + 0.340983i
\(845\) 0 0
\(846\) 1.81815 0.137393i 0.0625094 0.00472368i
\(847\) −32.4774 + 15.2126i −1.11594 + 0.522709i
\(848\) −14.3065 −0.491288
\(849\) −9.52622 + 41.7972i −0.326939 + 1.43448i
\(850\) 0 0
\(851\) −9.67407 5.58533i −0.331623 0.191462i
\(852\) −4.20090 0.957449i −0.143921 0.0328017i
\(853\) 23.7742 0.814012 0.407006 0.913426i \(-0.366573\pi\)
0.407006 + 0.913426i \(0.366573\pi\)
\(854\) 5.18188 7.42766i 0.177320 0.254169i
\(855\) 0 0
\(856\) −1.34318 2.32646i −0.0459091 0.0795168i
\(857\) −19.3662 11.1811i −0.661535 0.381938i 0.131326 0.991339i \(-0.458076\pi\)
−0.792862 + 0.609402i \(0.791410\pi\)
\(858\) 16.1447 + 52.2818i 0.551170 + 1.78487i
\(859\) 37.1729 21.4618i 1.26832 0.732267i 0.293653 0.955912i \(-0.405129\pi\)
0.974671 + 0.223645i \(0.0717957\pi\)
\(860\) 0 0
\(861\) −7.25079 33.3690i −0.247106 1.13721i
\(862\) 3.34445i 0.113912i
\(863\) 11.7599 + 20.3687i 0.400312 + 0.693360i 0.993763 0.111510i \(-0.0355686\pi\)
−0.593452 + 0.804870i \(0.702235\pi\)
\(864\) −1.90290 4.83518i −0.0647379 0.164496i
\(865\) 0 0
\(866\) 7.33780 + 12.7094i 0.249348 + 0.431884i
\(867\) 4.87814 + 4.52342i 0.165670 + 0.153623i
\(868\) −5.65219 12.0669i −0.191848 0.409578i
\(869\) 13.2212i 0.448497i
\(870\) 0 0
\(871\) 44.0747 + 25.4466i 1.49342 + 0.862224i
\(872\) 4.51172 7.81452i 0.152786 0.264633i
\(873\) 43.7460 29.8655i 1.48058 1.01080i
\(874\) 8.06398i 0.272768i
\(875\) 0 0
\(876\) −19.1693 17.7754i −0.647670 0.600574i
\(877\) 7.09026 4.09356i 0.239421 0.138230i −0.375490 0.926827i \(-0.622525\pi\)
0.614911 + 0.788597i \(0.289192\pi\)
\(878\) −5.70453 3.29351i −0.192518 0.111151i
\(879\) −12.9491 41.9336i −0.436764 1.41439i
\(880\) 0 0
\(881\) 26.6496 0.897847 0.448923 0.893570i \(-0.351808\pi\)
0.448923 + 0.893570i \(0.351808\pi\)
\(882\) 17.1004 + 12.1892i 0.575800 + 0.410432i
\(883\) 5.41249i 0.182145i 0.995844 + 0.0910724i \(0.0290295\pi\)
−0.995844 + 0.0910724i \(0.970971\pi\)
\(884\) 20.0281 11.5632i 0.673618 0.388913i
\(885\) 0 0
\(886\) −20.3605 + 35.2654i −0.684025 + 1.18477i
\(887\) 20.8711 12.0499i 0.700782 0.404597i −0.106856 0.994274i \(-0.534079\pi\)
0.807639 + 0.589678i \(0.200745\pi\)
\(888\) −6.86349 + 7.40171i −0.230324 + 0.248385i
\(889\) −21.2647 1.82356i −0.713195 0.0611604i
\(890\) 0 0
\(891\) −34.8333 + 27.8498i −1.16696 + 0.933005i
\(892\) 2.61699 4.53275i 0.0876231 0.151768i
\(893\) −1.27849 + 2.21441i −0.0427831 + 0.0741026i
\(894\) 11.1339 + 2.53759i 0.372375 + 0.0848698i
\(895\) 0 0
\(896\) 2.39594 1.12227i 0.0800427 0.0374923i
\(897\) −15.5197 14.3912i −0.518189 0.480508i
\(898\) 15.8903 9.17425i 0.530265 0.306149i
\(899\) 2.01524 3.49050i 0.0672120 0.116415i
\(900\) 0 0
\(901\) 44.9446 25.9488i 1.49732 0.864480i
\(902\) 36.9252i 1.22948i
\(903\) 20.8153 4.52299i 0.692690 0.150516i
\(904\) −12.4267 −0.413306
\(905\) 0 0
\(906\) −19.4859 + 6.01725i −0.647374 + 0.199910i
\(907\) 18.7564 + 10.8290i 0.622797 + 0.359572i 0.777957 0.628317i \(-0.216256\pi\)
−0.155160 + 0.987889i \(0.549589\pi\)
\(908\) −11.6587 + 6.73117i −0.386908 + 0.223382i
\(909\) −0.259610 3.43547i −0.00861071 0.113947i
\(910\) 0 0
\(911\) 47.4302i 1.57143i −0.618587 0.785716i \(-0.712295\pi\)
0.618587 0.785716i \(-0.287705\pi\)
\(912\) 7.10471 + 1.61927i 0.235261 + 0.0536194i
\(913\) −18.0179 + 31.2080i −0.596306 + 1.03283i
\(914\) 7.48533 + 4.32166i 0.247593 + 0.142948i
\(915\) 0 0
\(916\) 16.5216i 0.545890i
\(917\) −8.10549 + 3.79664i −0.267667 + 0.125376i
\(918\) 14.7480 + 11.7385i 0.486755 + 0.387429i
\(919\) 5.32208 + 9.21812i 0.175559 + 0.304078i 0.940355 0.340196i \(-0.110493\pi\)
−0.764795 + 0.644273i \(0.777160\pi\)
\(920\) 0 0
\(921\) −21.7453 + 6.71499i −0.716533 + 0.221266i
\(922\) −12.3932 21.4657i −0.408149 0.706935i
\(923\) 15.8590i 0.522004i
\(924\) −15.2709 16.8065i −0.502377 0.552893i
\(925\) 0 0
\(926\) 15.5709 8.98986i 0.511691 0.295425i
\(927\) 19.6929 + 9.46846i 0.646800 + 0.310985i
\(928\) 0.693053 + 0.400134i 0.0227506 + 0.0131351i
\(929\) −17.1983 29.7883i −0.564257 0.977322i −0.997118 0.0758612i \(-0.975829\pi\)
0.432861 0.901460i \(-0.357504\pi\)
\(930\) 0 0
\(931\) −27.6388 + 10.1675i −0.905826 + 0.333227i
\(932\) 18.6359 0.610440
\(933\) 2.92772 12.8457i 0.0958494 0.420549i
\(934\) 1.10282 + 0.636712i 0.0360853 + 0.0208339i
\(935\) 0 0
\(936\) −15.7957 + 10.7838i −0.516297 + 0.352478i
\(937\) 40.0917 1.30974 0.654870 0.755742i \(-0.272723\pi\)
0.654870 + 0.755742i \(0.272723\pi\)
\(938\) −21.0436 1.80461i −0.687099 0.0589226i
\(939\) 15.7809 + 14.6334i 0.514992 + 0.477543i
\(940\) 0 0
\(941\) −13.6315 + 23.6104i −0.444374 + 0.769678i −0.998008 0.0630819i \(-0.979907\pi\)
0.553635 + 0.832760i \(0.313240\pi\)
\(942\) −2.55654 + 0.789463i −0.0832966 + 0.0257221i
\(943\) −7.14148 12.3694i −0.232559 0.402803i
\(944\) −1.75132 −0.0570005
\(945\) 0 0
\(946\) −23.0337 −0.748889
\(947\) 11.3531 + 19.6642i 0.368926 + 0.638999i 0.989398 0.145230i \(-0.0463921\pi\)
−0.620472 + 0.784229i \(0.713059\pi\)
\(948\) 4.41551 1.36351i 0.143409 0.0442848i
\(949\) −48.1117 + 83.3319i −1.56177 + 2.70507i
\(950\) 0 0
\(951\) 35.2258 + 32.6644i 1.14228 + 1.05921i
\(952\) −5.49142 + 7.87134i −0.177978 + 0.255112i
\(953\) 38.7288 1.25455 0.627274 0.778799i \(-0.284171\pi\)
0.627274 + 0.778799i \(0.284171\pi\)
\(954\) −35.4467 + 24.1996i −1.14763 + 0.783491i
\(955\) 0 0
\(956\) 21.4831 + 12.4032i 0.694812 + 0.401150i
\(957\) 1.52632 6.69687i 0.0493388 0.216479i
\(958\) −14.2267 −0.459643
\(959\) 32.1737 + 22.4459i 1.03894 + 0.724815i
\(960\) 0 0
\(961\) −2.81730 4.87970i −0.0908805 0.157410i
\(962\) 32.1764 + 18.5771i 1.03741 + 0.598949i
\(963\) −7.26318 3.49218i −0.234053 0.112534i
\(964\) 19.3439 11.1682i 0.623025 0.359704i
\(965\) 0 0
\(966\) 8.36598 + 2.67647i 0.269171 + 0.0861141i
\(967\) 39.1631i 1.25940i 0.776838 + 0.629700i \(0.216822\pi\)
−0.776838 + 0.629700i \(0.783178\pi\)
\(968\) 6.77761 + 11.7392i 0.217840 + 0.377311i
\(969\) −25.2568 + 7.79932i −0.811365 + 0.250550i
\(970\) 0 0
\(971\) −13.4005 23.2104i −0.430044 0.744858i 0.566833 0.823833i \(-0.308169\pi\)
−0.996877 + 0.0789753i \(0.974835\pi\)
\(972\) −12.8935 8.76118i −0.413559 0.281015i
\(973\) −19.1028 1.63817i −0.612408 0.0525174i
\(974\) 39.8951i 1.27832i
\(975\) 0 0
\(976\) −2.96447 1.71154i −0.0948903 0.0547849i
\(977\) −13.9386 + 24.1424i −0.445936 + 0.772383i −0.998117 0.0613410i \(-0.980462\pi\)
0.552181 + 0.833724i \(0.313796\pi\)
\(978\) 5.70389 + 1.30000i 0.182390 + 0.0415695i
\(979\) 9.34052i 0.298524i
\(980\) 0 0
\(981\) −2.03982 26.9933i −0.0651264 0.861831i
\(982\) 13.8372 7.98891i 0.441563 0.254936i
\(983\) −18.9161 10.9212i −0.603329 0.348332i 0.167021 0.985953i \(-0.446585\pi\)
−0.770350 + 0.637621i \(0.779919\pi\)
\(984\) −12.3320 + 3.80814i −0.393130 + 0.121399i
\(985\) 0 0
\(986\) −2.90301 −0.0924507
\(987\) 1.87301 + 2.06135i 0.0596185 + 0.0656134i
\(988\) 26.8212i 0.853297i
\(989\) 7.71594 4.45480i 0.245353 0.141654i
\(990\) 0 0
\(991\) 29.4300 50.9743i 0.934875 1.61925i 0.160019 0.987114i \(-0.448845\pi\)
0.774856 0.632137i \(-0.217822\pi\)
\(992\) −4.36166 + 2.51820i −0.138483 + 0.0799531i
\(993\) 14.9729 + 13.8841i 0.475151 + 0.440600i
\(994\) −2.79174 5.96011i −0.0885485 0.189043i
\(995\) 0 0
\(996\) −12.2808 2.79898i −0.389132 0.0886891i
\(997\) 6.02334 10.4327i 0.190761 0.330408i −0.754742 0.656022i \(-0.772238\pi\)
0.945503 + 0.325614i \(0.105571\pi\)
\(998\) −6.90313 + 11.9566i −0.218515 + 0.378479i
\(999\) −4.48534 + 29.9486i −0.141910 + 0.947531i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.2.u.e.899.1 12
3.2 odd 2 1050.2.u.g.899.5 12
5.2 odd 4 1050.2.s.f.101.5 12
5.3 odd 4 210.2.r.b.101.2 yes 12
5.4 even 2 1050.2.u.h.899.6 12
7.5 odd 6 1050.2.u.f.299.2 12
15.2 even 4 1050.2.s.g.101.3 12
15.8 even 4 210.2.r.a.101.4 12
15.14 odd 2 1050.2.u.f.899.2 12
21.5 even 6 1050.2.u.h.299.6 12
35.3 even 12 1470.2.b.b.881.5 12
35.12 even 12 1050.2.s.g.551.3 12
35.18 odd 12 1470.2.b.a.881.2 12
35.19 odd 6 1050.2.u.g.299.5 12
35.33 even 12 210.2.r.a.131.4 yes 12
105.38 odd 12 1470.2.b.a.881.8 12
105.47 odd 12 1050.2.s.f.551.5 12
105.53 even 12 1470.2.b.b.881.11 12
105.68 odd 12 210.2.r.b.131.2 yes 12
105.89 even 6 inner 1050.2.u.e.299.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.r.a.101.4 12 15.8 even 4
210.2.r.a.131.4 yes 12 35.33 even 12
210.2.r.b.101.2 yes 12 5.3 odd 4
210.2.r.b.131.2 yes 12 105.68 odd 12
1050.2.s.f.101.5 12 5.2 odd 4
1050.2.s.f.551.5 12 105.47 odd 12
1050.2.s.g.101.3 12 15.2 even 4
1050.2.s.g.551.3 12 35.12 even 12
1050.2.u.e.299.1 12 105.89 even 6 inner
1050.2.u.e.899.1 12 1.1 even 1 trivial
1050.2.u.f.299.2 12 7.5 odd 6
1050.2.u.f.899.2 12 15.14 odd 2
1050.2.u.g.299.5 12 35.19 odd 6
1050.2.u.g.899.5 12 3.2 odd 2
1050.2.u.h.299.6 12 21.5 even 6
1050.2.u.h.899.6 12 5.4 even 2
1470.2.b.a.881.2 12 35.18 odd 12
1470.2.b.a.881.8 12 105.38 odd 12
1470.2.b.b.881.5 12 35.3 even 12
1470.2.b.b.881.11 12 105.53 even 12