Properties

Label 1050.2.s.f.551.5
Level $1050$
Weight $2$
Character 1050.551
Analytic conductor $8.384$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,2,Mod(101,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-2,6,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 11 x^{10} - 32 x^{9} + 64 x^{8} - 120 x^{7} + 237 x^{6} - 360 x^{5} + 576 x^{4} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 551.5
Root \(-0.384890 + 1.68874i\) of defining polynomial
Character \(\chi\) \(=\) 1050.551
Dual form 1050.2.s.f.101.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.511048 - 1.65494i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.27005 - 1.17770i) q^{6} +(-2.63608 + 0.226058i) q^{7} +1.00000i q^{8} +(-2.47766 - 1.69151i) q^{9} +(-4.29143 + 2.47766i) q^{11} +(1.68874 - 0.384890i) q^{12} -6.37523i q^{13} +(-2.39594 - 1.12227i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-1.81377 - 3.14155i) q^{17} +(-1.29996 - 2.70372i) q^{18} +(-3.64345 - 2.10355i) q^{19} +(-0.973048 + 4.47808i) q^{21} -4.95532 q^{22} +(-1.65996 - 0.958379i) q^{23} +(1.65494 + 0.511048i) q^{24} +(3.18762 - 5.52111i) q^{26} +(-4.06555 + 3.23594i) q^{27} +(-1.51381 - 2.16988i) q^{28} -0.800269i q^{29} +(4.36166 - 2.51820i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(1.90726 + 8.36827i) q^{33} -3.62755i q^{34} +(0.226058 - 2.99147i) q^{36} +(2.91394 - 5.04710i) q^{37} +(-2.10355 - 3.64345i) q^{38} +(-10.5506 - 3.25805i) q^{39} +7.45163 q^{41} +(-3.08172 + 3.39161i) q^{42} +4.64827 q^{43} +(-4.29143 - 2.47766i) q^{44} +(-0.958379 - 1.65996i) q^{46} +(-0.303890 + 0.526352i) q^{47} +(1.17770 + 1.27005i) q^{48} +(6.89780 - 1.19181i) q^{49} +(-6.12600 + 1.39621i) q^{51} +(5.52111 - 3.18762i) q^{52} +(-12.3898 + 7.15326i) q^{53} +(-5.13884 + 0.769634i) q^{54} +(-0.226058 - 2.63608i) q^{56} +(-5.34323 + 4.95469i) q^{57} +(0.400134 - 0.693053i) q^{58} +(-0.875658 - 1.51668i) q^{59} +(2.96447 + 1.71154i) q^{61} +5.03641 q^{62} +(6.91368 + 3.89885i) q^{63} -1.00000 q^{64} +(-2.53241 + 8.20077i) q^{66} +(3.99147 + 6.91343i) q^{67} +(1.81377 - 3.14155i) q^{68} +(-2.43438 + 2.25736i) q^{69} +2.48759i q^{71} +(1.69151 - 2.47766i) q^{72} +(-13.0712 + 7.54666i) q^{73} +(5.04710 - 2.91394i) q^{74} -4.20710i q^{76} +(10.7525 - 7.50142i) q^{77} +(-7.50809 - 8.09687i) q^{78} +(-1.33404 + 2.31062i) q^{79} +(3.27761 + 8.38196i) q^{81} +(6.45330 + 3.72581i) q^{82} -7.27215 q^{83} +(-4.36465 + 1.39635i) q^{84} +(4.02552 + 2.32413i) q^{86} +(-1.32440 - 0.408975i) q^{87} +(-2.47766 - 4.29143i) q^{88} +(0.942474 - 1.63241i) q^{89} +(1.44117 + 16.8056i) q^{91} -1.91676i q^{92} +(-1.93847 - 8.50521i) q^{93} +(-0.526352 + 0.303890i) q^{94} +(0.384890 + 1.68874i) q^{96} -17.6562i q^{97} +(6.56957 + 2.41676i) q^{98} +(14.8237 + 1.12019i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{3} + 6 q^{4} + 2 q^{6} - 8 q^{7} + 12 q^{11} + 2 q^{12} - 12 q^{14} - 6 q^{16} + 12 q^{17} + 4 q^{18} + 4 q^{21} - 24 q^{23} - 2 q^{24} + 4 q^{26} - 8 q^{27} - 4 q^{28} + 12 q^{31} + 2 q^{33}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0.511048 1.65494i 0.295053 0.955481i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 1.27005 1.17770i 0.518496 0.480793i
\(7\) −2.63608 + 0.226058i −0.996343 + 0.0854419i
\(8\) 1.00000i 0.353553i
\(9\) −2.47766 1.69151i −0.825887 0.563836i
\(10\) 0 0
\(11\) −4.29143 + 2.47766i −1.29392 + 0.747043i −0.979346 0.202191i \(-0.935194\pi\)
−0.314570 + 0.949234i \(0.601860\pi\)
\(12\) 1.68874 0.384890i 0.487499 0.111108i
\(13\) 6.37523i 1.76817i −0.467325 0.884086i \(-0.654782\pi\)
0.467325 0.884086i \(-0.345218\pi\)
\(14\) −2.39594 1.12227i −0.640341 0.299938i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.81377 3.14155i −0.439905 0.761937i 0.557777 0.829991i \(-0.311654\pi\)
−0.997682 + 0.0680536i \(0.978321\pi\)
\(18\) −1.29996 2.70372i −0.306404 0.637273i
\(19\) −3.64345 2.10355i −0.835865 0.482587i 0.0199914 0.999800i \(-0.493636\pi\)
−0.855857 + 0.517213i \(0.826969\pi\)
\(20\) 0 0
\(21\) −0.973048 + 4.47808i −0.212336 + 0.977197i
\(22\) −4.95532 −1.05648
\(23\) −1.65996 0.958379i −0.346126 0.199836i 0.316852 0.948475i \(-0.397374\pi\)
−0.662978 + 0.748639i \(0.730708\pi\)
\(24\) 1.65494 + 0.511048i 0.337813 + 0.104317i
\(25\) 0 0
\(26\) 3.18762 5.52111i 0.625143 1.08278i
\(27\) −4.06555 + 3.23594i −0.782415 + 0.622757i
\(28\) −1.51381 2.16988i −0.286083 0.410069i
\(29\) 0.800269i 0.148606i −0.997236 0.0743031i \(-0.976327\pi\)
0.997236 0.0743031i \(-0.0236732\pi\)
\(30\) 0 0
\(31\) 4.36166 2.51820i 0.783377 0.452283i −0.0542489 0.998527i \(-0.517276\pi\)
0.837626 + 0.546245i \(0.183943\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 1.90726 + 8.36827i 0.332011 + 1.45673i
\(34\) 3.62755i 0.622119i
\(35\) 0 0
\(36\) 0.226058 2.99147i 0.0376763 0.498578i
\(37\) 2.91394 5.04710i 0.479050 0.829738i −0.520662 0.853763i \(-0.674315\pi\)
0.999711 + 0.0240249i \(0.00764810\pi\)
\(38\) −2.10355 3.64345i −0.341241 0.591046i
\(39\) −10.5506 3.25805i −1.68945 0.521705i
\(40\) 0 0
\(41\) 7.45163 1.16375 0.581874 0.813279i \(-0.302320\pi\)
0.581874 + 0.813279i \(0.302320\pi\)
\(42\) −3.08172 + 3.39161i −0.475520 + 0.523336i
\(43\) 4.64827 0.708854 0.354427 0.935084i \(-0.384676\pi\)
0.354427 + 0.935084i \(0.384676\pi\)
\(44\) −4.29143 2.47766i −0.646958 0.373521i
\(45\) 0 0
\(46\) −0.958379 1.65996i −0.141305 0.244748i
\(47\) −0.303890 + 0.526352i −0.0443269 + 0.0767764i −0.887338 0.461120i \(-0.847448\pi\)
0.843011 + 0.537897i \(0.180781\pi\)
\(48\) 1.17770 + 1.27005i 0.169986 + 0.183316i
\(49\) 6.89780 1.19181i 0.985399 0.170259i
\(50\) 0 0
\(51\) −6.12600 + 1.39621i −0.857812 + 0.195508i
\(52\) 5.52111 3.18762i 0.765641 0.442043i
\(53\) −12.3898 + 7.15326i −1.70187 + 0.982576i −0.758006 + 0.652247i \(0.773826\pi\)
−0.943866 + 0.330329i \(0.892840\pi\)
\(54\) −5.13884 + 0.769634i −0.699307 + 0.104734i
\(55\) 0 0
\(56\) −0.226058 2.63608i −0.0302083 0.352260i
\(57\) −5.34323 + 4.95469i −0.707727 + 0.656264i
\(58\) 0.400134 0.693053i 0.0525402 0.0910023i
\(59\) −0.875658 1.51668i −0.114001 0.197456i 0.803379 0.595468i \(-0.203033\pi\)
−0.917380 + 0.398013i \(0.869700\pi\)
\(60\) 0 0
\(61\) 2.96447 + 1.71154i 0.379561 + 0.219140i 0.677627 0.735405i \(-0.263008\pi\)
−0.298066 + 0.954545i \(0.596342\pi\)
\(62\) 5.03641 0.639624
\(63\) 6.91368 + 3.89885i 0.871042 + 0.491209i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −2.53241 + 8.20077i −0.311718 + 1.00944i
\(67\) 3.99147 + 6.91343i 0.487636 + 0.844610i 0.999899 0.0142186i \(-0.00452608\pi\)
−0.512263 + 0.858829i \(0.671193\pi\)
\(68\) 1.81377 3.14155i 0.219952 0.380969i
\(69\) −2.43438 + 2.25736i −0.293065 + 0.271754i
\(70\) 0 0
\(71\) 2.48759i 0.295222i 0.989045 + 0.147611i \(0.0471584\pi\)
−0.989045 + 0.147611i \(0.952842\pi\)
\(72\) 1.69151 2.47766i 0.199346 0.291995i
\(73\) −13.0712 + 7.54666i −1.52987 + 0.883270i −0.530501 + 0.847684i \(0.677996\pi\)
−0.999367 + 0.0355852i \(0.988670\pi\)
\(74\) 5.04710 2.91394i 0.586713 0.338739i
\(75\) 0 0
\(76\) 4.20710i 0.482587i
\(77\) 10.7525 7.50142i 1.22536 0.854866i
\(78\) −7.50809 8.09687i −0.850124 0.916790i
\(79\) −1.33404 + 2.31062i −0.150091 + 0.259965i −0.931261 0.364354i \(-0.881290\pi\)
0.781170 + 0.624319i \(0.214623\pi\)
\(80\) 0 0
\(81\) 3.27761 + 8.38196i 0.364178 + 0.931329i
\(82\) 6.45330 + 3.72581i 0.712648 + 0.411447i
\(83\) −7.27215 −0.798222 −0.399111 0.916903i \(-0.630681\pi\)
−0.399111 + 0.916903i \(0.630681\pi\)
\(84\) −4.36465 + 1.39635i −0.476223 + 0.152355i
\(85\) 0 0
\(86\) 4.02552 + 2.32413i 0.434083 + 0.250618i
\(87\) −1.32440 0.408975i −0.141990 0.0438468i
\(88\) −2.47766 4.29143i −0.264120 0.457468i
\(89\) 0.942474 1.63241i 0.0999021 0.173035i −0.811742 0.584016i \(-0.801480\pi\)
0.911644 + 0.410981i \(0.134814\pi\)
\(90\) 0 0
\(91\) 1.44117 + 16.8056i 0.151076 + 1.76171i
\(92\) 1.91676i 0.199836i
\(93\) −1.93847 8.50521i −0.201009 0.881949i
\(94\) −0.526352 + 0.303890i −0.0542891 + 0.0313438i
\(95\) 0 0
\(96\) 0.384890 + 1.68874i 0.0392827 + 0.172357i
\(97\) 17.6562i 1.79271i −0.443334 0.896356i \(-0.646205\pi\)
0.443334 0.896356i \(-0.353795\pi\)
\(98\) 6.56957 + 2.41676i 0.663627 + 0.244129i
\(99\) 14.8237 + 1.12019i 1.48984 + 0.112583i
\(100\) 0 0
\(101\) 0.574210 + 0.994562i 0.0571361 + 0.0989626i 0.893179 0.449702i \(-0.148470\pi\)
−0.836043 + 0.548664i \(0.815136\pi\)
\(102\) −6.00338 1.85385i −0.594423 0.183558i
\(103\) 6.30781 + 3.64182i 0.621527 + 0.358839i 0.777463 0.628928i \(-0.216506\pi\)
−0.155936 + 0.987767i \(0.549839\pi\)
\(104\) 6.37523 0.625143
\(105\) 0 0
\(106\) −14.3065 −1.38957
\(107\) 2.32646 + 1.34318i 0.224908 + 0.129850i 0.608221 0.793768i \(-0.291884\pi\)
−0.383313 + 0.923618i \(0.625217\pi\)
\(108\) −4.83518 1.90290i −0.465266 0.183106i
\(109\) −4.51172 7.81452i −0.432144 0.748495i 0.564914 0.825150i \(-0.308909\pi\)
−0.997058 + 0.0766547i \(0.975576\pi\)
\(110\) 0 0
\(111\) −6.86349 7.40171i −0.651454 0.702540i
\(112\) 1.12227 2.39594i 0.106044 0.226395i
\(113\) 12.4267i 1.16901i −0.811391 0.584504i \(-0.801289\pi\)
0.811391 0.584504i \(-0.198711\pi\)
\(114\) −7.10471 + 1.61927i −0.665417 + 0.151659i
\(115\) 0 0
\(116\) 0.693053 0.400134i 0.0643483 0.0371515i
\(117\) −10.7838 + 15.7957i −0.996958 + 1.46031i
\(118\) 1.75132i 0.161222i
\(119\) 5.49142 + 7.87134i 0.503397 + 0.721565i
\(120\) 0 0
\(121\) 6.77761 11.7392i 0.616146 1.06720i
\(122\) 1.71154 + 2.96447i 0.154955 + 0.268390i
\(123\) 3.80814 12.3320i 0.343368 1.11194i
\(124\) 4.36166 + 2.51820i 0.391688 + 0.226141i
\(125\) 0 0
\(126\) 4.03800 + 6.83334i 0.359734 + 0.608762i
\(127\) −8.06679 −0.715812 −0.357906 0.933758i \(-0.616509\pi\)
−0.357906 + 0.933758i \(0.616509\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 2.37549 7.69261i 0.209150 0.677297i
\(130\) 0 0
\(131\) 1.69151 2.92978i 0.147788 0.255976i −0.782622 0.622497i \(-0.786118\pi\)
0.930410 + 0.366522i \(0.119451\pi\)
\(132\) −6.29351 + 5.83587i −0.547780 + 0.507947i
\(133\) 10.0799 + 4.72148i 0.874042 + 0.409404i
\(134\) 7.98294i 0.689621i
\(135\) 0 0
\(136\) 3.14155 1.81377i 0.269386 0.155530i
\(137\) 12.8409 7.41370i 1.09707 0.633395i 0.161622 0.986853i \(-0.448327\pi\)
0.935451 + 0.353458i \(0.114994\pi\)
\(138\) −3.23691 + 0.737742i −0.275544 + 0.0628007i
\(139\) 7.24669i 0.614656i 0.951604 + 0.307328i \(0.0994349\pi\)
−0.951604 + 0.307328i \(0.900565\pi\)
\(140\) 0 0
\(141\) 0.715780 + 0.771911i 0.0602796 + 0.0650066i
\(142\) −1.24379 + 2.15432i −0.104377 + 0.180786i
\(143\) 15.7957 + 27.3589i 1.32090 + 2.28787i
\(144\) 2.70372 1.29996i 0.225310 0.108330i
\(145\) 0 0
\(146\) −15.0933 −1.24913
\(147\) 1.55272 12.0245i 0.128066 0.991766i
\(148\) 5.82789 0.479050
\(149\) −5.70973 3.29651i −0.467759 0.270061i 0.247542 0.968877i \(-0.420377\pi\)
−0.715301 + 0.698816i \(0.753711\pi\)
\(150\) 0 0
\(151\) −5.88717 10.1969i −0.479091 0.829811i 0.520621 0.853788i \(-0.325700\pi\)
−0.999713 + 0.0239772i \(0.992367\pi\)
\(152\) 2.10355 3.64345i 0.170620 0.295523i
\(153\) −0.820036 + 10.8517i −0.0662960 + 0.877308i
\(154\) 13.0626 1.12019i 1.05261 0.0902675i
\(155\) 0 0
\(156\) −2.45377 10.7661i −0.196458 0.861981i
\(157\) −1.33783 + 0.772397i −0.106770 + 0.0616440i −0.552434 0.833556i \(-0.686301\pi\)
0.445664 + 0.895200i \(0.352968\pi\)
\(158\) −2.31062 + 1.33404i −0.183823 + 0.106130i
\(159\) 5.50644 + 24.1601i 0.436689 + 1.91602i
\(160\) 0 0
\(161\) 4.59243 + 2.15111i 0.361934 + 0.169531i
\(162\) −1.35249 + 8.89780i −0.106262 + 0.699077i
\(163\) −1.68880 + 2.92508i −0.132277 + 0.229110i −0.924554 0.381051i \(-0.875562\pi\)
0.792277 + 0.610161i \(0.208895\pi\)
\(164\) 3.72581 + 6.45330i 0.290937 + 0.503918i
\(165\) 0 0
\(166\) −6.29787 3.63608i −0.488809 0.282214i
\(167\) 12.7685 0.988053 0.494027 0.869447i \(-0.335525\pi\)
0.494027 + 0.869447i \(0.335525\pi\)
\(168\) −4.47808 0.973048i −0.345491 0.0750723i
\(169\) −27.6436 −2.12643
\(170\) 0 0
\(171\) 5.46907 + 11.3748i 0.418230 + 0.869853i
\(172\) 2.32413 + 4.02552i 0.177214 + 0.306943i
\(173\) 0.123778 0.214390i 0.00941068 0.0162998i −0.861282 0.508128i \(-0.830338\pi\)
0.870692 + 0.491828i \(0.163671\pi\)
\(174\) −0.942474 1.01638i −0.0714488 0.0770517i
\(175\) 0 0
\(176\) 4.95532i 0.373521i
\(177\) −2.95753 + 0.674065i −0.222301 + 0.0506658i
\(178\) 1.63241 0.942474i 0.122355 0.0706414i
\(179\) 16.9709 9.79815i 1.26846 0.732348i 0.293767 0.955877i \(-0.405091\pi\)
0.974697 + 0.223528i \(0.0717576\pi\)
\(180\) 0 0
\(181\) 14.8103i 1.10084i −0.834887 0.550422i \(-0.814467\pi\)
0.834887 0.550422i \(-0.185533\pi\)
\(182\) −7.15471 + 15.2747i −0.530342 + 1.13223i
\(183\) 4.34748 4.03134i 0.321375 0.298005i
\(184\) 0.958379 1.65996i 0.0706526 0.122374i
\(185\) 0 0
\(186\) 2.57384 8.33496i 0.188723 0.611149i
\(187\) 15.5674 + 8.98783i 1.13840 + 0.657255i
\(188\) −0.607779 −0.0443269
\(189\) 9.98558 9.44924i 0.726344 0.687331i
\(190\) 0 0
\(191\) 0.463759 + 0.267752i 0.0335564 + 0.0193738i 0.516684 0.856176i \(-0.327166\pi\)
−0.483128 + 0.875550i \(0.660499\pi\)
\(192\) −0.511048 + 1.65494i −0.0368817 + 0.119435i
\(193\) −2.76772 4.79383i −0.199225 0.345068i 0.749052 0.662511i \(-0.230509\pi\)
−0.948277 + 0.317443i \(0.897176\pi\)
\(194\) 8.82809 15.2907i 0.633820 1.09781i
\(195\) 0 0
\(196\) 4.48104 + 5.37776i 0.320074 + 0.384126i
\(197\) 0.666454i 0.0474829i 0.999718 + 0.0237414i \(0.00755785\pi\)
−0.999718 + 0.0237414i \(0.992442\pi\)
\(198\) 12.2776 + 8.38196i 0.872531 + 0.595680i
\(199\) −7.81326 + 4.51099i −0.553867 + 0.319775i −0.750680 0.660666i \(-0.770274\pi\)
0.196813 + 0.980441i \(0.436941\pi\)
\(200\) 0 0
\(201\) 13.4812 3.07256i 0.950887 0.216722i
\(202\) 1.14842i 0.0808026i
\(203\) 0.180907 + 2.10957i 0.0126972 + 0.148063i
\(204\) −4.27215 4.60717i −0.299110 0.322566i
\(205\) 0 0
\(206\) 3.64182 + 6.30781i 0.253737 + 0.439486i
\(207\) 2.49171 + 5.18237i 0.173186 + 0.360200i
\(208\) 5.52111 + 3.18762i 0.382820 + 0.221021i
\(209\) 20.8475 1.44205
\(210\) 0 0
\(211\) 11.4386 0.787467 0.393733 0.919225i \(-0.371183\pi\)
0.393733 + 0.919225i \(0.371183\pi\)
\(212\) −12.3898 7.15326i −0.850936 0.491288i
\(213\) 4.11681 + 1.27128i 0.282079 + 0.0871064i
\(214\) 1.34318 + 2.32646i 0.0918181 + 0.159034i
\(215\) 0 0
\(216\) −3.23594 4.06555i −0.220178 0.276625i
\(217\) −10.9284 + 7.62417i −0.741868 + 0.517562i
\(218\) 9.02343i 0.611144i
\(219\) 5.80927 + 25.4888i 0.392554 + 1.72237i
\(220\) 0 0
\(221\) −20.0281 + 11.5632i −1.34724 + 0.777827i
\(222\) −2.24310 9.84182i −0.150547 0.660540i
\(223\) 5.23397i 0.350493i −0.984525 0.175246i \(-0.943928\pi\)
0.984525 0.175246i \(-0.0560722\pi\)
\(224\) 2.16988 1.51381i 0.144981 0.101146i
\(225\) 0 0
\(226\) 6.21336 10.7619i 0.413306 0.715868i
\(227\) −6.73117 11.6587i −0.446763 0.773817i 0.551410 0.834234i \(-0.314090\pi\)
−0.998173 + 0.0604178i \(0.980757\pi\)
\(228\) −6.96250 2.15003i −0.461103 0.142389i
\(229\) 14.3082 + 8.26082i 0.945509 + 0.545890i 0.891683 0.452660i \(-0.149525\pi\)
0.0538263 + 0.998550i \(0.482858\pi\)
\(230\) 0 0
\(231\) −6.91939 21.6283i −0.455262 1.42303i
\(232\) 0.800269 0.0525402
\(233\) −16.1392 9.31796i −1.05731 0.610440i −0.132625 0.991166i \(-0.542341\pi\)
−0.924688 + 0.380727i \(0.875674\pi\)
\(234\) −17.2368 + 8.28757i −1.12681 + 0.541775i
\(235\) 0 0
\(236\) 0.875658 1.51668i 0.0570005 0.0987278i
\(237\) 3.14218 + 3.38859i 0.204107 + 0.220113i
\(238\) 0.820036 + 9.56249i 0.0531551 + 0.619844i
\(239\) 24.8065i 1.60460i −0.596922 0.802299i \(-0.703610\pi\)
0.596922 0.802299i \(-0.296390\pi\)
\(240\) 0 0
\(241\) −19.3439 + 11.1682i −1.24605 + 0.719408i −0.970319 0.241827i \(-0.922253\pi\)
−0.275731 + 0.961235i \(0.588920\pi\)
\(242\) 11.7392 6.77761i 0.754622 0.435681i
\(243\) 15.5467 1.14066i 0.997319 0.0731735i
\(244\) 3.42307i 0.219140i
\(245\) 0 0
\(246\) 9.46395 8.77576i 0.603399 0.559522i
\(247\) −13.4106 + 23.2279i −0.853297 + 1.47795i
\(248\) 2.51820 + 4.36166i 0.159906 + 0.276966i
\(249\) −3.71642 + 12.0350i −0.235518 + 0.762686i
\(250\) 0 0
\(251\) −2.72107 −0.171752 −0.0858762 0.996306i \(-0.527369\pi\)
−0.0858762 + 0.996306i \(0.527369\pi\)
\(252\) 0.0803398 + 7.93685i 0.00506093 + 0.499974i
\(253\) 9.49815 0.597144
\(254\) −6.98605 4.03340i −0.438344 0.253078i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 5.75189 9.96256i 0.358793 0.621448i −0.628966 0.777432i \(-0.716522\pi\)
0.987759 + 0.155985i \(0.0498551\pi\)
\(258\) 5.90354 5.47425i 0.367538 0.340812i
\(259\) −6.54044 + 13.9633i −0.406403 + 0.867635i
\(260\) 0 0
\(261\) −1.35366 + 1.98279i −0.0837895 + 0.122732i
\(262\) 2.92978 1.69151i 0.181002 0.104502i
\(263\) 11.0726 6.39277i 0.682766 0.394195i −0.118130 0.992998i \(-0.537690\pi\)
0.800896 + 0.598803i \(0.204357\pi\)
\(264\) −8.36827 + 1.90726i −0.515032 + 0.117383i
\(265\) 0 0
\(266\) 6.36874 + 9.12889i 0.390493 + 0.559728i
\(267\) −2.21990 2.39398i −0.135856 0.146509i
\(268\) −3.99147 + 6.91343i −0.243818 + 0.422305i
\(269\) 5.84575 + 10.1251i 0.356422 + 0.617341i 0.987360 0.158492i \(-0.0506633\pi\)
−0.630938 + 0.775833i \(0.717330\pi\)
\(270\) 0 0
\(271\) 19.1130 + 11.0349i 1.16103 + 0.670323i 0.951552 0.307489i \(-0.0994888\pi\)
0.209482 + 0.977812i \(0.432822\pi\)
\(272\) 3.62755 0.219952
\(273\) 28.5488 + 6.20340i 1.72785 + 0.375447i
\(274\) 14.8274 0.895756
\(275\) 0 0
\(276\) −3.17212 0.979554i −0.190939 0.0589622i
\(277\) −3.90328 6.76068i −0.234525 0.406210i 0.724609 0.689160i \(-0.242020\pi\)
−0.959135 + 0.282950i \(0.908687\pi\)
\(278\) −3.62334 + 6.27582i −0.217314 + 0.376398i
\(279\) −15.0663 1.13852i −0.901994 0.0681615i
\(280\) 0 0
\(281\) 23.0892i 1.37738i −0.725054 0.688692i \(-0.758185\pi\)
0.725054 0.688692i \(-0.241815\pi\)
\(282\) 0.233928 + 1.02638i 0.0139302 + 0.0611203i
\(283\) −21.4345 + 12.3752i −1.27415 + 0.735631i −0.975766 0.218815i \(-0.929781\pi\)
−0.298384 + 0.954446i \(0.596448\pi\)
\(284\) −2.15432 + 1.24379i −0.127835 + 0.0738056i
\(285\) 0 0
\(286\) 31.5913i 1.86803i
\(287\) −19.6431 + 1.68450i −1.15949 + 0.0994329i
\(288\) 2.99147 + 0.226058i 0.176274 + 0.0133206i
\(289\) 1.92045 3.32632i 0.112968 0.195666i
\(290\) 0 0
\(291\) −29.2199 9.02314i −1.71290 0.528946i
\(292\) −13.0712 7.54666i −0.764934 0.441635i
\(293\) 25.3384 1.48029 0.740143 0.672449i \(-0.234758\pi\)
0.740143 + 0.672449i \(0.234758\pi\)
\(294\) 7.35696 9.63718i 0.429066 0.562052i
\(295\) 0 0
\(296\) 5.04710 + 2.91394i 0.293357 + 0.169370i
\(297\) 9.42947 23.9599i 0.547153 1.39029i
\(298\) −3.29651 5.70973i −0.190962 0.330756i
\(299\) −6.10989 + 10.5826i −0.353344 + 0.612010i
\(300\) 0 0
\(301\) −12.2532 + 1.05078i −0.706262 + 0.0605659i
\(302\) 11.7743i 0.677538i
\(303\) 1.93939 0.442016i 0.111415 0.0253932i
\(304\) 3.64345 2.10355i 0.208966 0.120647i
\(305\) 0 0
\(306\) −6.13602 + 8.98783i −0.350773 + 0.513800i
\(307\) 13.1396i 0.749919i −0.927041 0.374960i \(-0.877657\pi\)
0.927041 0.374960i \(-0.122343\pi\)
\(308\) 11.8726 + 5.56119i 0.676507 + 0.316878i
\(309\) 9.25059 8.57792i 0.526248 0.487981i
\(310\) 0 0
\(311\) −3.80332 6.58755i −0.215667 0.373545i 0.737812 0.675006i \(-0.235859\pi\)
−0.953479 + 0.301461i \(0.902526\pi\)
\(312\) 3.25805 10.5506i 0.184451 0.597312i
\(313\) −10.7608 6.21272i −0.608234 0.351164i 0.164040 0.986454i \(-0.447547\pi\)
−0.772274 + 0.635290i \(0.780881\pi\)
\(314\) −1.54479 −0.0871777
\(315\) 0 0
\(316\) −2.66807 −0.150091
\(317\) 24.0199 + 13.8679i 1.34909 + 0.778898i 0.988121 0.153679i \(-0.0491121\pi\)
0.360971 + 0.932577i \(0.382445\pi\)
\(318\) −7.31132 + 23.6765i −0.409998 + 1.32771i
\(319\) 1.98279 + 3.43430i 0.111015 + 0.192284i
\(320\) 0 0
\(321\) 3.41182 3.16373i 0.190429 0.176582i
\(322\) 2.90161 + 4.15913i 0.161700 + 0.231779i
\(323\) 15.2614i 0.849169i
\(324\) −5.62019 + 7.02947i −0.312233 + 0.390526i
\(325\) 0 0
\(326\) −2.92508 + 1.68880i −0.162005 + 0.0935337i
\(327\) −15.2383 + 3.47303i −0.842678 + 0.192059i
\(328\) 7.45163i 0.411447i
\(329\) 0.682090 1.45620i 0.0376048 0.0802830i
\(330\) 0 0
\(331\) −5.89462 + 10.2098i −0.323997 + 0.561180i −0.981309 0.192439i \(-0.938360\pi\)
0.657312 + 0.753619i \(0.271694\pi\)
\(332\) −3.63608 6.29787i −0.199556 0.345640i
\(333\) −15.7570 + 7.57604i −0.863477 + 0.415165i
\(334\) 11.0578 + 6.38423i 0.605056 + 0.349329i
\(335\) 0 0
\(336\) −3.39161 3.08172i −0.185027 0.168122i
\(337\) 5.58238 0.304092 0.152046 0.988373i \(-0.451414\pi\)
0.152046 + 0.988373i \(0.451414\pi\)
\(338\) −23.9401 13.8218i −1.30217 0.751807i
\(339\) −20.5655 6.35064i −1.11696 0.344920i
\(340\) 0 0
\(341\) −12.4785 + 21.6134i −0.675749 + 1.17043i
\(342\) −0.951048 + 12.5854i −0.0514268 + 0.680541i
\(343\) −17.9137 + 4.70101i −0.967249 + 0.253831i
\(344\) 4.64827i 0.250618i
\(345\) 0 0
\(346\) 0.214390 0.123778i 0.0115257 0.00665435i
\(347\) −27.6342 + 15.9546i −1.48348 + 0.856489i −0.999824 0.0187674i \(-0.994026\pi\)
−0.483659 + 0.875257i \(0.660692\pi\)
\(348\) −0.308016 1.35145i −0.0165114 0.0724453i
\(349\) 1.64353i 0.0879759i −0.999032 0.0439879i \(-0.985994\pi\)
0.999032 0.0439879i \(-0.0140063\pi\)
\(350\) 0 0
\(351\) 20.6299 + 25.9188i 1.10114 + 1.38344i
\(352\) 2.47766 4.29143i 0.132060 0.228734i
\(353\) 7.30038 + 12.6446i 0.388560 + 0.673006i 0.992256 0.124209i \(-0.0396392\pi\)
−0.603696 + 0.797215i \(0.706306\pi\)
\(354\) −2.89833 0.895006i −0.154044 0.0475690i
\(355\) 0 0
\(356\) 1.88495 0.0999021
\(357\) 15.8330 5.06534i 0.837970 0.268086i
\(358\) 19.5963 1.03570
\(359\) −0.438209 0.253000i −0.0231278 0.0133528i 0.488392 0.872625i \(-0.337584\pi\)
−0.511519 + 0.859272i \(0.670917\pi\)
\(360\) 0 0
\(361\) −0.650173 1.12613i −0.0342196 0.0592701i
\(362\) 7.40517 12.8261i 0.389207 0.674127i
\(363\) −15.9639 17.2158i −0.837889 0.903595i
\(364\) −13.8335 + 9.65089i −0.725072 + 0.505844i
\(365\) 0 0
\(366\) 5.78070 1.31751i 0.302162 0.0688672i
\(367\) 1.17547 0.678660i 0.0613592 0.0354258i −0.469007 0.883195i \(-0.655388\pi\)
0.530366 + 0.847769i \(0.322055\pi\)
\(368\) 1.65996 0.958379i 0.0865314 0.0499590i
\(369\) −18.4626 12.6045i −0.961125 0.656163i
\(370\) 0 0
\(371\) 31.0434 21.6574i 1.61170 1.12439i
\(372\) 6.39649 5.93136i 0.331643 0.307527i
\(373\) −17.0548 + 29.5397i −0.883062 + 1.52951i −0.0351422 + 0.999382i \(0.511188\pi\)
−0.847919 + 0.530125i \(0.822145\pi\)
\(374\) 8.98783 + 15.5674i 0.464750 + 0.804970i
\(375\) 0 0
\(376\) −0.526352 0.303890i −0.0271445 0.0156719i
\(377\) −5.10190 −0.262761
\(378\) 13.3724 3.19049i 0.687801 0.164101i
\(379\) −1.53951 −0.0790795 −0.0395398 0.999218i \(-0.512589\pi\)
−0.0395398 + 0.999218i \(0.512589\pi\)
\(380\) 0 0
\(381\) −4.12252 + 13.3501i −0.211203 + 0.683945i
\(382\) 0.267752 + 0.463759i 0.0136994 + 0.0237280i
\(383\) 16.2631 28.1685i 0.831004 1.43934i −0.0662394 0.997804i \(-0.521100\pi\)
0.897243 0.441537i \(-0.145567\pi\)
\(384\) −1.27005 + 1.17770i −0.0648120 + 0.0600991i
\(385\) 0 0
\(386\) 5.53544i 0.281747i
\(387\) −11.5168 7.86258i −0.585433 0.399677i
\(388\) 15.2907 8.82809i 0.776267 0.448178i
\(389\) 6.15025 3.55085i 0.311830 0.180035i −0.335915 0.941892i \(-0.609046\pi\)
0.647745 + 0.761857i \(0.275712\pi\)
\(390\) 0 0
\(391\) 6.95313i 0.351635i
\(392\) 1.19181 + 6.89780i 0.0601956 + 0.348391i
\(393\) −3.98417 4.29660i −0.200975 0.216735i
\(394\) −0.333227 + 0.577166i −0.0167877 + 0.0290772i
\(395\) 0 0
\(396\) 6.44174 + 13.3978i 0.323709 + 0.673265i
\(397\) −11.2790 6.51194i −0.566077 0.326825i 0.189504 0.981880i \(-0.439312\pi\)
−0.755581 + 0.655055i \(0.772645\pi\)
\(398\) −9.02198 −0.452231
\(399\) 12.9651 14.2688i 0.649067 0.714334i
\(400\) 0 0
\(401\) −20.2676 11.7015i −1.01211 0.584345i −0.100305 0.994957i \(-0.531982\pi\)
−0.911810 + 0.410612i \(0.865315\pi\)
\(402\) 13.2113 + 4.07966i 0.658920 + 0.203475i
\(403\) −16.0541 27.8066i −0.799714 1.38514i
\(404\) −0.574210 + 0.994562i −0.0285680 + 0.0494813i
\(405\) 0 0
\(406\) −0.898114 + 1.91739i −0.0445727 + 0.0951587i
\(407\) 28.8791i 1.43148i
\(408\) −1.39621 6.12600i −0.0691226 0.303282i
\(409\) 11.4311 6.59972i 0.565229 0.326335i −0.190013 0.981782i \(-0.560853\pi\)
0.755242 + 0.655447i \(0.227520\pi\)
\(410\) 0 0
\(411\) −5.70692 25.0397i −0.281502 1.23512i
\(412\) 7.28364i 0.358839i
\(413\) 2.65116 + 3.80015i 0.130455 + 0.186993i
\(414\) −0.433299 + 5.73392i −0.0212955 + 0.281807i
\(415\) 0 0
\(416\) 3.18762 + 5.52111i 0.156286 + 0.270695i
\(417\) 11.9928 + 3.70340i 0.587292 + 0.181356i
\(418\) 18.0545 + 10.4238i 0.883073 + 0.509843i
\(419\) −27.9492 −1.36541 −0.682704 0.730695i \(-0.739196\pi\)
−0.682704 + 0.730695i \(0.739196\pi\)
\(420\) 0 0
\(421\) 24.6795 1.20281 0.601403 0.798946i \(-0.294609\pi\)
0.601403 + 0.798946i \(0.294609\pi\)
\(422\) 9.90613 + 5.71931i 0.482223 + 0.278412i
\(423\) 1.64326 0.790091i 0.0798982 0.0384155i
\(424\) −7.15326 12.3898i −0.347393 0.601703i
\(425\) 0 0
\(426\) 2.92963 + 3.15936i 0.141941 + 0.153072i
\(427\) −8.20147 3.84160i −0.396897 0.185908i
\(428\) 2.68637i 0.129850i
\(429\) 53.3497 12.1592i 2.57575 0.587052i
\(430\) 0 0
\(431\) −2.89638 + 1.67223i −0.139514 + 0.0805483i −0.568132 0.822937i \(-0.692334\pi\)
0.428619 + 0.903486i \(0.359000\pi\)
\(432\) −0.769634 5.13884i −0.0370290 0.247242i
\(433\) 14.6756i 0.705264i −0.935762 0.352632i \(-0.885287\pi\)
0.935762 0.352632i \(-0.114713\pi\)
\(434\) −13.2764 + 1.13852i −0.637285 + 0.0546507i
\(435\) 0 0
\(436\) 4.51172 7.81452i 0.216072 0.374248i
\(437\) 4.03199 + 6.98361i 0.192876 + 0.334072i
\(438\) −7.71340 + 24.9786i −0.368561 + 1.19352i
\(439\) −5.70453 3.29351i −0.272262 0.157191i 0.357653 0.933855i \(-0.383577\pi\)
−0.629915 + 0.776664i \(0.716910\pi\)
\(440\) 0 0
\(441\) −19.1064 8.71477i −0.909827 0.414989i
\(442\) −23.1265 −1.10001
\(443\) −35.2654 20.3605i −1.67551 0.967357i −0.964464 0.264213i \(-0.914888\pi\)
−0.711047 0.703144i \(-0.751779\pi\)
\(444\) 2.97833 9.64481i 0.141345 0.457723i
\(445\) 0 0
\(446\) 2.61699 4.53275i 0.123918 0.214632i
\(447\) −8.37348 + 7.76459i −0.396052 + 0.367253i
\(448\) 2.63608 0.226058i 0.124543 0.0106802i
\(449\) 18.3485i 0.865919i 0.901413 + 0.432960i \(0.142531\pi\)
−0.901413 + 0.432960i \(0.857469\pi\)
\(450\) 0 0
\(451\) −31.9782 + 18.4626i −1.50579 + 0.869370i
\(452\) 10.7619 6.21336i 0.506195 0.292252i
\(453\) −19.8839 + 4.53183i −0.934226 + 0.212924i
\(454\) 13.4623i 0.631819i
\(455\) 0 0
\(456\) −4.95469 5.34323i −0.232024 0.250219i
\(457\) −4.32166 + 7.48533i −0.202159 + 0.350149i −0.949224 0.314602i \(-0.898129\pi\)
0.747065 + 0.664751i \(0.231462\pi\)
\(458\) 8.26082 + 14.3082i 0.386003 + 0.668576i
\(459\) 17.5398 + 6.90285i 0.818690 + 0.322197i
\(460\) 0 0
\(461\) 24.7864 1.15442 0.577210 0.816596i \(-0.304141\pi\)
0.577210 + 0.816596i \(0.304141\pi\)
\(462\) 4.82176 22.1903i 0.224329 1.03239i
\(463\) 17.9797 0.835589 0.417794 0.908542i \(-0.362803\pi\)
0.417794 + 0.908542i \(0.362803\pi\)
\(464\) 0.693053 + 0.400134i 0.0321742 + 0.0185758i
\(465\) 0 0
\(466\) −9.31796 16.1392i −0.431646 0.747633i
\(467\) −0.636712 + 1.10282i −0.0294635 + 0.0510323i −0.880381 0.474267i \(-0.842713\pi\)
0.850918 + 0.525299i \(0.176047\pi\)
\(468\) −19.0713 1.44117i −0.881572 0.0666182i
\(469\) −12.0847 17.3220i −0.558018 0.799857i
\(470\) 0 0
\(471\) 0.594576 + 2.60876i 0.0273966 + 0.120205i
\(472\) 1.51668 0.875658i 0.0698111 0.0403054i
\(473\) −19.9477 + 11.5168i −0.917198 + 0.529545i
\(474\) 1.02692 + 4.50570i 0.0471678 + 0.206954i
\(475\) 0 0
\(476\) −4.07107 + 8.69138i −0.186597 + 0.398369i
\(477\) 42.7976 + 3.23411i 1.95957 + 0.148080i
\(478\) 12.4032 21.4831i 0.567311 0.982612i
\(479\) −7.11334 12.3207i −0.325017 0.562945i 0.656499 0.754327i \(-0.272037\pi\)
−0.981516 + 0.191381i \(0.938703\pi\)
\(480\) 0 0
\(481\) −32.1764 18.5771i −1.46712 0.847042i
\(482\) −22.3364 −1.01740
\(483\) 5.90692 6.50089i 0.268774 0.295801i
\(484\) 13.5552 0.616146
\(485\) 0 0
\(486\) 14.0341 + 6.78549i 0.636602 + 0.307796i
\(487\) 19.9476 + 34.5502i 0.903910 + 1.56562i 0.822374 + 0.568947i \(0.192649\pi\)
0.0815361 + 0.996670i \(0.474017\pi\)
\(488\) −1.71154 + 2.96447i −0.0774776 + 0.134195i
\(489\) 3.97778 + 4.28971i 0.179881 + 0.193988i
\(490\) 0 0
\(491\) 15.9778i 0.721069i −0.932746 0.360535i \(-0.882594\pi\)
0.932746 0.360535i \(-0.117406\pi\)
\(492\) 12.5839 2.86806i 0.567326 0.129302i
\(493\) −2.51408 + 1.45151i −0.113229 + 0.0653725i
\(494\) −23.2279 + 13.4106i −1.04507 + 0.603372i
\(495\) 0 0
\(496\) 5.03641i 0.226141i
\(497\) −0.562340 6.55747i −0.0252244 0.294143i
\(498\) −9.23600 + 8.56439i −0.413875 + 0.383780i
\(499\) 6.90313 11.9566i 0.309027 0.535250i −0.669123 0.743152i \(-0.733330\pi\)
0.978150 + 0.207902i \(0.0666634\pi\)
\(500\) 0 0
\(501\) 6.52529 21.1310i 0.291528 0.944066i
\(502\) −2.35652 1.36054i −0.105176 0.0607237i
\(503\) 2.11183 0.0941620 0.0470810 0.998891i \(-0.485008\pi\)
0.0470810 + 0.998891i \(0.485008\pi\)
\(504\) −3.89885 + 6.91368i −0.173668 + 0.307960i
\(505\) 0 0
\(506\) 8.22564 + 4.74908i 0.365674 + 0.211122i
\(507\) −14.1272 + 45.7485i −0.627411 + 2.03176i
\(508\) −4.03340 6.98605i −0.178953 0.309956i
\(509\) 8.09556 14.0219i 0.358830 0.621511i −0.628936 0.777457i \(-0.716509\pi\)
0.987766 + 0.155946i \(0.0498426\pi\)
\(510\) 0 0
\(511\) 32.7507 22.8484i 1.44880 1.01075i
\(512\) 1.00000i 0.0441942i
\(513\) 21.6196 3.23792i 0.954528 0.142958i
\(514\) 9.96256 5.75189i 0.439430 0.253705i
\(515\) 0 0
\(516\) 7.84974 1.78907i 0.345566 0.0787596i
\(517\) 3.01174i 0.132456i
\(518\) −12.6458 + 8.82232i −0.555625 + 0.387630i
\(519\) −0.291546 0.314409i −0.0127975 0.0138010i
\(520\) 0 0
\(521\) 12.4676 + 21.5945i 0.546216 + 0.946073i 0.998529 + 0.0542143i \(0.0172654\pi\)
−0.452314 + 0.891859i \(0.649401\pi\)
\(522\) −2.16370 + 1.04032i −0.0947026 + 0.0455336i
\(523\) −17.0768 9.85929i −0.746716 0.431116i 0.0777903 0.996970i \(-0.475214\pi\)
−0.824506 + 0.565853i \(0.808547\pi\)
\(524\) 3.38301 0.147788
\(525\) 0 0
\(526\) 12.7855 0.557476
\(527\) −15.8221 9.13490i −0.689222 0.397923i
\(528\) −8.20077 2.53241i −0.356893 0.110209i
\(529\) −9.66302 16.7368i −0.420131 0.727689i
\(530\) 0 0
\(531\) −0.395899 + 5.23901i −0.0171806 + 0.227354i
\(532\) 0.951048 + 11.0902i 0.0412332 + 0.480822i
\(533\) 47.5059i 2.05771i
\(534\) −0.725498 3.18320i −0.0313954 0.137750i
\(535\) 0 0
\(536\) −6.91343 + 3.99147i −0.298615 + 0.172405i
\(537\) −7.54243 33.0932i −0.325480 1.42808i
\(538\) 11.6915i 0.504057i
\(539\) −26.6485 + 22.2050i −1.14783 + 0.956436i
\(540\) 0 0
\(541\) 4.27923 7.41184i 0.183978 0.318660i −0.759253 0.650795i \(-0.774436\pi\)
0.943232 + 0.332135i \(0.107769\pi\)
\(542\) 11.0349 + 19.1130i 0.473990 + 0.820975i
\(543\) −24.5102 7.56879i −1.05184 0.324808i
\(544\) 3.14155 + 1.81377i 0.134693 + 0.0777649i
\(545\) 0 0
\(546\) 21.6223 + 19.6467i 0.925348 + 0.840801i
\(547\) 33.5472 1.43437 0.717187 0.696881i \(-0.245430\pi\)
0.717187 + 0.696881i \(0.245430\pi\)
\(548\) 12.8409 + 7.41370i 0.548536 + 0.316698i
\(549\) −4.44987 9.25502i −0.189916 0.394995i
\(550\) 0 0
\(551\) −1.68340 + 2.91574i −0.0717154 + 0.124215i
\(552\) −2.25736 2.43438i −0.0960796 0.103614i
\(553\) 2.99429 6.39254i 0.127330 0.271838i
\(554\) 7.80656i 0.331669i
\(555\) 0 0
\(556\) −6.27582 + 3.62334i −0.266154 + 0.153664i
\(557\) 4.63348 2.67514i 0.196327 0.113349i −0.398614 0.917119i \(-0.630509\pi\)
0.594941 + 0.803769i \(0.297175\pi\)
\(558\) −12.4785 8.51912i −0.528257 0.360643i
\(559\) 29.6338i 1.25338i
\(560\) 0 0
\(561\) 22.8300 21.1699i 0.963883 0.893793i
\(562\) 11.5446 19.9958i 0.486979 0.843472i
\(563\) −14.6685 25.4066i −0.618205 1.07076i −0.989813 0.142372i \(-0.954527\pi\)
0.371609 0.928390i \(-0.378806\pi\)
\(564\) −0.310604 + 1.00584i −0.0130788 + 0.0423535i
\(565\) 0 0
\(566\) −24.7505 −1.04034
\(567\) −10.5348 21.3546i −0.442421 0.896807i
\(568\) −2.48759 −0.104377
\(569\) −36.5568 21.1061i −1.53254 0.884812i −0.999244 0.0388825i \(-0.987620\pi\)
−0.533295 0.845929i \(-0.679046\pi\)
\(570\) 0 0
\(571\) 15.6790 + 27.1568i 0.656145 + 1.13648i 0.981605 + 0.190921i \(0.0611473\pi\)
−0.325461 + 0.945556i \(0.605519\pi\)
\(572\) −15.7957 + 27.3589i −0.660450 + 1.14393i
\(573\) 0.680116 0.630661i 0.0284123 0.0263462i
\(574\) −17.8536 8.36271i −0.745196 0.349053i
\(575\) 0 0
\(576\) 2.47766 + 1.69151i 0.103236 + 0.0704795i
\(577\) 27.7794 16.0385i 1.15647 0.667689i 0.206016 0.978549i \(-0.433950\pi\)
0.950456 + 0.310859i \(0.100617\pi\)
\(578\) 3.32632 1.92045i 0.138357 0.0798802i
\(579\) −9.34795 + 2.13054i −0.388488 + 0.0885422i
\(580\) 0 0
\(581\) 19.1699 1.64393i 0.795303 0.0682017i
\(582\) −20.7936 22.4242i −0.861924 0.929515i
\(583\) 35.4467 61.3955i 1.46805 2.54274i
\(584\) −7.54666 13.0712i −0.312283 0.540890i
\(585\) 0 0
\(586\) 21.9437 + 12.6692i 0.906487 + 0.523360i
\(587\) −1.93731 −0.0799612 −0.0399806 0.999200i \(-0.512730\pi\)
−0.0399806 + 0.999200i \(0.512730\pi\)
\(588\) 11.1899 4.66756i 0.461464 0.192487i
\(589\) −21.1887 −0.873063
\(590\) 0 0
\(591\) 1.10294 + 0.340590i 0.0453690 + 0.0140100i
\(592\) 2.91394 + 5.04710i 0.119762 + 0.207435i
\(593\) 5.63074 9.75274i 0.231227 0.400497i −0.726942 0.686698i \(-0.759059\pi\)
0.958169 + 0.286201i \(0.0923927\pi\)
\(594\) 20.1461 16.0351i 0.826604 0.657929i
\(595\) 0 0
\(596\) 6.59303i 0.270061i
\(597\) 3.47247 + 15.2358i 0.142119 + 0.623560i
\(598\) −10.5826 + 6.10989i −0.432756 + 0.249852i
\(599\) −38.4047 + 22.1730i −1.56917 + 0.905963i −0.572909 + 0.819619i \(0.694185\pi\)
−0.996265 + 0.0863446i \(0.972481\pi\)
\(600\) 0 0
\(601\) 17.7126i 0.722514i −0.932466 0.361257i \(-0.882348\pi\)
0.932466 0.361257i \(-0.117652\pi\)
\(602\) −11.1370 5.21659i −0.453909 0.212613i
\(603\) 1.80461 23.8807i 0.0734893 0.972499i
\(604\) 5.88717 10.1969i 0.239546 0.414905i
\(605\) 0 0
\(606\) 1.90057 + 0.586898i 0.0772053 + 0.0238411i
\(607\) 15.8915 + 9.17497i 0.645016 + 0.372400i 0.786544 0.617534i \(-0.211868\pi\)
−0.141528 + 0.989934i \(0.545201\pi\)
\(608\) 4.20710 0.170620
\(609\) 3.58366 + 0.778699i 0.145217 + 0.0315545i
\(610\) 0 0
\(611\) 3.35562 + 1.93737i 0.135754 + 0.0783775i
\(612\) −9.80787 + 4.71568i −0.396460 + 0.190620i
\(613\) 0.315836 + 0.547045i 0.0127565 + 0.0220949i 0.872333 0.488912i \(-0.162606\pi\)
−0.859577 + 0.511007i \(0.829273\pi\)
\(614\) 6.56982 11.3793i 0.265136 0.459230i
\(615\) 0 0
\(616\) 7.50142 + 10.7525i 0.302241 + 0.433229i
\(617\) 15.5902i 0.627638i 0.949483 + 0.313819i \(0.101608\pi\)
−0.949483 + 0.313819i \(0.898392\pi\)
\(618\) 12.3002 2.80340i 0.494787 0.112769i
\(619\) 10.9863 6.34296i 0.441578 0.254945i −0.262689 0.964881i \(-0.584609\pi\)
0.704267 + 0.709936i \(0.251276\pi\)
\(620\) 0 0
\(621\) 9.84991 1.47520i 0.395263 0.0591978i
\(622\) 7.60664i 0.304999i
\(623\) −2.11541 + 4.51622i −0.0847522 + 0.180938i
\(624\) 8.09687 7.50809i 0.324134 0.300564i
\(625\) 0 0
\(626\) −6.21272 10.7608i −0.248310 0.430086i
\(627\) 10.6541 34.5014i 0.425483 1.37785i
\(628\) −1.33783 0.772397i −0.0533852 0.0308220i
\(629\) −21.1409 −0.842945
\(630\) 0 0
\(631\) −5.96052 −0.237284 −0.118642 0.992937i \(-0.537854\pi\)
−0.118642 + 0.992937i \(0.537854\pi\)
\(632\) −2.31062 1.33404i −0.0919115 0.0530651i
\(633\) 5.84568 18.9302i 0.232345 0.752409i
\(634\) 13.8679 + 24.0199i 0.550764 + 0.953952i
\(635\) 0 0
\(636\) −18.1700 + 16.8488i −0.720488 + 0.668097i
\(637\) −7.59808 43.9751i −0.301047 1.74235i
\(638\) 3.96559i 0.156999i
\(639\) 4.20778 6.16340i 0.166457 0.243820i
\(640\) 0 0
\(641\) 11.2070 6.47036i 0.442649 0.255564i −0.262071 0.965048i \(-0.584406\pi\)
0.704721 + 0.709485i \(0.251072\pi\)
\(642\) 4.53659 1.03396i 0.179045 0.0408070i
\(643\) 27.7420i 1.09404i 0.837120 + 0.547019i \(0.184237\pi\)
−0.837120 + 0.547019i \(0.815763\pi\)
\(644\) 0.433299 + 5.05272i 0.0170744 + 0.199105i
\(645\) 0 0
\(646\) −7.63072 + 13.2168i −0.300227 + 0.520008i
\(647\) −23.3856 40.5050i −0.919382 1.59242i −0.800356 0.599526i \(-0.795356\pi\)
−0.119027 0.992891i \(-0.537977\pi\)
\(648\) −8.38196 + 3.27761i −0.329275 + 0.128756i
\(649\) 7.51566 + 4.33917i 0.295015 + 0.170327i
\(650\) 0 0
\(651\) 7.03261 + 21.9822i 0.275630 + 0.861549i
\(652\) −3.37759 −0.132277
\(653\) 27.3651 + 15.7992i 1.07088 + 0.618271i 0.928421 0.371530i \(-0.121167\pi\)
0.142456 + 0.989801i \(0.454500\pi\)
\(654\) −14.9332 4.61140i −0.583936 0.180320i
\(655\) 0 0
\(656\) −3.72581 + 6.45330i −0.145469 + 0.251959i
\(657\) 45.1512 + 3.41197i 1.76152 + 0.133113i
\(658\) 1.31881 0.920062i 0.0514125 0.0358678i
\(659\) 29.8627i 1.16329i 0.813444 + 0.581643i \(0.197590\pi\)
−0.813444 + 0.581643i \(0.802410\pi\)
\(660\) 0 0
\(661\) −12.0007 + 6.92861i −0.466773 + 0.269492i −0.714888 0.699239i \(-0.753522\pi\)
0.248115 + 0.968731i \(0.420189\pi\)
\(662\) −10.2098 + 5.89462i −0.396814 + 0.229101i
\(663\) 8.90115 + 39.0547i 0.345692 + 1.51676i
\(664\) 7.27215i 0.282214i
\(665\) 0 0
\(666\) −17.4340 1.31744i −0.675552 0.0510498i
\(667\) −0.766960 + 1.32841i −0.0296968 + 0.0514364i
\(668\) 6.38423 + 11.0578i 0.247013 + 0.427840i
\(669\) −8.66191 2.67481i −0.334889 0.103414i
\(670\) 0 0
\(671\) −16.9624 −0.654827
\(672\) −1.39635 4.36465i −0.0538656 0.168370i
\(673\) −21.1836 −0.816568 −0.408284 0.912855i \(-0.633873\pi\)
−0.408284 + 0.912855i \(0.633873\pi\)
\(674\) 4.83448 + 2.79119i 0.186217 + 0.107513i
\(675\) 0 0
\(676\) −13.8218 23.9401i −0.531608 0.920771i
\(677\) −24.1682 + 41.8606i −0.928860 + 1.60883i −0.143628 + 0.989632i \(0.545877\pi\)
−0.785232 + 0.619202i \(0.787456\pi\)
\(678\) −14.6349 15.7826i −0.562050 0.606126i
\(679\) 3.99132 + 46.5430i 0.153173 + 1.78616i
\(680\) 0 0
\(681\) −22.7344 + 5.18152i −0.871186 + 0.198556i
\(682\) −21.6134 + 12.4785i −0.827620 + 0.477827i
\(683\) −22.8004 + 13.1638i −0.872433 + 0.503699i −0.868156 0.496291i \(-0.834695\pi\)
−0.00427708 + 0.999991i \(0.501361\pi\)
\(684\) −7.11633 + 10.4238i −0.272100 + 0.398562i
\(685\) 0 0
\(686\) −17.8642 4.88565i −0.682059 0.186535i
\(687\) 20.9833 19.4575i 0.800563 0.742349i
\(688\) −2.32413 + 4.02552i −0.0886068 + 0.153471i
\(689\) 45.6037 + 78.9880i 1.73736 + 3.00920i
\(690\) 0 0
\(691\) −16.5539 9.55742i −0.629741 0.363581i 0.150911 0.988547i \(-0.451779\pi\)
−0.780652 + 0.624966i \(0.785113\pi\)
\(692\) 0.247556 0.00941068
\(693\) −39.3296 + 0.398110i −1.49401 + 0.0151229i
\(694\) −31.9093 −1.21126
\(695\) 0 0
\(696\) 0.408975 1.32440i 0.0155022 0.0502012i
\(697\) −13.5156 23.4096i −0.511939 0.886704i
\(698\) 0.821763 1.42333i 0.0311042 0.0538740i
\(699\) −23.6686 + 21.9475i −0.895227 + 0.830130i
\(700\) 0 0
\(701\) 36.3536i 1.37306i 0.727103 + 0.686528i \(0.240866\pi\)
−0.727103 + 0.686528i \(0.759134\pi\)
\(702\) 4.90660 + 32.7613i 0.185188 + 1.23650i
\(703\) −21.2336 + 12.2592i −0.800842 + 0.462366i
\(704\) 4.29143 2.47766i 0.161740 0.0933804i
\(705\) 0 0
\(706\) 14.6008i 0.549507i
\(707\) −1.73849 2.49194i −0.0653827 0.0937189i
\(708\) −2.06252 2.22426i −0.0775143 0.0835928i
\(709\) −2.54606 + 4.40991i −0.0956193 + 0.165618i −0.909867 0.414900i \(-0.863816\pi\)
0.814248 + 0.580518i \(0.197150\pi\)
\(710\) 0 0
\(711\) 7.21372 3.46840i 0.270536 0.130075i
\(712\) 1.63241 + 0.942474i 0.0611773 + 0.0353207i
\(713\) −9.65357 −0.361529
\(714\) 16.2444 + 3.52978i 0.607933 + 0.132099i
\(715\) 0 0
\(716\) 16.9709 + 9.79815i 0.634232 + 0.366174i
\(717\) −41.0533 12.6773i −1.53316 0.473442i
\(718\) −0.253000 0.438209i −0.00944189 0.0163538i
\(719\) 20.5822 35.6494i 0.767587 1.32950i −0.171281 0.985222i \(-0.554791\pi\)
0.938868 0.344278i \(-0.111876\pi\)
\(720\) 0 0
\(721\) −17.4511 8.17418i −0.649914 0.304422i
\(722\) 1.30035i 0.0483938i
\(723\) 8.59708 + 37.7205i 0.319729 + 1.40284i
\(724\) 12.8261 7.40517i 0.476679 0.275211i
\(725\) 0 0
\(726\) −5.21727 22.8913i −0.193631 0.849576i
\(727\) 46.1288i 1.71082i 0.517948 + 0.855412i \(0.326696\pi\)
−0.517948 + 0.855412i \(0.673304\pi\)
\(728\) −16.8056 + 1.44117i −0.622857 + 0.0534134i
\(729\) 6.05736 26.3118i 0.224347 0.974509i
\(730\) 0 0
\(731\) −8.43091 14.6028i −0.311828 0.540103i
\(732\) 5.66498 + 1.74935i 0.209384 + 0.0646579i
\(733\) 8.65789 + 4.99864i 0.319787 + 0.184629i 0.651297 0.758823i \(-0.274225\pi\)
−0.331511 + 0.943451i \(0.607558\pi\)
\(734\) 1.35732 0.0500996
\(735\) 0 0
\(736\) 1.91676 0.0706526
\(737\) −34.2583 19.7790i −1.26192 0.728570i
\(738\) −9.68684 20.1471i −0.356578 0.741625i
\(739\) −0.418026 0.724042i −0.0153773 0.0266343i 0.858234 0.513258i \(-0.171562\pi\)
−0.873612 + 0.486624i \(0.838228\pi\)
\(740\) 0 0
\(741\) 31.5873 + 34.0643i 1.16039 + 1.25138i
\(742\) 37.7131 3.23411i 1.38449 0.118728i
\(743\) 53.3336i 1.95662i 0.207146 + 0.978310i \(0.433582\pi\)
−0.207146 + 0.978310i \(0.566418\pi\)
\(744\) 8.50521 1.93847i 0.311816 0.0710676i
\(745\) 0 0
\(746\) −29.5397 + 17.0548i −1.08153 + 0.624419i
\(747\) 18.0179 + 12.3009i 0.659241 + 0.450066i
\(748\) 17.9757i 0.657255i
\(749\) −6.43637 3.01482i −0.235180 0.110159i
\(750\) 0 0
\(751\) −16.8660 + 29.2127i −0.615448 + 1.06599i 0.374858 + 0.927082i \(0.377691\pi\)
−0.990306 + 0.138905i \(0.955642\pi\)
\(752\) −0.303890 0.526352i −0.0110817 0.0191941i
\(753\) −1.39060 + 4.50321i −0.0506762 + 0.164106i
\(754\) −4.41837 2.55095i −0.160908 0.0929001i
\(755\) 0 0
\(756\) 13.1761 + 3.92315i 0.479209 + 0.142684i
\(757\) −37.1033 −1.34854 −0.674272 0.738483i \(-0.735542\pi\)
−0.674272 + 0.738483i \(0.735542\pi\)
\(758\) −1.33326 0.769757i −0.0484261 0.0279588i
\(759\) 4.85401 15.7189i 0.176189 0.570559i
\(760\) 0 0
\(761\) 8.95519 15.5108i 0.324625 0.562268i −0.656811 0.754055i \(-0.728095\pi\)
0.981436 + 0.191787i \(0.0614284\pi\)
\(762\) −10.2452 + 9.50024i −0.371146 + 0.344157i
\(763\) 13.6598 + 19.5798i 0.494517 + 0.708835i
\(764\) 0.535503i 0.0193738i
\(765\) 0 0
\(766\) 28.1685 16.2631i 1.01777 0.587608i
\(767\) −9.66922 + 5.58252i −0.349135 + 0.201573i
\(768\) −1.68874 + 0.384890i −0.0609373 + 0.0138885i
\(769\) 0.619084i 0.0223247i −0.999938 0.0111624i \(-0.996447\pi\)
0.999938 0.0111624i \(-0.00355317\pi\)
\(770\) 0 0
\(771\) −13.5480 14.6104i −0.487918 0.526180i
\(772\) 2.76772 4.79383i 0.0996125 0.172534i
\(773\) 24.4683 + 42.3803i 0.880062 + 1.52431i 0.851271 + 0.524727i \(0.175833\pi\)
0.0287914 + 0.999585i \(0.490834\pi\)
\(774\) −6.04258 12.5676i −0.217196 0.451733i
\(775\) 0 0
\(776\) 17.6562 0.633820
\(777\) 19.7659 + 17.9599i 0.709098 + 0.644309i
\(778\) 7.10169 0.254608
\(779\) −27.1496 15.6749i −0.972737 0.561610i
\(780\) 0 0
\(781\) −6.16340 10.6753i −0.220544 0.381993i
\(782\) −3.47656 + 6.02159i −0.124322 + 0.215331i
\(783\) 2.58962 + 3.25353i 0.0925456 + 0.116272i
\(784\) −2.41676 + 6.56957i −0.0863128 + 0.234628i
\(785\) 0 0
\(786\) −1.30209 5.71305i −0.0464440 0.203778i
\(787\) 0.0582062 0.0336053i 0.00207483 0.00119790i −0.498962 0.866624i \(-0.666285\pi\)
0.501037 + 0.865426i \(0.332952\pi\)
\(788\) −0.577166 + 0.333227i −0.0205607 + 0.0118707i
\(789\) −4.92103 21.5915i −0.175193 0.768678i
\(790\) 0 0
\(791\) 2.80916 + 32.7578i 0.0998822 + 1.16473i
\(792\) −1.12019 + 14.8237i −0.0398042 + 0.526737i
\(793\) 10.9114 18.8992i 0.387477 0.671129i
\(794\) −6.51194 11.2790i −0.231100 0.400277i
\(795\) 0 0
\(796\) −7.81326 4.51099i −0.276934 0.159888i
\(797\) 7.61311 0.269670 0.134835 0.990868i \(-0.456950\pi\)
0.134835 + 0.990868i \(0.456950\pi\)
\(798\) 18.3625 5.87460i 0.650026 0.207959i
\(799\) 2.20475 0.0779984
\(800\) 0 0
\(801\) −5.09637 + 2.45036i −0.180071 + 0.0865793i
\(802\) −11.7015 20.2676i −0.413194 0.715673i
\(803\) 37.3961 64.7720i 1.31968 2.28575i
\(804\) 9.40149 + 10.1387i 0.331565 + 0.357566i
\(805\) 0 0
\(806\) 32.1083i 1.13097i
\(807\) 19.7440 4.49995i 0.695021 0.158406i
\(808\) −0.994562 + 0.574210i −0.0349886 + 0.0202007i
\(809\) 16.9690 9.79703i 0.596597 0.344445i −0.171105 0.985253i \(-0.554734\pi\)
0.767702 + 0.640807i \(0.221400\pi\)
\(810\) 0 0
\(811\) 38.1099i 1.33822i −0.743164 0.669110i \(-0.766676\pi\)
0.743164 0.669110i \(-0.233324\pi\)
\(812\) −1.73649 + 1.21145i −0.0609387 + 0.0425137i
\(813\) 28.0298 25.9916i 0.983048 0.911564i
\(814\) −14.4395 + 25.0100i −0.506105 + 0.876600i
\(815\) 0 0
\(816\) 1.85385 6.00338i 0.0648977 0.210160i
\(817\) −16.9357 9.77786i −0.592507 0.342084i
\(818\) 13.1994 0.461508
\(819\) 24.8561 44.0763i 0.868541 1.54015i
\(820\) 0 0
\(821\) −32.4054 18.7093i −1.13096 0.652958i −0.186781 0.982402i \(-0.559805\pi\)
−0.944175 + 0.329444i \(0.893139\pi\)
\(822\) 7.57751 24.5385i 0.264296 0.855878i
\(823\) 17.1932 + 29.7795i 0.599318 + 1.03805i 0.992922 + 0.118768i \(0.0378946\pi\)
−0.393604 + 0.919280i \(0.628772\pi\)
\(824\) −3.64182 + 6.30781i −0.126869 + 0.219743i
\(825\) 0 0
\(826\) 0.395899 + 4.61660i 0.0137751 + 0.160632i
\(827\) 4.15552i 0.144502i 0.997386 + 0.0722508i \(0.0230182\pi\)
−0.997386 + 0.0722508i \(0.976982\pi\)
\(828\) −3.24221 + 4.74908i −0.112675 + 0.165042i
\(829\) −24.3399 + 14.0526i −0.845359 + 0.488068i −0.859082 0.511837i \(-0.828965\pi\)
0.0137231 + 0.999906i \(0.495632\pi\)
\(830\) 0 0
\(831\) −13.1833 + 3.00467i −0.457323 + 0.104231i
\(832\) 6.37523i 0.221021i
\(833\) −16.2552 19.5081i −0.563208 0.675915i
\(834\) 8.53440 + 9.20366i 0.295522 + 0.318697i
\(835\) 0 0
\(836\) 10.4238 + 18.0545i 0.360513 + 0.624427i
\(837\) −9.58376 + 24.3519i −0.331263 + 0.841727i
\(838\) −24.2047 13.9746i −0.836138 0.482745i
\(839\) 23.6646 0.816992 0.408496 0.912760i \(-0.366053\pi\)
0.408496 + 0.912760i \(0.366053\pi\)
\(840\) 0 0
\(841\) 28.3596 0.977916
\(842\) 21.3731 + 12.3398i 0.736565 + 0.425256i
\(843\) −38.2112 11.7997i −1.31606 0.406402i
\(844\) 5.71931 + 9.90613i 0.196867 + 0.340983i
\(845\) 0 0
\(846\) 1.81815 + 0.137393i 0.0625094 + 0.00472368i
\(847\) −15.2126 + 32.4774i −0.522709 + 1.11594i
\(848\) 14.3065i 0.491288i
\(849\) 9.52622 + 41.7972i 0.326939 + 1.43448i
\(850\) 0 0
\(851\) −9.67407 + 5.58533i −0.331623 + 0.191462i
\(852\) 0.957449 + 4.20090i 0.0328017 + 0.143921i
\(853\) 23.7742i 0.814012i 0.913426 + 0.407006i \(0.133427\pi\)
−0.913426 + 0.407006i \(0.866573\pi\)
\(854\) −5.18188 7.42766i −0.177320 0.254169i
\(855\) 0 0
\(856\) −1.34318 + 2.32646i −0.0459091 + 0.0795168i
\(857\) 11.1811 + 19.3662i 0.381938 + 0.661535i 0.991339 0.131326i \(-0.0419236\pi\)
−0.609402 + 0.792862i \(0.708590\pi\)
\(858\) 52.2818 + 16.1447i 1.78487 + 0.551170i
\(859\) −37.1729 21.4618i −1.26832 0.732267i −0.293653 0.955912i \(-0.594871\pi\)
−0.974671 + 0.223645i \(0.928204\pi\)
\(860\) 0 0
\(861\) −7.25079 + 33.3690i −0.247106 + 1.13721i
\(862\) −3.34445 −0.113912
\(863\) 20.3687 + 11.7599i 0.693360 + 0.400312i 0.804870 0.593452i \(-0.202235\pi\)
−0.111510 + 0.993763i \(0.535569\pi\)
\(864\) 1.90290 4.83518i 0.0647379 0.164496i
\(865\) 0 0
\(866\) 7.33780 12.7094i 0.249348 0.431884i
\(867\) −4.52342 4.87814i −0.153623 0.165670i
\(868\) −12.0669 5.65219i −0.409578 0.191848i
\(869\) 13.2212i 0.448497i
\(870\) 0 0
\(871\) 44.0747 25.4466i 1.49342 0.862224i
\(872\) 7.81452 4.51172i 0.264633 0.152786i
\(873\) −29.8655 + 43.7460i −1.01080 + 1.48058i
\(874\) 8.06398i 0.272768i
\(875\) 0 0
\(876\) −19.1693 + 17.7754i −0.647670 + 0.600574i
\(877\) 4.09356 7.09026i 0.138230 0.239421i −0.788597 0.614911i \(-0.789192\pi\)
0.926827 + 0.375490i \(0.122525\pi\)
\(878\) −3.29351 5.70453i −0.111151 0.192518i
\(879\) 12.9491 41.9336i 0.436764 1.41439i
\(880\) 0 0
\(881\) 26.6496 0.897847 0.448923 0.893570i \(-0.351808\pi\)
0.448923 + 0.893570i \(0.351808\pi\)
\(882\) −12.1892 17.1004i −0.410432 0.575800i
\(883\) 5.41249 0.182145 0.0910724 0.995844i \(-0.470971\pi\)
0.0910724 + 0.995844i \(0.470971\pi\)
\(884\) −20.0281 11.5632i −0.673618 0.388913i
\(885\) 0 0
\(886\) −20.3605 35.2654i −0.684025 1.18477i
\(887\) 12.0499 20.8711i 0.404597 0.700782i −0.589678 0.807639i \(-0.700745\pi\)
0.994274 + 0.106856i \(0.0340785\pi\)
\(888\) 7.40171 6.86349i 0.248385 0.230324i
\(889\) 21.2647 1.82356i 0.713195 0.0611604i
\(890\) 0 0
\(891\) −34.8333 27.8498i −1.16696 0.933005i
\(892\) 4.53275 2.61699i 0.151768 0.0876231i
\(893\) 2.21441 1.27849i 0.0741026 0.0427831i
\(894\) −11.1339 + 2.53759i −0.372375 + 0.0848698i
\(895\) 0 0
\(896\) 2.39594 + 1.12227i 0.0800427 + 0.0374923i
\(897\) 14.3912 + 15.5197i 0.480508 + 0.518189i
\(898\) −9.17425 + 15.8903i −0.306149 + 0.530265i
\(899\) −2.01524 3.49050i −0.0672120 0.116415i
\(900\) 0 0
\(901\) 44.9446 + 25.9488i 1.49732 + 0.864480i
\(902\) −36.9252 −1.22948
\(903\) −4.52299 + 20.8153i −0.150516 + 0.692690i
\(904\) 12.4267 0.413306
\(905\) 0 0
\(906\) −19.4859 6.01725i −0.647374 0.199910i
\(907\) −10.8290 18.7564i −0.359572 0.622797i 0.628317 0.777957i \(-0.283744\pi\)
−0.987889 + 0.155160i \(0.950411\pi\)
\(908\) 6.73117 11.6587i 0.223382 0.386908i
\(909\) 0.259610 3.43547i 0.00861071 0.113947i
\(910\) 0 0
\(911\) 47.4302i 1.57143i 0.618587 + 0.785716i \(0.287705\pi\)
−0.618587 + 0.785716i \(0.712295\pi\)
\(912\) −1.61927 7.10471i −0.0536194 0.235261i
\(913\) 31.2080 18.0179i 1.03283 0.596306i
\(914\) −7.48533 + 4.32166i −0.247593 + 0.142948i
\(915\) 0 0
\(916\) 16.5216i 0.545890i
\(917\) −3.79664 + 8.10549i −0.125376 + 0.267667i
\(918\) 11.7385 + 14.7480i 0.387429 + 0.486755i
\(919\) −5.32208 + 9.21812i −0.175559 + 0.304078i −0.940355 0.340196i \(-0.889507\pi\)
0.764795 + 0.644273i \(0.222840\pi\)
\(920\) 0 0
\(921\) −21.7453 6.71499i −0.716533 0.221266i
\(922\) 21.4657 + 12.3932i 0.706935 + 0.408149i
\(923\) 15.8590 0.522004
\(924\) 15.2709 16.8065i 0.502377 0.552893i
\(925\) 0 0
\(926\) 15.5709 + 8.98986i 0.511691 + 0.295425i
\(927\) −9.46846 19.6929i −0.310985 0.646800i
\(928\) 0.400134 + 0.693053i 0.0131351 + 0.0227506i
\(929\) 17.1983 29.7883i 0.564257 0.977322i −0.432861 0.901460i \(-0.642496\pi\)
0.997118 0.0758612i \(-0.0241706\pi\)
\(930\) 0 0
\(931\) −27.6388 10.1675i −0.905826 0.333227i
\(932\) 18.6359i 0.610440i
\(933\) −12.8457 + 2.92772i −0.420549 + 0.0958494i
\(934\) −1.10282 + 0.636712i −0.0360853 + 0.0208339i
\(935\) 0 0
\(936\) −15.7957 10.7838i −0.516297 0.352478i
\(937\) 40.0917i 1.30974i −0.755742 0.654870i \(-0.772723\pi\)
0.755742 0.654870i \(-0.227277\pi\)
\(938\) −1.80461 21.0436i −0.0589226 0.687099i
\(939\) −15.7809 + 14.6334i −0.514992 + 0.477543i
\(940\) 0 0
\(941\) −13.6315 23.6104i −0.444374 0.769678i 0.553635 0.832760i \(-0.313240\pi\)
−0.998008 + 0.0630819i \(0.979907\pi\)
\(942\) −0.789463 + 2.55654i −0.0257221 + 0.0832966i
\(943\) −12.3694 7.14148i −0.402803 0.232559i
\(944\) 1.75132 0.0570005
\(945\) 0 0
\(946\) −23.0337 −0.748889
\(947\) −19.6642 11.3531i −0.638999 0.368926i 0.145230 0.989398i \(-0.453608\pi\)
−0.784229 + 0.620472i \(0.786941\pi\)
\(948\) −1.36351 + 4.41551i −0.0442848 + 0.143409i
\(949\) 48.1117 + 83.3319i 1.56177 + 2.70507i
\(950\) 0 0
\(951\) 35.2258 32.6644i 1.14228 1.05921i
\(952\) −7.87134 + 5.49142i −0.255112 + 0.177978i
\(953\) 38.7288i 1.25455i 0.778799 + 0.627274i \(0.215829\pi\)
−0.778799 + 0.627274i \(0.784171\pi\)
\(954\) 35.4467 + 24.1996i 1.14763 + 0.783491i
\(955\) 0 0
\(956\) 21.4831 12.4032i 0.694812 0.401150i
\(957\) 6.69687 1.52632i 0.216479 0.0493388i
\(958\) 14.2267i 0.459643i
\(959\) −32.1737 + 22.4459i −1.03894 + 0.724815i
\(960\) 0 0
\(961\) −2.81730 + 4.87970i −0.0908805 + 0.157410i
\(962\) −18.5771 32.1764i −0.598949 1.03741i
\(963\) −3.49218 7.26318i −0.112534 0.234053i
\(964\) −19.3439 11.1682i −0.623025 0.359704i
\(965\) 0 0
\(966\) 8.36598 2.67647i 0.269171 0.0861141i
\(967\) −39.1631 −1.25940 −0.629700 0.776838i \(-0.716822\pi\)
−0.629700 + 0.776838i \(0.716822\pi\)
\(968\) 11.7392 + 6.77761i 0.377311 + 0.217840i
\(969\) 25.2568 + 7.79932i 0.811365 + 0.250550i
\(970\) 0 0
\(971\) −13.4005 + 23.2104i −0.430044 + 0.744858i −0.996877 0.0789753i \(-0.974835\pi\)
0.566833 + 0.823833i \(0.308169\pi\)
\(972\) 8.76118 + 12.8935i 0.281015 + 0.413559i
\(973\) −1.63817 19.1028i −0.0525174 0.612408i
\(974\) 39.8951i 1.27832i
\(975\) 0 0
\(976\) −2.96447 + 1.71154i −0.0948903 + 0.0547849i
\(977\) −24.1424 + 13.9386i −0.772383 + 0.445936i −0.833724 0.552181i \(-0.813796\pi\)
0.0613410 + 0.998117i \(0.480462\pi\)
\(978\) 1.30000 + 5.70389i 0.0415695 + 0.182390i
\(979\) 9.34052i 0.298524i
\(980\) 0 0
\(981\) −2.03982 + 26.9933i −0.0651264 + 0.861831i
\(982\) 7.98891 13.8372i 0.254936 0.441563i
\(983\) −10.9212 18.9161i −0.348332 0.603329i 0.637621 0.770350i \(-0.279919\pi\)
−0.985953 + 0.167021i \(0.946585\pi\)
\(984\) 12.3320 + 3.80814i 0.393130 + 0.121399i
\(985\) 0 0
\(986\) −2.90301 −0.0924507
\(987\) −2.06135 1.87301i −0.0656134 0.0596185i
\(988\) −26.8212 −0.853297
\(989\) −7.71594 4.45480i −0.245353 0.141654i
\(990\) 0 0
\(991\) 29.4300 + 50.9743i 0.934875 + 1.61925i 0.774856 + 0.632137i \(0.217822\pi\)
0.160019 + 0.987114i \(0.448845\pi\)
\(992\) −2.51820 + 4.36166i −0.0799531 + 0.138483i
\(993\) 13.8841 + 14.9729i 0.440600 + 0.475151i
\(994\) 2.79174 5.96011i 0.0885485 0.189043i
\(995\) 0 0
\(996\) −12.2808 + 2.79898i −0.389132 + 0.0886891i
\(997\) 10.4327 6.02334i 0.330408 0.190761i −0.325614 0.945503i \(-0.605571\pi\)
0.656022 + 0.754742i \(0.272238\pi\)
\(998\) 11.9566 6.90313i 0.378479 0.218515i
\(999\) 4.48534 + 29.9486i 0.141910 + 0.947531i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.2.s.f.551.5 12
3.2 odd 2 1050.2.s.g.551.3 12
5.2 odd 4 1050.2.u.e.299.1 12
5.3 odd 4 1050.2.u.h.299.6 12
5.4 even 2 210.2.r.b.131.2 yes 12
7.3 odd 6 1050.2.s.g.101.3 12
15.2 even 4 1050.2.u.g.299.5 12
15.8 even 4 1050.2.u.f.299.2 12
15.14 odd 2 210.2.r.a.131.4 yes 12
21.17 even 6 inner 1050.2.s.f.101.5 12
35.3 even 12 1050.2.u.g.899.5 12
35.9 even 6 1470.2.b.a.881.8 12
35.17 even 12 1050.2.u.f.899.2 12
35.19 odd 6 1470.2.b.b.881.11 12
35.24 odd 6 210.2.r.a.101.4 12
105.17 odd 12 1050.2.u.h.899.6 12
105.38 odd 12 1050.2.u.e.899.1 12
105.44 odd 6 1470.2.b.b.881.5 12
105.59 even 6 210.2.r.b.101.2 yes 12
105.89 even 6 1470.2.b.a.881.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.r.a.101.4 12 35.24 odd 6
210.2.r.a.131.4 yes 12 15.14 odd 2
210.2.r.b.101.2 yes 12 105.59 even 6
210.2.r.b.131.2 yes 12 5.4 even 2
1050.2.s.f.101.5 12 21.17 even 6 inner
1050.2.s.f.551.5 12 1.1 even 1 trivial
1050.2.s.g.101.3 12 7.3 odd 6
1050.2.s.g.551.3 12 3.2 odd 2
1050.2.u.e.299.1 12 5.2 odd 4
1050.2.u.e.899.1 12 105.38 odd 12
1050.2.u.f.299.2 12 15.8 even 4
1050.2.u.f.899.2 12 35.17 even 12
1050.2.u.g.299.5 12 15.2 even 4
1050.2.u.g.899.5 12 35.3 even 12
1050.2.u.h.299.6 12 5.3 odd 4
1050.2.u.h.899.6 12 105.17 odd 12
1470.2.b.a.881.2 12 105.89 even 6
1470.2.b.a.881.8 12 35.9 even 6
1470.2.b.b.881.5 12 105.44 odd 6
1470.2.b.b.881.11 12 35.19 odd 6