Properties

Label 1050.2.s.e.101.3
Level $1050$
Weight $2$
Character 1050.101
Analytic conductor $8.384$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,2,Mod(101,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,4,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.303595776.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.3
Root \(1.26217 + 1.18614i\) of defining polynomial
Character \(\chi\) \(=\) 1050.101
Dual form 1050.2.s.e.551.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-1.65831 + 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.18614 + 1.26217i) q^{6} +(-0.866025 - 2.50000i) q^{7} -1.00000i q^{8} +(2.50000 - 1.65831i) q^{9} +(-3.68614 - 2.12819i) q^{11} +(-0.396143 + 1.68614i) q^{12} +2.00000i q^{13} +(-2.00000 - 1.73205i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(-3.31662 + 5.74456i) q^{17} +(1.33591 - 2.68614i) q^{18} +(3.00000 - 1.73205i) q^{19} +(2.68614 + 3.71277i) q^{21} -4.25639 q^{22} +(-3.78651 + 2.18614i) q^{23} +(0.500000 + 1.65831i) q^{24} +(1.00000 + 1.73205i) q^{26} +(-3.31662 + 4.00000i) q^{27} +(-2.59808 - 0.500000i) q^{28} +3.31662i q^{29} +(-2.05842 - 1.18843i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(7.17687 + 1.68614i) q^{33} +6.63325i q^{34} +(-0.186141 - 2.99422i) q^{36} +(-5.84096 - 10.1168i) q^{37} +(1.73205 - 3.00000i) q^{38} +(-1.00000 - 3.31662i) q^{39} -1.62772 q^{41} +(4.18265 + 1.87228i) q^{42} -11.0371 q^{43} +(-3.68614 + 2.12819i) q^{44} +(-2.18614 + 3.78651i) q^{46} +(-0.939764 - 1.62772i) q^{47} +(1.26217 + 1.18614i) q^{48} +(-5.50000 + 4.33013i) q^{49} +(2.62772 - 11.1846i) q^{51} +(1.73205 + 1.00000i) q^{52} +(1.18843 + 0.686141i) q^{53} +(-0.872281 + 5.12241i) q^{54} +(-2.50000 + 0.866025i) q^{56} +(-4.10891 + 4.37228i) q^{57} +(1.65831 + 2.87228i) q^{58} +(2.05842 - 3.56529i) q^{59} +(-2.44158 + 1.40965i) q^{61} -2.37686 q^{62} +(-6.31084 - 4.81386i) q^{63} -1.00000 q^{64} +(7.05842 - 2.12819i) q^{66} +(-3.78651 + 6.55842i) q^{67} +(3.31662 + 5.74456i) q^{68} +(5.18614 - 5.51856i) q^{69} +1.87953i q^{71} +(-1.65831 - 2.50000i) q^{72} +(-1.73205 - 1.00000i) q^{73} +(-10.1168 - 5.84096i) q^{74} -3.46410i q^{76} +(-2.12819 + 11.0584i) q^{77} +(-2.52434 - 2.37228i) q^{78} +(-4.05842 - 7.02939i) q^{79} +(3.50000 - 8.29156i) q^{81} +(-1.40965 + 0.813859i) q^{82} -1.43710 q^{83} +(4.55842 - 0.469882i) q^{84} +(-9.55842 + 5.51856i) q^{86} +(-1.65831 - 5.50000i) q^{87} +(-2.12819 + 3.68614i) q^{88} +(2.18614 + 3.78651i) q^{89} +(5.00000 - 1.73205i) q^{91} +4.37228i q^{92} +(4.00772 + 0.941578i) q^{93} +(-1.62772 - 0.939764i) q^{94} +(1.68614 + 0.396143i) q^{96} +2.11684i q^{97} +(-2.59808 + 6.50000i) q^{98} +(-12.7446 + 0.792287i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} + 2 q^{6} + 20 q^{9} - 18 q^{11} - 16 q^{14} - 4 q^{16} + 24 q^{19} + 10 q^{21} + 4 q^{24} + 8 q^{26} + 18 q^{31} + 10 q^{36} - 8 q^{39} - 36 q^{41} - 18 q^{44} - 6 q^{46} - 44 q^{49} + 44 q^{51}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) −1.65831 + 0.500000i −0.957427 + 0.288675i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) −1.18614 + 1.26217i −0.484240 + 0.515278i
\(7\) −0.866025 2.50000i −0.327327 0.944911i
\(8\) 1.00000i 0.353553i
\(9\) 2.50000 1.65831i 0.833333 0.552771i
\(10\) 0 0
\(11\) −3.68614 2.12819i −1.11141 0.641675i −0.172218 0.985059i \(-0.555093\pi\)
−0.939195 + 0.343384i \(0.888427\pi\)
\(12\) −0.396143 + 1.68614i −0.114357 + 0.486747i
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) −2.00000 1.73205i −0.534522 0.462910i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.31662 + 5.74456i −0.804400 + 1.39326i 0.112296 + 0.993675i \(0.464180\pi\)
−0.916696 + 0.399586i \(0.869154\pi\)
\(18\) 1.33591 2.68614i 0.314876 0.633129i
\(19\) 3.00000 1.73205i 0.688247 0.397360i −0.114708 0.993399i \(-0.536593\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) 2.68614 + 3.71277i 0.586164 + 0.810192i
\(22\) −4.25639 −0.907465
\(23\) −3.78651 + 2.18614i −0.789541 + 0.455842i −0.839801 0.542894i \(-0.817328\pi\)
0.0502598 + 0.998736i \(0.483995\pi\)
\(24\) 0.500000 + 1.65831i 0.102062 + 0.338502i
\(25\) 0 0
\(26\) 1.00000 + 1.73205i 0.196116 + 0.339683i
\(27\) −3.31662 + 4.00000i −0.638285 + 0.769800i
\(28\) −2.59808 0.500000i −0.490990 0.0944911i
\(29\) 3.31662i 0.615882i 0.951405 + 0.307941i \(0.0996399\pi\)
−0.951405 + 0.307941i \(0.900360\pi\)
\(30\) 0 0
\(31\) −2.05842 1.18843i −0.369704 0.213448i 0.303625 0.952791i \(-0.401803\pi\)
−0.673329 + 0.739343i \(0.735136\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 7.17687 + 1.68614i 1.24933 + 0.293519i
\(34\) 6.63325i 1.13759i
\(35\) 0 0
\(36\) −0.186141 2.99422i −0.0310234 0.499037i
\(37\) −5.84096 10.1168i −0.960248 1.66320i −0.721873 0.692026i \(-0.756718\pi\)
−0.238376 0.971173i \(-0.576615\pi\)
\(38\) 1.73205 3.00000i 0.280976 0.486664i
\(39\) −1.00000 3.31662i −0.160128 0.531085i
\(40\) 0 0
\(41\) −1.62772 −0.254207 −0.127103 0.991889i \(-0.540568\pi\)
−0.127103 + 0.991889i \(0.540568\pi\)
\(42\) 4.18265 + 1.87228i 0.645397 + 0.288899i
\(43\) −11.0371 −1.68314 −0.841572 0.540145i \(-0.818369\pi\)
−0.841572 + 0.540145i \(0.818369\pi\)
\(44\) −3.68614 + 2.12819i −0.555707 + 0.320837i
\(45\) 0 0
\(46\) −2.18614 + 3.78651i −0.322329 + 0.558290i
\(47\) −0.939764 1.62772i −0.137079 0.237427i 0.789311 0.613994i \(-0.210438\pi\)
−0.926390 + 0.376566i \(0.877105\pi\)
\(48\) 1.26217 + 1.18614i 0.182178 + 0.171205i
\(49\) −5.50000 + 4.33013i −0.785714 + 0.618590i
\(50\) 0 0
\(51\) 2.62772 11.1846i 0.367954 1.56616i
\(52\) 1.73205 + 1.00000i 0.240192 + 0.138675i
\(53\) 1.18843 + 0.686141i 0.163243 + 0.0942487i 0.579396 0.815046i \(-0.303288\pi\)
−0.416153 + 0.909295i \(0.636622\pi\)
\(54\) −0.872281 + 5.12241i −0.118702 + 0.697072i
\(55\) 0 0
\(56\) −2.50000 + 0.866025i −0.334077 + 0.115728i
\(57\) −4.10891 + 4.37228i −0.544239 + 0.579123i
\(58\) 1.65831 + 2.87228i 0.217747 + 0.377149i
\(59\) 2.05842 3.56529i 0.267984 0.464161i −0.700357 0.713792i \(-0.746976\pi\)
0.968341 + 0.249631i \(0.0803093\pi\)
\(60\) 0 0
\(61\) −2.44158 + 1.40965i −0.312612 + 0.180487i −0.648095 0.761560i \(-0.724434\pi\)
0.335483 + 0.942046i \(0.391101\pi\)
\(62\) −2.37686 −0.301862
\(63\) −6.31084 4.81386i −0.795092 0.606489i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 7.05842 2.12819i 0.868832 0.261963i
\(67\) −3.78651 + 6.55842i −0.462595 + 0.801239i −0.999089 0.0426654i \(-0.986415\pi\)
0.536494 + 0.843904i \(0.319748\pi\)
\(68\) 3.31662 + 5.74456i 0.402200 + 0.696631i
\(69\) 5.18614 5.51856i 0.624338 0.664356i
\(70\) 0 0
\(71\) 1.87953i 0.223059i 0.993761 + 0.111529i \(0.0355749\pi\)
−0.993761 + 0.111529i \(0.964425\pi\)
\(72\) −1.65831 2.50000i −0.195434 0.294628i
\(73\) −1.73205 1.00000i −0.202721 0.117041i 0.395203 0.918594i \(-0.370674\pi\)
−0.597924 + 0.801553i \(0.704008\pi\)
\(74\) −10.1168 5.84096i −1.17606 0.678998i
\(75\) 0 0
\(76\) 3.46410i 0.397360i
\(77\) −2.12819 + 11.0584i −0.242530 + 1.26022i
\(78\) −2.52434 2.37228i −0.285825 0.268608i
\(79\) −4.05842 7.02939i −0.456608 0.790869i 0.542171 0.840268i \(-0.317603\pi\)
−0.998779 + 0.0493997i \(0.984269\pi\)
\(80\) 0 0
\(81\) 3.50000 8.29156i 0.388889 0.921285i
\(82\) −1.40965 + 0.813859i −0.155669 + 0.0898757i
\(83\) −1.43710 −0.157742 −0.0788710 0.996885i \(-0.525132\pi\)
−0.0788710 + 0.996885i \(0.525132\pi\)
\(84\) 4.55842 0.469882i 0.497365 0.0512683i
\(85\) 0 0
\(86\) −9.55842 + 5.51856i −1.03071 + 0.595081i
\(87\) −1.65831 5.50000i −0.177790 0.589662i
\(88\) −2.12819 + 3.68614i −0.226866 + 0.392944i
\(89\) 2.18614 + 3.78651i 0.231730 + 0.401369i 0.958317 0.285706i \(-0.0922279\pi\)
−0.726587 + 0.687074i \(0.758895\pi\)
\(90\) 0 0
\(91\) 5.00000 1.73205i 0.524142 0.181568i
\(92\) 4.37228i 0.455842i
\(93\) 4.00772 + 0.941578i 0.415581 + 0.0976371i
\(94\) −1.62772 0.939764i −0.167886 0.0969292i
\(95\) 0 0
\(96\) 1.68614 + 0.396143i 0.172091 + 0.0404312i
\(97\) 2.11684i 0.214933i 0.994209 + 0.107466i \(0.0342738\pi\)
−0.994209 + 0.107466i \(0.965726\pi\)
\(98\) −2.59808 + 6.50000i −0.262445 + 0.656599i
\(99\) −12.7446 + 0.792287i −1.28088 + 0.0796278i
\(100\) 0 0
\(101\) −8.18614 + 14.1788i −0.814551 + 1.41084i 0.0950981 + 0.995468i \(0.469684\pi\)
−0.909650 + 0.415377i \(0.863650\pi\)
\(102\) −3.31662 11.0000i −0.328395 1.08916i
\(103\) 13.0916 7.55842i 1.28995 0.744753i 0.311306 0.950310i \(-0.399234\pi\)
0.978645 + 0.205556i \(0.0659004\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) 1.37228 0.133288
\(107\) 15.3672 8.87228i 1.48561 0.857716i 0.485742 0.874102i \(-0.338550\pi\)
0.999866 + 0.0163866i \(0.00521626\pi\)
\(108\) 1.80579 + 4.87228i 0.173762 + 0.468835i
\(109\) 4.55842 7.89542i 0.436618 0.756244i −0.560808 0.827946i \(-0.689510\pi\)
0.997426 + 0.0717016i \(0.0228429\pi\)
\(110\) 0 0
\(111\) 14.7446 + 13.8564i 1.39949 + 1.31519i
\(112\) −1.73205 + 2.00000i −0.163663 + 0.188982i
\(113\) 3.25544i 0.306246i 0.988207 + 0.153123i \(0.0489330\pi\)
−0.988207 + 0.153123i \(0.951067\pi\)
\(114\) −1.37228 + 5.84096i −0.128526 + 0.547056i
\(115\) 0 0
\(116\) 2.87228 + 1.65831i 0.266685 + 0.153970i
\(117\) 3.31662 + 5.00000i 0.306622 + 0.462250i
\(118\) 4.11684i 0.378986i
\(119\) 17.2337 + 3.31662i 1.57981 + 0.304034i
\(120\) 0 0
\(121\) 3.55842 + 6.16337i 0.323493 + 0.560306i
\(122\) −1.40965 + 2.44158i −0.127623 + 0.221050i
\(123\) 2.69927 0.813859i 0.243385 0.0733832i
\(124\) −2.05842 + 1.18843i −0.184852 + 0.106724i
\(125\) 0 0
\(126\) −7.87228 1.01350i −0.701319 0.0902900i
\(127\) 2.37686 0.210912 0.105456 0.994424i \(-0.466370\pi\)
0.105456 + 0.994424i \(0.466370\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 18.3030 5.51856i 1.61149 0.485882i
\(130\) 0 0
\(131\) −2.31386 4.00772i −0.202163 0.350156i 0.747062 0.664754i \(-0.231464\pi\)
−0.949225 + 0.314598i \(0.898130\pi\)
\(132\) 5.04868 5.37228i 0.439431 0.467597i
\(133\) −6.92820 6.00000i −0.600751 0.520266i
\(134\) 7.57301i 0.654209i
\(135\) 0 0
\(136\) 5.74456 + 3.31662i 0.492592 + 0.284398i
\(137\) −2.37686 1.37228i −0.203069 0.117242i 0.395017 0.918674i \(-0.370739\pi\)
−0.598086 + 0.801432i \(0.704072\pi\)
\(138\) 1.73205 7.37228i 0.147442 0.627570i
\(139\) 11.6819i 0.990848i −0.868651 0.495424i \(-0.835013\pi\)
0.868651 0.495424i \(-0.164987\pi\)
\(140\) 0 0
\(141\) 2.37228 + 2.22938i 0.199782 + 0.187748i
\(142\) 0.939764 + 1.62772i 0.0788632 + 0.136595i
\(143\) 4.25639 7.37228i 0.355937 0.616501i
\(144\) −2.68614 1.33591i −0.223845 0.111326i
\(145\) 0 0
\(146\) −2.00000 −0.165521
\(147\) 6.95565 9.93070i 0.573693 0.819071i
\(148\) −11.6819 −0.960248
\(149\) −12.3030 + 7.10313i −1.00790 + 0.581911i −0.910576 0.413342i \(-0.864362\pi\)
−0.0973237 + 0.995253i \(0.531028\pi\)
\(150\) 0 0
\(151\) 4.05842 7.02939i 0.330270 0.572044i −0.652295 0.757965i \(-0.726194\pi\)
0.982565 + 0.185921i \(0.0595270\pi\)
\(152\) −1.73205 3.00000i −0.140488 0.243332i
\(153\) 1.23472 + 19.8614i 0.0998210 + 1.60570i
\(154\) 3.68614 + 10.6410i 0.297038 + 0.857474i
\(155\) 0 0
\(156\) −3.37228 0.792287i −0.269999 0.0634337i
\(157\) 6.92820 + 4.00000i 0.552931 + 0.319235i 0.750303 0.661094i \(-0.229907\pi\)
−0.197372 + 0.980329i \(0.563241\pi\)
\(158\) −7.02939 4.05842i −0.559228 0.322871i
\(159\) −2.31386 0.543620i −0.183501 0.0431119i
\(160\) 0 0
\(161\) 8.74456 + 7.57301i 0.689168 + 0.596837i
\(162\) −1.11469 8.93070i −0.0875785 0.701662i
\(163\) −1.73205 3.00000i −0.135665 0.234978i 0.790186 0.612866i \(-0.209984\pi\)
−0.925851 + 0.377888i \(0.876650\pi\)
\(164\) −0.813859 + 1.40965i −0.0635517 + 0.110075i
\(165\) 0 0
\(166\) −1.24456 + 0.718549i −0.0965968 + 0.0557702i
\(167\) −11.3321 −0.876902 −0.438451 0.898755i \(-0.644473\pi\)
−0.438451 + 0.898755i \(0.644473\pi\)
\(168\) 3.71277 2.68614i 0.286446 0.207240i
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 4.62772 9.30506i 0.353890 0.711576i
\(172\) −5.51856 + 9.55842i −0.420786 + 0.728823i
\(173\) −1.87953 3.25544i −0.142898 0.247506i 0.785689 0.618622i \(-0.212309\pi\)
−0.928587 + 0.371116i \(0.878975\pi\)
\(174\) −4.18614 3.93398i −0.317351 0.298235i
\(175\) 0 0
\(176\) 4.25639i 0.320837i
\(177\) −1.63086 + 6.94158i −0.122583 + 0.521761i
\(178\) 3.78651 + 2.18614i 0.283811 + 0.163858i
\(179\) −2.48913 1.43710i −0.186046 0.107414i 0.404084 0.914722i \(-0.367590\pi\)
−0.590130 + 0.807308i \(0.700924\pi\)
\(180\) 0 0
\(181\) 17.9653i 1.33535i −0.744452 0.667676i \(-0.767289\pi\)
0.744452 0.667676i \(-0.232711\pi\)
\(182\) 3.46410 4.00000i 0.256776 0.296500i
\(183\) 3.34408 3.55842i 0.247201 0.263046i
\(184\) 2.18614 + 3.78651i 0.161164 + 0.279145i
\(185\) 0 0
\(186\) 3.94158 1.18843i 0.289011 0.0871400i
\(187\) 24.4511 14.1168i 1.78804 1.03233i
\(188\) −1.87953 −0.137079
\(189\) 12.8723 + 4.82746i 0.936321 + 0.351146i
\(190\) 0 0
\(191\) −3.25544 + 1.87953i −0.235555 + 0.135998i −0.613132 0.789980i \(-0.710091\pi\)
0.377577 + 0.925978i \(0.376757\pi\)
\(192\) 1.65831 0.500000i 0.119678 0.0360844i
\(193\) 4.00772 6.94158i 0.288482 0.499666i −0.684966 0.728575i \(-0.740183\pi\)
0.973448 + 0.228910i \(0.0735161\pi\)
\(194\) 1.05842 + 1.83324i 0.0759903 + 0.131619i
\(195\) 0 0
\(196\) 1.00000 + 6.92820i 0.0714286 + 0.494872i
\(197\) 20.2337i 1.44159i −0.693148 0.720795i \(-0.743777\pi\)
0.693148 0.720795i \(-0.256223\pi\)
\(198\) −10.6410 + 7.05842i −0.756221 + 0.501620i
\(199\) 16.1168 + 9.30506i 1.14249 + 0.659619i 0.947047 0.321096i \(-0.104051\pi\)
0.195446 + 0.980714i \(0.437385\pi\)
\(200\) 0 0
\(201\) 3.00000 12.7692i 0.211604 0.900668i
\(202\) 16.3723i 1.15195i
\(203\) 8.29156 2.87228i 0.581954 0.201595i
\(204\) −8.37228 7.86797i −0.586177 0.550868i
\(205\) 0 0
\(206\) 7.55842 13.0916i 0.526620 0.912133i
\(207\) −5.84096 + 11.7446i −0.405975 + 0.816304i
\(208\) 1.73205 1.00000i 0.120096 0.0693375i
\(209\) −14.7446 −1.01990
\(210\) 0 0
\(211\) −18.2337 −1.25526 −0.627629 0.778512i \(-0.715975\pi\)
−0.627629 + 0.778512i \(0.715975\pi\)
\(212\) 1.18843 0.686141i 0.0816217 0.0471243i
\(213\) −0.939764 3.11684i −0.0643916 0.213563i
\(214\) 8.87228 15.3672i 0.606497 1.05048i
\(215\) 0 0
\(216\) 4.00000 + 3.31662i 0.272166 + 0.225668i
\(217\) −1.18843 + 6.17527i −0.0806759 + 0.419204i
\(218\) 9.11684i 0.617471i
\(219\) 3.37228 + 0.792287i 0.227878 + 0.0535378i
\(220\) 0 0
\(221\) −11.4891 6.63325i −0.772842 0.446201i
\(222\) 19.6974 + 4.62772i 1.32200 + 0.310592i
\(223\) 18.1168i 1.21319i 0.795010 + 0.606597i \(0.207466\pi\)
−0.795010 + 0.606597i \(0.792534\pi\)
\(224\) −0.500000 + 2.59808i −0.0334077 + 0.173591i
\(225\) 0 0
\(226\) 1.62772 + 2.81929i 0.108274 + 0.187536i
\(227\) 7.82168 13.5475i 0.519143 0.899182i −0.480609 0.876935i \(-0.659584\pi\)
0.999752 0.0222475i \(-0.00708218\pi\)
\(228\) 1.73205 + 5.74456i 0.114708 + 0.380443i
\(229\) −12.0000 + 6.92820i −0.792982 + 0.457829i −0.841011 0.541017i \(-0.818039\pi\)
0.0480291 + 0.998846i \(0.484706\pi\)
\(230\) 0 0
\(231\) −2.00000 19.4024i −0.131590 1.27659i
\(232\) 3.31662 0.217747
\(233\) 20.3422 11.7446i 1.33266 0.769412i 0.346954 0.937882i \(-0.387216\pi\)
0.985707 + 0.168470i \(0.0538827\pi\)
\(234\) 5.37228 + 2.67181i 0.351197 + 0.174662i
\(235\) 0 0
\(236\) −2.05842 3.56529i −0.133992 0.232081i
\(237\) 10.2448 + 9.62772i 0.665473 + 0.625388i
\(238\) 16.5831 5.74456i 1.07492 0.372365i
\(239\) 2.87419i 0.185916i 0.995670 + 0.0929581i \(0.0296323\pi\)
−0.995670 + 0.0929581i \(0.970368\pi\)
\(240\) 0 0
\(241\) 9.17527 + 5.29734i 0.591031 + 0.341232i 0.765505 0.643430i \(-0.222489\pi\)
−0.174474 + 0.984662i \(0.555823\pi\)
\(242\) 6.16337 + 3.55842i 0.396196 + 0.228744i
\(243\) −1.65831 + 15.5000i −0.106381 + 0.994325i
\(244\) 2.81929i 0.180487i
\(245\) 0 0
\(246\) 1.93070 2.05446i 0.123097 0.130987i
\(247\) 3.46410 + 6.00000i 0.220416 + 0.381771i
\(248\) −1.18843 + 2.05842i −0.0754654 + 0.130710i
\(249\) 2.38316 0.718549i 0.151026 0.0455362i
\(250\) 0 0
\(251\) −16.1168 −1.01729 −0.508643 0.860977i \(-0.669853\pi\)
−0.508643 + 0.860977i \(0.669853\pi\)
\(252\) −7.32435 + 3.05842i −0.461390 + 0.192662i
\(253\) 18.6101 1.17001
\(254\) 2.05842 1.18843i 0.129157 0.0745688i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 4.25639 + 7.37228i 0.265506 + 0.459870i 0.967696 0.252119i \(-0.0811276\pi\)
−0.702190 + 0.711990i \(0.747794\pi\)
\(258\) 13.0916 13.9307i 0.815046 0.867288i
\(259\) −20.2337 + 23.3639i −1.25726 + 1.45176i
\(260\) 0 0
\(261\) 5.50000 + 8.29156i 0.340441 + 0.513235i
\(262\) −4.00772 2.31386i −0.247598 0.142951i
\(263\) 1.40965 + 0.813859i 0.0869225 + 0.0501847i 0.542831 0.839842i \(-0.317352\pi\)
−0.455909 + 0.890027i \(0.650686\pi\)
\(264\) 1.68614 7.17687i 0.103775 0.441706i
\(265\) 0 0
\(266\) −9.00000 1.73205i −0.551825 0.106199i
\(267\) −5.51856 5.18614i −0.337730 0.317387i
\(268\) 3.78651 + 6.55842i 0.231298 + 0.400619i
\(269\) 9.98913 17.3017i 0.609048 1.05490i −0.382350 0.924018i \(-0.624885\pi\)
0.991398 0.130884i \(-0.0417815\pi\)
\(270\) 0 0
\(271\) −18.1753 + 10.4935i −1.10407 + 0.637434i −0.937287 0.348559i \(-0.886671\pi\)
−0.166782 + 0.985994i \(0.553338\pi\)
\(272\) 6.63325 0.402200
\(273\) −7.42554 + 5.37228i −0.449414 + 0.325145i
\(274\) −2.74456 −0.165805
\(275\) 0 0
\(276\) −2.18614 7.25061i −0.131590 0.436435i
\(277\) 14.5012 25.1168i 0.871294 1.50912i 0.0106345 0.999943i \(-0.496615\pi\)
0.860659 0.509181i \(-0.170052\pi\)
\(278\) −5.84096 10.1168i −0.350318 0.606768i
\(279\) −7.11684 + 0.442430i −0.426074 + 0.0264876i
\(280\) 0 0
\(281\) 21.7793i 1.29924i 0.760258 + 0.649621i \(0.225073\pi\)
−0.760258 + 0.649621i \(0.774927\pi\)
\(282\) 3.16915 + 0.744563i 0.188720 + 0.0443381i
\(283\) 13.8564 + 8.00000i 0.823678 + 0.475551i 0.851683 0.524057i \(-0.175582\pi\)
−0.0280052 + 0.999608i \(0.508916\pi\)
\(284\) 1.62772 + 0.939764i 0.0965873 + 0.0557647i
\(285\) 0 0
\(286\) 8.51278i 0.503371i
\(287\) 1.40965 + 4.06930i 0.0832088 + 0.240203i
\(288\) −2.99422 + 0.186141i −0.176436 + 0.0109684i
\(289\) −13.5000 23.3827i −0.794118 1.37545i
\(290\) 0 0
\(291\) −1.05842 3.51039i −0.0620458 0.205783i
\(292\) −1.73205 + 1.00000i −0.101361 + 0.0585206i
\(293\) −25.0410 −1.46291 −0.731455 0.681889i \(-0.761159\pi\)
−0.731455 + 0.681889i \(0.761159\pi\)
\(294\) 1.05842 12.0781i 0.0617284 0.704407i
\(295\) 0 0
\(296\) −10.1168 + 5.84096i −0.588030 + 0.339499i
\(297\) 20.7383 7.68614i 1.20336 0.445995i
\(298\) −7.10313 + 12.3030i −0.411473 + 0.712693i
\(299\) −4.37228 7.57301i −0.252856 0.437959i
\(300\) 0 0
\(301\) 9.55842 + 27.5928i 0.550938 + 1.59042i
\(302\) 8.11684i 0.467072i
\(303\) 6.48577 27.6060i 0.372598 1.58592i
\(304\) −3.00000 1.73205i −0.172062 0.0993399i
\(305\) 0 0
\(306\) 11.0000 + 16.5831i 0.628828 + 0.947994i
\(307\) 6.88316i 0.392842i −0.980520 0.196421i \(-0.937068\pi\)
0.980520 0.196421i \(-0.0629320\pi\)
\(308\) 8.51278 + 7.37228i 0.485060 + 0.420075i
\(309\) −17.9307 + 19.0800i −1.02004 + 1.08542i
\(310\) 0 0
\(311\) 7.11684 12.3267i 0.403559 0.698985i −0.590593 0.806969i \(-0.701106\pi\)
0.994153 + 0.107984i \(0.0344396\pi\)
\(312\) −3.31662 + 1.00000i −0.187767 + 0.0566139i
\(313\) −12.2255 + 7.05842i −0.691029 + 0.398966i −0.803997 0.594633i \(-0.797297\pi\)
0.112969 + 0.993599i \(0.463964\pi\)
\(314\) 8.00000 0.451466
\(315\) 0 0
\(316\) −8.11684 −0.456608
\(317\) 13.9576 8.05842i 0.783937 0.452606i −0.0538869 0.998547i \(-0.517161\pi\)
0.837824 + 0.545941i \(0.183828\pi\)
\(318\) −2.27567 + 0.686141i −0.127613 + 0.0384769i
\(319\) 7.05842 12.2255i 0.395196 0.684499i
\(320\) 0 0
\(321\) −21.0475 + 22.3966i −1.17476 + 1.25006i
\(322\) 11.3595 + 2.18614i 0.633041 + 0.121829i
\(323\) 22.9783i 1.27854i
\(324\) −5.43070 7.17687i −0.301706 0.398715i
\(325\) 0 0
\(326\) −3.00000 1.73205i −0.166155 0.0959294i
\(327\) −3.61158 + 15.3723i −0.199721 + 0.850089i
\(328\) 1.62772i 0.0898757i
\(329\) −3.25544 + 3.75906i −0.179478 + 0.207243i
\(330\) 0 0
\(331\) −5.11684 8.86263i −0.281247 0.487134i 0.690445 0.723385i \(-0.257415\pi\)
−0.971692 + 0.236250i \(0.924081\pi\)
\(332\) −0.718549 + 1.24456i −0.0394355 + 0.0683042i
\(333\) −31.3793 15.6060i −1.71957 0.855202i
\(334\) −9.81386 + 5.66603i −0.536990 + 0.310032i
\(335\) 0 0
\(336\) 1.87228 4.18265i 0.102141 0.228182i
\(337\) 9.30506 0.506879 0.253440 0.967351i \(-0.418438\pi\)
0.253440 + 0.967351i \(0.418438\pi\)
\(338\) 7.79423 4.50000i 0.423950 0.244768i
\(339\) −1.62772 5.39853i −0.0884055 0.293208i
\(340\) 0 0
\(341\) 5.05842 + 8.76144i 0.273929 + 0.474459i
\(342\) −0.644810 10.3723i −0.0348673 0.560869i
\(343\) 15.5885 + 10.0000i 0.841698 + 0.539949i
\(344\) 11.0371i 0.595081i
\(345\) 0 0
\(346\) −3.25544 1.87953i −0.175013 0.101044i
\(347\) −16.5557 9.55842i −0.888755 0.513123i −0.0152200 0.999884i \(-0.504845\pi\)
−0.873535 + 0.486761i \(0.838178\pi\)
\(348\) −5.59230 1.31386i −0.299779 0.0704303i
\(349\) 24.0087i 1.28515i 0.766221 + 0.642577i \(0.222135\pi\)
−0.766221 + 0.642577i \(0.777865\pi\)
\(350\) 0 0
\(351\) −8.00000 6.63325i −0.427008 0.354057i
\(352\) 2.12819 + 3.68614i 0.113433 + 0.196472i
\(353\) −9.45254 + 16.3723i −0.503108 + 0.871409i 0.496886 + 0.867816i \(0.334477\pi\)
−0.999994 + 0.00359253i \(0.998856\pi\)
\(354\) 2.05842 + 6.82701i 0.109404 + 0.362852i
\(355\) 0 0
\(356\) 4.37228 0.231730
\(357\) −30.2372 + 3.11684i −1.60032 + 0.164961i
\(358\) −2.87419 −0.151906
\(359\) 12.2554 7.07568i 0.646817 0.373440i −0.140419 0.990092i \(-0.544845\pi\)
0.787236 + 0.616652i \(0.211511\pi\)
\(360\) 0 0
\(361\) −3.50000 + 6.06218i −0.184211 + 0.319062i
\(362\) −8.98266 15.5584i −0.472118 0.817733i
\(363\) −8.98266 8.44158i −0.471467 0.443068i
\(364\) 1.00000 5.19615i 0.0524142 0.272352i
\(365\) 0 0
\(366\) 1.11684 4.75372i 0.0583784 0.248481i
\(367\) −18.3889 10.6168i −0.959893 0.554195i −0.0637532 0.997966i \(-0.520307\pi\)
−0.896140 + 0.443771i \(0.853640\pi\)
\(368\) 3.78651 + 2.18614i 0.197385 + 0.113960i
\(369\) −4.06930 + 2.69927i −0.211839 + 0.140518i
\(370\) 0 0
\(371\) 0.686141 3.56529i 0.0356226 0.185101i
\(372\) 2.81929 3.00000i 0.146173 0.155543i
\(373\) −8.21782 14.2337i −0.425503 0.736992i 0.570964 0.820975i \(-0.306569\pi\)
−0.996467 + 0.0839823i \(0.973236\pi\)
\(374\) 14.1168 24.4511i 0.729965 1.26434i
\(375\) 0 0
\(376\) −1.62772 + 0.939764i −0.0839432 + 0.0484646i
\(377\) −6.63325 −0.341630
\(378\) 13.5615 2.25544i 0.697526 0.116007i
\(379\) −22.2337 −1.14207 −0.571034 0.820926i \(-0.693458\pi\)
−0.571034 + 0.820926i \(0.693458\pi\)
\(380\) 0 0
\(381\) −3.94158 + 1.18843i −0.201933 + 0.0608851i
\(382\) −1.87953 + 3.25544i −0.0961650 + 0.166563i
\(383\) −10.4198 18.0475i −0.532425 0.922187i −0.999283 0.0378546i \(-0.987948\pi\)
0.466859 0.884332i \(-0.345386\pi\)
\(384\) 1.18614 1.26217i 0.0605300 0.0644098i
\(385\) 0 0
\(386\) 8.01544i 0.407975i
\(387\) −27.5928 + 18.3030i −1.40262 + 0.930393i
\(388\) 1.83324 + 1.05842i 0.0930687 + 0.0537332i
\(389\) −29.4891 17.0256i −1.49516 0.863230i −0.495173 0.868794i \(-0.664896\pi\)
−0.999985 + 0.00556424i \(0.998229\pi\)
\(390\) 0 0
\(391\) 29.0024i 1.46672i
\(392\) 4.33013 + 5.50000i 0.218704 + 0.277792i
\(393\) 5.84096 + 5.48913i 0.294638 + 0.276890i
\(394\) −10.1168 17.5229i −0.509679 0.882790i
\(395\) 0 0
\(396\) −5.68614 + 11.4333i −0.285739 + 0.574543i
\(397\) −6.92820 + 4.00000i −0.347717 + 0.200754i −0.663679 0.748017i \(-0.731006\pi\)
0.315963 + 0.948772i \(0.397673\pi\)
\(398\) 18.6101 0.932841
\(399\) 14.4891 + 6.48577i 0.725364 + 0.324695i
\(400\) 0 0
\(401\) 17.1861 9.92242i 0.858235 0.495502i −0.00518590 0.999987i \(-0.501651\pi\)
0.863421 + 0.504484i \(0.168317\pi\)
\(402\) −3.78651 12.5584i −0.188854 0.626357i
\(403\) 2.37686 4.11684i 0.118400 0.205075i
\(404\) 8.18614 + 14.1788i 0.407276 + 0.705422i
\(405\) 0 0
\(406\) 5.74456 6.63325i 0.285098 0.329203i
\(407\) 49.7228i 2.46467i
\(408\) −11.1846 2.62772i −0.553720 0.130091i
\(409\) 30.7337 + 17.7441i 1.51968 + 0.877389i 0.999731 + 0.0231940i \(0.00738354\pi\)
0.519952 + 0.854195i \(0.325950\pi\)
\(410\) 0 0
\(411\) 4.62772 + 1.08724i 0.228269 + 0.0536296i
\(412\) 15.1168i 0.744753i
\(413\) −10.6959 2.05842i −0.526310 0.101288i
\(414\) 0.813859 + 13.0916i 0.0399990 + 0.643416i
\(415\) 0 0
\(416\) 1.00000 1.73205i 0.0490290 0.0849208i
\(417\) 5.84096 + 19.3723i 0.286033 + 0.948665i
\(418\) −12.7692 + 7.37228i −0.624560 + 0.360590i
\(419\) −29.4891 −1.44064 −0.720319 0.693643i \(-0.756005\pi\)
−0.720319 + 0.693643i \(0.756005\pi\)
\(420\) 0 0
\(421\) 15.1168 0.736750 0.368375 0.929677i \(-0.379914\pi\)
0.368375 + 0.929677i \(0.379914\pi\)
\(422\) −15.7908 + 9.11684i −0.768686 + 0.443801i
\(423\) −5.04868 2.51087i −0.245475 0.122083i
\(424\) 0.686141 1.18843i 0.0333219 0.0577153i
\(425\) 0 0
\(426\) −2.37228 2.22938i −0.114937 0.108014i
\(427\) 5.63858 + 4.88316i 0.272870 + 0.236312i
\(428\) 17.7446i 0.857716i
\(429\) −3.37228 + 14.3537i −0.162815 + 0.693005i
\(430\) 0 0
\(431\) 3.25544 + 1.87953i 0.156809 + 0.0905337i 0.576351 0.817202i \(-0.304476\pi\)
−0.419542 + 0.907736i \(0.637809\pi\)
\(432\) 5.12241 + 0.872281i 0.246452 + 0.0419677i
\(433\) 34.0000i 1.63394i −0.576683 0.816968i \(-0.695653\pi\)
0.576683 0.816968i \(-0.304347\pi\)
\(434\) 2.05842 + 5.94215i 0.0988074 + 0.285232i
\(435\) 0 0
\(436\) −4.55842 7.89542i −0.218309 0.378122i
\(437\) −7.57301 + 13.1168i −0.362266 + 0.627464i
\(438\) 3.31662 1.00000i 0.158474 0.0477818i
\(439\) 11.0584 6.38458i 0.527790 0.304720i −0.212326 0.977199i \(-0.568104\pi\)
0.740116 + 0.672479i \(0.234771\pi\)
\(440\) 0 0
\(441\) −6.56930 + 19.9460i −0.312824 + 0.949811i
\(442\) −13.2665 −0.631023
\(443\) −7.79423 + 4.50000i −0.370315 + 0.213801i −0.673596 0.739100i \(-0.735251\pi\)
0.303281 + 0.952901i \(0.401918\pi\)
\(444\) 19.3723 5.84096i 0.919368 0.277200i
\(445\) 0 0
\(446\) 9.05842 + 15.6896i 0.428929 + 0.742926i
\(447\) 16.8506 17.9307i 0.797007 0.848093i
\(448\) 0.866025 + 2.50000i 0.0409159 + 0.118114i
\(449\) 35.9855i 1.69826i 0.528182 + 0.849131i \(0.322874\pi\)
−0.528182 + 0.849131i \(0.677126\pi\)
\(450\) 0 0
\(451\) 6.00000 + 3.46410i 0.282529 + 0.163118i
\(452\) 2.81929 + 1.62772i 0.132608 + 0.0765614i
\(453\) −3.21543 + 13.6861i −0.151074 + 0.643031i
\(454\) 15.6434i 0.734179i
\(455\) 0 0
\(456\) 4.37228 + 4.10891i 0.204751 + 0.192417i
\(457\) −6.38458 11.0584i −0.298658 0.517291i 0.677171 0.735826i \(-0.263206\pi\)
−0.975829 + 0.218534i \(0.929872\pi\)
\(458\) −6.92820 + 12.0000i −0.323734 + 0.560723i
\(459\) −11.9783 32.3191i −0.559097 1.50852i
\(460\) 0 0
\(461\) 0.510875 0.0237938 0.0118969 0.999929i \(-0.496213\pi\)
0.0118969 + 0.999929i \(0.496213\pi\)
\(462\) −11.4333 15.8030i −0.531923 0.735221i
\(463\) 36.5754 1.69981 0.849903 0.526940i \(-0.176661\pi\)
0.849903 + 0.526940i \(0.176661\pi\)
\(464\) 2.87228 1.65831i 0.133342 0.0769852i
\(465\) 0 0
\(466\) 11.7446 20.3422i 0.544056 0.942333i
\(467\) 0.0274514 + 0.0475473i 0.00127030 + 0.00220023i 0.866660 0.498899i \(-0.166262\pi\)
−0.865390 + 0.501100i \(0.832929\pi\)
\(468\) 5.98844 0.372281i 0.276816 0.0172087i
\(469\) 19.6753 + 3.78651i 0.908519 + 0.174845i
\(470\) 0 0
\(471\) −13.4891 3.16915i −0.621546 0.146027i
\(472\) −3.56529 2.05842i −0.164106 0.0947466i
\(473\) 40.6844 + 23.4891i 1.87067 + 1.08003i
\(474\) 13.6861 + 3.21543i 0.628625 + 0.147690i
\(475\) 0 0
\(476\) 11.4891 13.2665i 0.526603 0.608069i
\(477\) 4.10891 0.255437i 0.188134 0.0116957i
\(478\) 1.43710 + 2.48913i 0.0657313 + 0.113850i
\(479\) −4.37228 + 7.57301i −0.199775 + 0.346020i −0.948455 0.316911i \(-0.897354\pi\)
0.748681 + 0.662931i \(0.230688\pi\)
\(480\) 0 0
\(481\) 20.2337 11.6819i 0.922577 0.532650i
\(482\) 10.5947 0.482575
\(483\) −18.2877 8.18614i −0.832120 0.372482i
\(484\) 7.11684 0.323493
\(485\) 0 0
\(486\) 6.31386 + 14.2525i 0.286402 + 0.646509i
\(487\) 2.27567 3.94158i 0.103121 0.178610i −0.809848 0.586639i \(-0.800451\pi\)
0.912969 + 0.408029i \(0.133784\pi\)
\(488\) 1.40965 + 2.44158i 0.0638117 + 0.110525i
\(489\) 4.37228 + 4.10891i 0.197721 + 0.185811i
\(490\) 0 0
\(491\) 26.9205i 1.21491i −0.794355 0.607453i \(-0.792191\pi\)
0.794355 0.607453i \(-0.207809\pi\)
\(492\) 0.644810 2.74456i 0.0290703 0.123734i
\(493\) −19.0526 11.0000i −0.858084 0.495415i
\(494\) 6.00000 + 3.46410i 0.269953 + 0.155857i
\(495\) 0 0
\(496\) 2.37686i 0.106724i
\(497\) 4.69882 1.62772i 0.210771 0.0730132i
\(498\) 1.70460 1.81386i 0.0763849 0.0812810i
\(499\) 14.1168 + 24.4511i 0.631957 + 1.09458i 0.987151 + 0.159789i \(0.0510813\pi\)
−0.355195 + 0.934792i \(0.615585\pi\)
\(500\) 0 0
\(501\) 18.7921 5.66603i 0.839570 0.253140i
\(502\) −13.9576 + 8.05842i −0.622958 + 0.359665i
\(503\) −9.45254 −0.421468 −0.210734 0.977543i \(-0.567585\pi\)
−0.210734 + 0.977543i \(0.567585\pi\)
\(504\) −4.81386 + 6.31084i −0.214426 + 0.281107i
\(505\) 0 0
\(506\) 16.1168 9.30506i 0.716481 0.413661i
\(507\) −14.9248 + 4.50000i −0.662834 + 0.199852i
\(508\) 1.18843 2.05842i 0.0527281 0.0913277i
\(509\) −0.127719 0.221215i −0.00566103 0.00980519i 0.863181 0.504895i \(-0.168469\pi\)
−0.868842 + 0.495089i \(0.835135\pi\)
\(510\) 0 0
\(511\) −1.00000 + 5.19615i −0.0442374 + 0.229864i
\(512\) 1.00000i 0.0441942i
\(513\) −3.02167 + 17.7446i −0.133410 + 0.783442i
\(514\) 7.37228 + 4.25639i 0.325177 + 0.187741i
\(515\) 0 0
\(516\) 4.37228 18.6101i 0.192479 0.819265i
\(517\) 8.00000i 0.351840i
\(518\) −5.84096 + 30.3505i −0.256637 + 1.33353i
\(519\) 4.74456 + 4.45877i 0.208263 + 0.195718i
\(520\) 0 0
\(521\) 1.62772 2.81929i 0.0713116 0.123515i −0.828165 0.560485i \(-0.810615\pi\)
0.899476 + 0.436969i \(0.143948\pi\)
\(522\) 8.90892 + 4.43070i 0.389933 + 0.193927i
\(523\) −20.9870 + 12.1168i −0.917697 + 0.529833i −0.882900 0.469562i \(-0.844412\pi\)
−0.0347974 + 0.999394i \(0.511079\pi\)
\(524\) −4.62772 −0.202163
\(525\) 0 0
\(526\) 1.62772 0.0709719
\(527\) 13.6540 7.88316i 0.594779 0.343396i
\(528\) −2.12819 7.05842i −0.0926178 0.307178i
\(529\) −1.94158 + 3.36291i −0.0844164 + 0.146214i
\(530\) 0 0
\(531\) −0.766312 12.3267i −0.0332551 0.534935i
\(532\) −8.66025 + 3.00000i −0.375470 + 0.130066i
\(533\) 3.25544i 0.141009i
\(534\) −7.37228 1.73205i −0.319030 0.0749532i
\(535\) 0 0
\(536\) 6.55842 + 3.78651i 0.283281 + 0.163552i
\(537\) 4.84630 + 1.13859i 0.209133 + 0.0491339i
\(538\) 19.9783i 0.861324i
\(539\) 29.4891 4.25639i 1.27019 0.183336i
\(540\) 0 0
\(541\) 6.67527 + 11.5619i 0.286992 + 0.497085i 0.973090 0.230424i \(-0.0740113\pi\)
−0.686098 + 0.727509i \(0.740678\pi\)
\(542\) −10.4935 + 18.1753i −0.450734 + 0.780695i
\(543\) 8.98266 + 29.7921i 0.385483 + 1.27850i
\(544\) 5.74456 3.31662i 0.246296 0.142199i
\(545\) 0 0
\(546\) −3.74456 + 8.36530i −0.160252 + 0.358002i
\(547\) 0.644810 0.0275701 0.0137850 0.999905i \(-0.495612\pi\)
0.0137850 + 0.999905i \(0.495612\pi\)
\(548\) −2.37686 + 1.37228i −0.101534 + 0.0586210i
\(549\) −3.76631 + 7.57301i −0.160742 + 0.323208i
\(550\) 0 0
\(551\) 5.74456 + 9.94987i 0.244727 + 0.423879i
\(552\) −5.51856 5.18614i −0.234885 0.220737i
\(553\) −14.0588 + 16.2337i −0.597840 + 0.690327i
\(554\) 29.0024i 1.23220i
\(555\) 0 0
\(556\) −10.1168 5.84096i −0.429050 0.247712i
\(557\) 0.746000 + 0.430703i 0.0316090 + 0.0182495i 0.515721 0.856756i \(-0.327524\pi\)
−0.484112 + 0.875006i \(0.660857\pi\)
\(558\) −5.94215 + 3.94158i −0.251551 + 0.166860i
\(559\) 22.0742i 0.933640i
\(560\) 0 0
\(561\) −33.4891 + 35.6357i −1.41391 + 1.50454i
\(562\) 10.8896 + 18.8614i 0.459352 + 0.795620i
\(563\) 5.91470 10.2446i 0.249275 0.431757i −0.714050 0.700095i \(-0.753141\pi\)
0.963325 + 0.268338i \(0.0864744\pi\)
\(564\) 3.11684 0.939764i 0.131243 0.0395712i
\(565\) 0 0
\(566\) 16.0000 0.672530
\(567\) −23.7600 1.56930i −0.997826 0.0659043i
\(568\) 1.87953 0.0788632
\(569\) −18.8614 + 10.8896i −0.790711 + 0.456517i −0.840213 0.542257i \(-0.817570\pi\)
0.0495016 + 0.998774i \(0.484237\pi\)
\(570\) 0 0
\(571\) −17.1168 + 29.6472i −0.716318 + 1.24070i 0.246132 + 0.969236i \(0.420840\pi\)
−0.962449 + 0.271462i \(0.912493\pi\)
\(572\) −4.25639 7.37228i −0.177969 0.308251i
\(573\) 4.45877 4.74456i 0.186268 0.198207i
\(574\) 3.25544 + 2.81929i 0.135879 + 0.117675i
\(575\) 0 0
\(576\) −2.50000 + 1.65831i −0.104167 + 0.0690963i
\(577\) −15.4873 8.94158i −0.644743 0.372243i 0.141696 0.989910i \(-0.454744\pi\)
−0.786439 + 0.617667i \(0.788078\pi\)
\(578\) −23.3827 13.5000i −0.972592 0.561526i
\(579\) −3.17527 + 13.5152i −0.131960 + 0.561671i
\(580\) 0 0
\(581\) 1.24456 + 3.59274i 0.0516332 + 0.149052i
\(582\) −2.67181 2.51087i −0.110750 0.104079i
\(583\) −2.92048 5.05842i −0.120954 0.209498i
\(584\) −1.00000 + 1.73205i −0.0413803 + 0.0716728i
\(585\) 0 0
\(586\) −21.6861 + 12.5205i −0.895846 + 0.517217i
\(587\) −36.4280 −1.50354 −0.751772 0.659424i \(-0.770800\pi\)
−0.751772 + 0.659424i \(0.770800\pi\)
\(588\) −5.12241 10.9891i −0.211245 0.453184i
\(589\) −8.23369 −0.339263
\(590\) 0 0
\(591\) 10.1168 + 33.5538i 0.416151 + 1.38022i
\(592\) −5.84096 + 10.1168i −0.240062 + 0.415800i
\(593\) −7.07568 12.2554i −0.290563 0.503270i 0.683380 0.730063i \(-0.260509\pi\)
−0.973943 + 0.226793i \(0.927176\pi\)
\(594\) 14.1168 17.0256i 0.579221 0.698567i
\(595\) 0 0
\(596\) 14.2063i 0.581911i
\(597\) −31.3793 7.37228i −1.28427 0.301727i
\(598\) −7.57301 4.37228i −0.309684 0.178796i
\(599\) −7.37228 4.25639i −0.301223 0.173911i 0.341769 0.939784i \(-0.388974\pi\)
−0.642992 + 0.765873i \(0.722307\pi\)
\(600\) 0 0
\(601\) 10.5947i 0.432166i 0.976375 + 0.216083i \(0.0693282\pi\)
−0.976375 + 0.216083i \(0.930672\pi\)
\(602\) 22.0742 + 19.1168i 0.899678 + 0.779144i
\(603\) 1.40965 + 22.6753i 0.0574052 + 0.923408i
\(604\) −4.05842 7.02939i −0.165135 0.286022i
\(605\) 0 0
\(606\) −8.18614 27.1504i −0.332539 1.10291i
\(607\) −23.7874 + 13.7337i −0.965503 + 0.557433i −0.897862 0.440277i \(-0.854880\pi\)
−0.0676404 + 0.997710i \(0.521547\pi\)
\(608\) −3.46410 −0.140488
\(609\) −12.3139 + 8.90892i −0.498983 + 0.361008i
\(610\) 0 0
\(611\) 3.25544 1.87953i 0.131701 0.0760375i
\(612\) 17.8178 + 8.86141i 0.720244 + 0.358201i
\(613\) 6.48577 11.2337i 0.261958 0.453724i −0.704804 0.709402i \(-0.748965\pi\)
0.966762 + 0.255677i \(0.0822985\pi\)
\(614\) −3.44158 5.96099i −0.138891 0.240566i
\(615\) 0 0
\(616\) 11.0584 + 2.12819i 0.445557 + 0.0857474i
\(617\) 1.02175i 0.0411341i −0.999788 0.0205670i \(-0.993453\pi\)
0.999788 0.0205670i \(-0.00654715\pi\)
\(618\) −5.98844 + 25.4891i −0.240890 + 1.02532i
\(619\) −20.2337 11.6819i −0.813261 0.469536i 0.0348263 0.999393i \(-0.488912\pi\)
−0.848087 + 0.529857i \(0.822246\pi\)
\(620\) 0 0
\(621\) 3.81386 22.3966i 0.153045 0.898746i
\(622\) 14.2337i 0.570719i
\(623\) 7.57301 8.74456i 0.303406 0.350344i
\(624\) −2.37228 + 2.52434i −0.0949673 + 0.101054i
\(625\) 0 0
\(626\) −7.05842 + 12.2255i −0.282111 + 0.488631i
\(627\) 24.4511 7.37228i 0.976483 0.294421i
\(628\) 6.92820 4.00000i 0.276465 0.159617i
\(629\) 77.4891 3.08969
\(630\) 0 0
\(631\) 30.1168 1.19893 0.599466 0.800400i \(-0.295380\pi\)
0.599466 + 0.800400i \(0.295380\pi\)
\(632\) −7.02939 + 4.05842i −0.279614 + 0.161435i
\(633\) 30.2372 9.11684i 1.20182 0.362362i
\(634\) 8.05842 13.9576i 0.320041 0.554327i
\(635\) 0 0
\(636\) −1.62772 + 1.73205i −0.0645432 + 0.0686803i
\(637\) −8.66025 11.0000i −0.343132 0.435836i
\(638\) 14.1168i 0.558891i
\(639\) 3.11684 + 4.69882i 0.123300 + 0.185882i
\(640\) 0 0
\(641\) −12.3030 7.10313i −0.485939 0.280557i 0.236949 0.971522i \(-0.423852\pi\)
−0.722888 + 0.690965i \(0.757186\pi\)
\(642\) −7.02939 + 29.9198i −0.277428 + 1.18084i
\(643\) 16.2337i 0.640194i 0.947385 + 0.320097i \(0.103716\pi\)
−0.947385 + 0.320097i \(0.896284\pi\)
\(644\) 10.9307 3.78651i 0.430730 0.149209i
\(645\) 0 0
\(646\) 11.4891 + 19.8997i 0.452034 + 0.782945i
\(647\) −12.7417 + 22.0693i −0.500928 + 0.867634i 0.499071 + 0.866561i \(0.333675\pi\)
−0.999999 + 0.00107245i \(0.999659\pi\)
\(648\) −8.29156 3.50000i −0.325723 0.137493i
\(649\) −15.1753 + 8.76144i −0.595681 + 0.343917i
\(650\) 0 0
\(651\) −1.11684 10.8347i −0.0437726 0.424647i
\(652\) −3.46410 −0.135665
\(653\) 9.20387 5.31386i 0.360175 0.207947i −0.308982 0.951068i \(-0.599988\pi\)
0.669158 + 0.743120i \(0.266655\pi\)
\(654\) 4.55842 + 15.1186i 0.178248 + 0.591183i
\(655\) 0 0
\(656\) 0.813859 + 1.40965i 0.0317759 + 0.0550374i
\(657\) −5.98844 + 0.372281i −0.233631 + 0.0145241i
\(658\) −0.939764 + 4.88316i −0.0366358 + 0.190365i
\(659\) 36.9253i 1.43841i −0.694800 0.719203i \(-0.744507\pi\)
0.694800 0.719203i \(-0.255493\pi\)
\(660\) 0 0
\(661\) 2.44158 + 1.40965i 0.0949664 + 0.0548289i 0.546731 0.837308i \(-0.315872\pi\)
−0.451765 + 0.892137i \(0.649205\pi\)
\(662\) −8.86263 5.11684i −0.344456 0.198872i
\(663\) 22.3692 + 5.25544i 0.868747 + 0.204104i
\(664\) 1.43710i 0.0557702i
\(665\) 0 0
\(666\) −34.9783 + 2.17448i −1.35538 + 0.0842594i
\(667\) −7.25061 12.5584i −0.280745 0.486264i
\(668\) −5.66603 + 9.81386i −0.219225 + 0.379710i
\(669\) −9.05842 30.0434i −0.350219 1.16154i
\(670\) 0 0
\(671\) 12.0000 0.463255
\(672\) −0.469882 4.55842i −0.0181261 0.175845i
\(673\) −17.1181 −0.659855 −0.329928 0.944006i \(-0.607024\pi\)
−0.329928 + 0.944006i \(0.607024\pi\)
\(674\) 8.05842 4.65253i 0.310399 0.179209i
\(675\) 0 0
\(676\) 4.50000 7.79423i 0.173077 0.299778i
\(677\) −22.4704 38.9198i −0.863607 1.49581i −0.868424 0.495822i \(-0.834867\pi\)
0.00481749 0.999988i \(-0.498467\pi\)
\(678\) −4.10891 3.86141i −0.157802 0.148296i
\(679\) 5.29211 1.83324i 0.203093 0.0703533i
\(680\) 0 0
\(681\) −6.19702 + 26.3769i −0.237470 + 1.01077i
\(682\) 8.76144 + 5.05842i 0.335493 + 0.193697i
\(683\) −12.1055 6.98913i −0.463205 0.267431i 0.250186 0.968198i \(-0.419508\pi\)
−0.713391 + 0.700766i \(0.752842\pi\)
\(684\) −5.74456 8.66025i −0.219649 0.331133i
\(685\) 0 0
\(686\) 18.5000 + 0.866025i 0.706333 + 0.0330650i
\(687\) 16.4356 17.4891i 0.627059 0.667252i
\(688\) 5.51856 + 9.55842i 0.210393 + 0.364411i
\(689\) −1.37228 + 2.37686i −0.0522798 + 0.0905512i
\(690\) 0 0
\(691\) −26.2337 + 15.1460i −0.997977 + 0.576182i −0.907649 0.419730i \(-0.862125\pi\)
−0.0903276 + 0.995912i \(0.528791\pi\)
\(692\) −3.75906 −0.142898
\(693\) 13.0178 + 31.1753i 0.494507 + 1.18425i
\(694\) −19.1168 −0.725665
\(695\) 0 0
\(696\) −5.50000 + 1.65831i −0.208477 + 0.0628582i
\(697\) 5.39853 9.35053i 0.204484 0.354177i
\(698\) 12.0043 + 20.7921i 0.454371 + 0.786993i
\(699\) −27.8614 + 29.6472i −1.05382 + 1.12136i
\(700\) 0 0
\(701\) 12.7143i 0.480211i 0.970747 + 0.240106i \(0.0771821\pi\)
−0.970747 + 0.240106i \(0.922818\pi\)
\(702\) −10.2448 1.74456i −0.386666 0.0658443i
\(703\) −35.0458 20.2337i −1.32178 0.763128i
\(704\) 3.68614 + 2.12819i 0.138927 + 0.0802093i
\(705\) 0 0
\(706\) 18.9051i 0.711502i
\(707\) 42.5364 + 8.18614i 1.59975 + 0.307872i
\(708\) 5.19615 + 4.88316i 0.195283 + 0.183520i
\(709\) −2.55842 4.43132i −0.0960836 0.166422i 0.813977 0.580897i \(-0.197298\pi\)
−0.910060 + 0.414476i \(0.863965\pi\)
\(710\) 0 0
\(711\) −21.8030 10.8434i −0.817676 0.406657i
\(712\) 3.78651 2.18614i 0.141905 0.0819291i
\(713\) 10.3923 0.389195
\(714\) −24.6277 + 17.8178i −0.921669 + 0.666816i
\(715\) 0 0
\(716\) −2.48913 + 1.43710i −0.0930230 + 0.0537068i
\(717\) −1.43710 4.76631i −0.0536694 0.178001i
\(718\) 7.07568 12.2554i 0.264062 0.457369i
\(719\) 16.6277 + 28.8001i 0.620109 + 1.07406i 0.989465 + 0.144773i \(0.0462451\pi\)
−0.369356 + 0.929288i \(0.620422\pi\)
\(720\) 0 0
\(721\) −30.2337 26.1831i −1.12596 0.975111i
\(722\) 7.00000i 0.260513i
\(723\) −17.8641 4.19702i −0.664374 0.156089i
\(724\) −15.5584 8.98266i −0.578224 0.333838i
\(725\) 0 0
\(726\) −12.0000 2.81929i −0.445362 0.104634i
\(727\) 19.0000i 0.704671i 0.935874 + 0.352335i \(0.114612\pi\)
−0.935874 + 0.352335i \(0.885388\pi\)
\(728\) −1.73205 5.00000i −0.0641941 0.185312i
\(729\) −5.00000 26.5330i −0.185185 0.982704i
\(730\) 0 0
\(731\) 36.6060 63.4034i 1.35392 2.34506i
\(732\) −1.40965 4.67527i −0.0521020 0.172803i
\(733\) 31.5817 18.2337i 1.16650 0.673477i 0.213644 0.976912i \(-0.431467\pi\)
0.952852 + 0.303435i \(0.0981335\pi\)
\(734\) −21.2337 −0.783750
\(735\) 0 0
\(736\) 4.37228 0.161164
\(737\) 27.9152 16.1168i 1.02827 0.593672i
\(738\) −2.17448 + 4.37228i −0.0800438 + 0.160946i
\(739\) −18.1168 + 31.3793i −0.666439 + 1.15431i 0.312454 + 0.949933i \(0.398849\pi\)
−0.978893 + 0.204373i \(0.934484\pi\)
\(740\) 0 0
\(741\) −8.74456 8.21782i −0.321240 0.301889i
\(742\) −1.18843 3.43070i −0.0436287 0.125945i
\(743\) 18.6060i 0.682587i 0.939957 + 0.341293i \(0.110865\pi\)
−0.939957 + 0.341293i \(0.889135\pi\)
\(744\) 0.941578 4.00772i 0.0345199 0.146930i
\(745\) 0 0
\(746\) −14.2337 8.21782i −0.521132 0.300876i
\(747\) −3.59274 + 2.38316i −0.131452 + 0.0871951i
\(748\) 28.2337i 1.03233i
\(749\) −35.4891 30.7345i −1.29674 1.12301i
\(750\) 0 0
\(751\) −21.0584 36.4743i −0.768433 1.33096i −0.938412 0.345517i \(-0.887704\pi\)
0.169980 0.985448i \(-0.445630\pi\)
\(752\) −0.939764 + 1.62772i −0.0342697 + 0.0593568i
\(753\) 26.7268 8.05842i 0.973977 0.293665i
\(754\) −5.74456 + 3.31662i −0.209205 + 0.120784i
\(755\) 0 0
\(756\) 10.6168 8.73399i 0.386131 0.317652i
\(757\) 5.63858 0.204938 0.102469 0.994736i \(-0.467326\pi\)
0.102469 + 0.994736i \(0.467326\pi\)
\(758\) −19.2549 + 11.1168i −0.699371 + 0.403782i
\(759\) −30.8614 + 9.30506i −1.12020 + 0.337752i
\(760\) 0 0
\(761\) −26.4891 45.8805i −0.960230 1.66317i −0.721918 0.691979i \(-0.756739\pi\)
−0.238312 0.971189i \(-0.576594\pi\)
\(762\) −2.81929 + 3.00000i −0.102132 + 0.108679i
\(763\) −23.6863 4.55842i −0.857500 0.165026i
\(764\) 3.75906i 0.135998i
\(765\) 0 0
\(766\) −18.0475 10.4198i −0.652084 0.376481i
\(767\) 7.13058 + 4.11684i 0.257470 + 0.148651i
\(768\) 0.396143 1.68614i 0.0142946 0.0608434i
\(769\) 40.4820i 1.45982i −0.683545 0.729909i \(-0.739563\pi\)
0.683545 0.729909i \(-0.260437\pi\)
\(770\) 0 0
\(771\) −10.7446 10.0974i −0.386956 0.363647i
\(772\) −4.00772 6.94158i −0.144241 0.249833i
\(773\) 0.939764 1.62772i 0.0338010 0.0585450i −0.848630 0.528987i \(-0.822572\pi\)
0.882431 + 0.470442i \(0.155905\pi\)
\(774\) −14.7446 + 29.6472i −0.529982 + 1.06565i
\(775\) 0 0
\(776\) 2.11684 0.0759903
\(777\) 21.8719 48.8614i 0.784648 1.75289i
\(778\) −34.0511 −1.22079
\(779\) −4.88316 + 2.81929i −0.174957 + 0.101012i
\(780\) 0 0
\(781\) 4.00000 6.92820i 0.143131 0.247911i
\(782\) −14.5012 25.1168i −0.518562 0.898177i
\(783\) −13.2665 11.0000i −0.474106 0.393108i
\(784\) 6.50000 + 2.59808i 0.232143 + 0.0927884i
\(785\) 0 0
\(786\) 7.80298 + 1.83324i 0.278323 + 0.0653895i
\(787\) 23.4839 + 13.5584i 0.837110 + 0.483306i 0.856281 0.516511i \(-0.172769\pi\)
−0.0191710 + 0.999816i \(0.506103\pi\)
\(788\) −17.5229 10.1168i −0.624227 0.360398i
\(789\) −2.74456 0.644810i −0.0977090 0.0229558i
\(790\) 0 0
\(791\) 8.13859 2.81929i 0.289375 0.100242i
\(792\) 0.792287 + 12.7446i 0.0281527 + 0.452858i
\(793\) −2.81929 4.88316i −0.100116 0.173406i
\(794\) −4.00000 + 6.92820i −0.141955 + 0.245873i
\(795\) 0 0
\(796\) 16.1168 9.30506i 0.571246 0.329809i
\(797\) 4.25639 0.150769 0.0753845 0.997155i \(-0.475982\pi\)
0.0753845 + 0.997155i \(0.475982\pi\)
\(798\) 15.7908 1.62772i 0.558990 0.0576206i
\(799\) 12.4674 0.441064
\(800\) 0 0
\(801\) 11.7446 + 5.84096i 0.414974 + 0.206380i
\(802\) 9.92242 17.1861i 0.350373 0.606864i
\(803\) 4.25639 + 7.37228i 0.150205 + 0.260162i
\(804\) −9.55842 8.98266i −0.337100 0.316794i
\(805\) 0 0
\(806\) 4.75372i 0.167443i
\(807\) −7.91425 + 33.6861i −0.278595 + 1.18581i
\(808\) 14.1788 + 8.18614i 0.498809 + 0.287987i
\(809\) 22.0693 + 12.7417i 0.775915 + 0.447975i 0.834981 0.550279i \(-0.185479\pi\)
−0.0590655 + 0.998254i \(0.518812\pi\)
\(810\) 0 0
\(811\) 10.3923i 0.364923i 0.983213 + 0.182462i \(0.0584065\pi\)
−0.983213 + 0.182462i \(0.941593\pi\)
\(812\) 1.65831 8.61684i 0.0581954 0.302392i
\(813\) 24.8935 26.4891i 0.873054 0.929014i
\(814\) 24.8614 + 43.0612i 0.871392 + 1.50929i
\(815\) 0 0
\(816\) −11.0000 + 3.31662i −0.385077 + 0.116105i
\(817\) −33.1113 + 19.1168i −1.15842 + 0.668814i
\(818\) 35.4882 1.24082
\(819\) 9.62772 12.6217i 0.336420 0.441038i
\(820\) 0 0
\(821\) −18.4307 + 10.6410i −0.643236 + 0.371372i −0.785860 0.618404i \(-0.787779\pi\)
0.142624 + 0.989777i \(0.454446\pi\)
\(822\) 4.55134 1.37228i 0.158746 0.0478638i
\(823\) −21.7518 + 37.6753i −0.758221 + 1.31328i 0.185536 + 0.982637i \(0.440598\pi\)
−0.943757 + 0.330640i \(0.892735\pi\)
\(824\) −7.55842 13.0916i −0.263310 0.456066i
\(825\) 0 0
\(826\) −10.2921 + 3.56529i −0.358108 + 0.124052i
\(827\) 33.0000i 1.14752i 0.819023 + 0.573761i \(0.194516\pi\)
−0.819023 + 0.573761i \(0.805484\pi\)
\(828\) 7.25061 + 10.9307i 0.251976 + 0.379868i
\(829\) 16.1168 + 9.30506i 0.559761 + 0.323178i 0.753050 0.657964i \(-0.228582\pi\)
−0.193288 + 0.981142i \(0.561915\pi\)
\(830\) 0 0
\(831\) −11.4891 + 48.9022i −0.398553 + 1.69640i
\(832\) 2.00000i 0.0693375i
\(833\) −6.63325 45.9565i −0.229828 1.59230i
\(834\) 14.7446 + 13.8564i 0.510562 + 0.479808i
\(835\) 0 0
\(836\) −7.37228 + 12.7692i −0.254976 + 0.441631i
\(837\) 11.5807 4.29211i 0.400289 0.148357i
\(838\) −25.5383 + 14.7446i −0.882207 + 0.509342i
\(839\) 1.72281 0.0594781 0.0297391 0.999558i \(-0.490532\pi\)
0.0297391 + 0.999558i \(0.490532\pi\)
\(840\) 0 0
\(841\) 18.0000 0.620690
\(842\) 13.0916 7.55842i 0.451165 0.260480i
\(843\) −10.8896 36.1168i −0.375059 1.24393i
\(844\) −9.11684 + 15.7908i −0.313815 + 0.543543i
\(845\) 0 0
\(846\) −5.62772 + 0.349857i −0.193485 + 0.0120283i
\(847\) 12.3267 14.2337i 0.423552 0.489075i
\(848\) 1.37228i 0.0471243i
\(849\) −26.9783 6.33830i −0.925891 0.217530i
\(850\) 0 0
\(851\) 44.2337 + 25.5383i 1.51631 + 0.875443i
\(852\) −3.16915 0.744563i −0.108573 0.0255083i
\(853\) 30.4674i 1.04318i 0.853195 + 0.521592i \(0.174661\pi\)
−0.853195 + 0.521592i \(0.825339\pi\)
\(854\) 7.32473 + 1.40965i 0.250647 + 0.0482371i
\(855\) 0 0
\(856\) −8.87228 15.3672i −0.303248 0.525242i
\(857\) −18.9051 + 32.7446i −0.645785 + 1.11853i 0.338334 + 0.941026i \(0.390137\pi\)
−0.984120 + 0.177507i \(0.943197\pi\)
\(858\) 4.25639 + 14.1168i 0.145311 + 0.481941i
\(859\) −28.4674 + 16.4356i −0.971294 + 0.560777i −0.899631 0.436652i \(-0.856164\pi\)
−0.0716637 + 0.997429i \(0.522831\pi\)
\(860\) 0 0
\(861\) −4.37228 6.04334i −0.149007 0.205957i
\(862\) 3.75906 0.128034
\(863\) −6.60580 + 3.81386i −0.224864 + 0.129825i −0.608200 0.793783i \(-0.708108\pi\)
0.383336 + 0.923609i \(0.374775\pi\)
\(864\) 4.87228 1.80579i 0.165758 0.0614342i
\(865\) 0 0
\(866\) −17.0000 29.4449i −0.577684 1.00058i
\(867\) 34.0786 + 32.0258i 1.15737 + 1.08765i
\(868\) 4.75372 + 4.11684i 0.161352 + 0.139735i
\(869\) 34.5484i 1.17198i
\(870\) 0 0
\(871\) −13.1168 7.57301i −0.444447 0.256602i
\(872\) −7.89542 4.55842i −0.267373 0.154368i
\(873\) 3.51039 + 5.29211i 0.118809 + 0.179111i
\(874\) 15.1460i 0.512322i
\(875\) 0 0
\(876\) 2.37228 2.52434i 0.0801520 0.0852895i
\(877\) 15.7908 + 27.3505i 0.533219 + 0.923562i 0.999247 + 0.0387922i \(0.0123510\pi\)
−0.466029 + 0.884770i \(0.654316\pi\)
\(878\) 6.38458 11.0584i 0.215469 0.373204i
\(879\) 41.5258 12.5205i 1.40063 0.422306i
\(880\) 0 0
\(881\) 51.3505 1.73004 0.865022 0.501734i \(-0.167305\pi\)
0.865022 + 0.501734i \(0.167305\pi\)
\(882\) 4.28384 + 20.5584i 0.144244 + 0.692238i
\(883\) 54.9455 1.84906 0.924532 0.381104i \(-0.124456\pi\)
0.924532 + 0.381104i \(0.124456\pi\)
\(884\) −11.4891 + 6.63325i −0.386421 + 0.223100i
\(885\) 0 0
\(886\) −4.50000 + 7.79423i −0.151180 + 0.261852i
\(887\) −27.4453 47.5367i −0.921523 1.59613i −0.797059 0.603901i \(-0.793612\pi\)
−0.124464 0.992224i \(-0.539721\pi\)
\(888\) 13.8564 14.7446i 0.464991 0.494795i
\(889\) −2.05842 5.94215i −0.0690373 0.199293i
\(890\) 0 0
\(891\) −30.5475 + 23.1152i −1.02338 + 0.774388i
\(892\) 15.6896 + 9.05842i 0.525328 + 0.303298i
\(893\) −5.63858 3.25544i −0.188688 0.108939i
\(894\) 5.62772 23.9538i 0.188219 0.801133i
\(895\) 0 0
\(896\) 2.00000 + 1.73205i 0.0668153 + 0.0578638i
\(897\) 11.0371 + 10.3723i 0.368519 + 0.346320i
\(898\) 17.9928 + 31.1644i 0.600427 + 1.03997i
\(899\) 3.94158 6.82701i 0.131459 0.227694i
\(900\) 0 0
\(901\) −7.88316 + 4.55134i −0.262626 + 0.151627i
\(902\) 6.92820 0.230684
\(903\) −29.6472 40.9783i −0.986598 1.36367i
\(904\) 3.25544 0.108274
\(905\) 0 0
\(906\) 4.05842 + 13.4603i 0.134832 + 0.447187i
\(907\) −22.3966 + 38.7921i −0.743668 + 1.28807i 0.207146 + 0.978310i \(0.433582\pi\)
−0.950814 + 0.309761i \(0.899751\pi\)
\(908\) −7.82168 13.5475i −0.259572 0.449591i
\(909\) 3.04755 + 49.0222i 0.101081 + 1.62596i
\(910\) 0 0
\(911\) 24.5437i 0.813168i −0.913613 0.406584i \(-0.866720\pi\)
0.913613 0.406584i \(-0.133280\pi\)
\(912\) 5.84096 + 1.37228i 0.193414 + 0.0454408i
\(913\) 5.29734 + 3.05842i 0.175316 + 0.101219i
\(914\) −11.0584 6.38458i −0.365780 0.211183i
\(915\) 0 0
\(916\) 13.8564i 0.457829i
\(917\) −8.01544 + 9.25544i −0.264693 + 0.305641i
\(918\) −26.5330 22.0000i −0.875719 0.726108i
\(919\) −9.11684 15.7908i −0.300737 0.520892i 0.675566 0.737299i \(-0.263899\pi\)
−0.976303 + 0.216408i \(0.930566\pi\)
\(920\) 0 0
\(921\) 3.44158 + 11.4144i 0.113404 + 0.376118i
\(922\) 0.442430 0.255437i 0.0145707 0.00841238i
\(923\) −3.75906 −0.123731
\(924\) −17.8030 7.96916i −0.585675 0.262166i
\(925\) 0 0
\(926\) 31.6753 18.2877i 1.04091 0.600972i
\(927\) 20.1947 40.6060i 0.663281 1.33368i
\(928\) 1.65831 2.87228i 0.0544368 0.0942873i
\(929\) −8.44158 14.6212i −0.276959 0.479707i 0.693668 0.720295i \(-0.255993\pi\)
−0.970628 + 0.240587i \(0.922660\pi\)
\(930\) 0 0
\(931\) −9.00000 + 22.5167i −0.294963 + 0.737954i
\(932\) 23.4891i 0.769412i
\(933\) −5.63858 + 24.0000i −0.184599 + 0.785725i
\(934\) 0.0475473 + 0.0274514i 0.00155579 + 0.000898238i
\(935\) 0 0
\(936\) 5.00000 3.31662i 0.163430 0.108407i
\(937\) 50.3505i 1.64488i −0.568852 0.822440i \(-0.692612\pi\)
0.568852 0.822440i \(-0.307388\pi\)
\(938\) 18.9325 6.55842i 0.618169 0.214140i
\(939\) 16.7446 17.8178i 0.546438 0.581463i
\(940\) 0 0
\(941\) −12.1753 + 21.0882i −0.396902 + 0.687455i −0.993342 0.115203i \(-0.963248\pi\)
0.596440 + 0.802658i \(0.296582\pi\)
\(942\) −13.2665 + 4.00000i −0.432246 + 0.130327i
\(943\) 6.16337 3.55842i 0.200707 0.115878i
\(944\) −4.11684 −0.133992
\(945\) 0 0
\(946\) 46.9783 1.52739
\(947\) 37.3403 21.5584i 1.21340 0.700555i 0.249899 0.968272i \(-0.419603\pi\)
0.963497 + 0.267717i \(0.0862694\pi\)
\(948\) 13.4603 4.05842i 0.437169 0.131811i
\(949\) 2.00000 3.46410i 0.0649227 0.112449i
\(950\) 0 0
\(951\) −19.1168 + 20.3422i −0.619906 + 0.659640i
\(952\) 3.31662 17.2337i 0.107492 0.558547i
\(953\) 48.0000i 1.55487i 0.628962 + 0.777436i \(0.283480\pi\)
−0.628962 + 0.777436i \(0.716520\pi\)
\(954\) 3.43070 2.27567i 0.111073 0.0736776i
\(955\) 0 0
\(956\) 2.48913 + 1.43710i 0.0805041 + 0.0464790i
\(957\) −5.59230 + 23.8030i −0.180773 + 0.769441i
\(958\) 8.74456i 0.282524i
\(959\) −1.37228 + 7.13058i −0.0443133 + 0.230259i
\(960\) 0 0
\(961\) −12.6753 21.9542i −0.408880 0.708200i
\(962\) 11.6819 20.2337i 0.376640 0.652360i
\(963\) 23.7051 47.6644i 0.763886 1.53596i
\(964\) 9.17527 5.29734i 0.295515 0.170616i
\(965\) 0 0
\(966\) −19.9307 + 2.05446i −0.641260 + 0.0661010i
\(967\) 51.9239 1.66976 0.834879 0.550433i \(-0.185537\pi\)
0.834879 + 0.550433i \(0.185537\pi\)
\(968\) 6.16337 3.55842i 0.198098 0.114372i
\(969\) −11.4891 38.1051i −0.369084 1.22411i
\(970\) 0 0
\(971\) 14.3139 + 24.7923i 0.459354 + 0.795624i 0.998927 0.0463149i \(-0.0147478\pi\)
−0.539573 + 0.841939i \(0.681414\pi\)
\(972\) 12.5942 + 9.18614i 0.403960 + 0.294646i
\(973\) −29.2048 + 10.1168i −0.936263 + 0.324331i
\(974\) 4.55134i 0.145834i
\(975\) 0 0
\(976\) 2.44158 + 1.40965i 0.0781530 + 0.0451217i
\(977\) 35.0458 + 20.2337i 1.12121 + 0.647333i 0.941710 0.336424i \(-0.109218\pi\)
0.179503 + 0.983757i \(0.442551\pi\)
\(978\) 5.84096 + 1.37228i 0.186773 + 0.0438807i
\(979\) 18.6101i 0.594782i
\(980\) 0 0
\(981\) −1.69702 27.2978i −0.0541815 0.871553i
\(982\) −13.4603 23.3139i −0.429534 0.743975i
\(983\) −10.8622 + 18.8139i −0.346450 + 0.600069i −0.985616 0.169000i \(-0.945946\pi\)
0.639166 + 0.769069i \(0.279280\pi\)
\(984\) −0.813859 2.69927i −0.0259449 0.0860495i
\(985\) 0 0
\(986\) −22.0000 −0.700623
\(987\) 3.51900 7.86141i 0.112011 0.250231i
\(988\) 6.92820 0.220416
\(989\) 41.7921 24.1287i 1.32891 0.767248i
\(990\) 0 0
\(991\) 14.1753 24.5523i 0.450292 0.779929i −0.548112 0.836405i \(-0.684653\pi\)
0.998404 + 0.0564762i \(0.0179865\pi\)
\(992\) 1.18843 + 2.05842i 0.0377327 + 0.0653550i
\(993\) 12.9166 + 12.1386i 0.409897 + 0.385207i
\(994\) 3.25544 3.75906i 0.103256 0.119230i
\(995\) 0 0
\(996\) 0.569297 2.42315i 0.0180389 0.0767804i
\(997\) 26.3855 + 15.2337i 0.835638 + 0.482456i 0.855779 0.517341i \(-0.173078\pi\)
−0.0201413 + 0.999797i \(0.506412\pi\)
\(998\) 24.4511 + 14.1168i 0.773986 + 0.446861i
\(999\) 59.8397 + 10.1899i 1.89324 + 0.322395i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.2.s.e.101.3 8
3.2 odd 2 1050.2.s.d.101.1 8
5.2 odd 4 210.2.t.d.59.2 yes 4
5.3 odd 4 210.2.t.a.59.1 4
5.4 even 2 inner 1050.2.s.e.101.2 8
7.5 odd 6 1050.2.s.d.551.1 8
15.2 even 4 210.2.t.b.59.1 yes 4
15.8 even 4 210.2.t.c.59.2 yes 4
15.14 odd 2 1050.2.s.d.101.4 8
21.5 even 6 inner 1050.2.s.e.551.3 8
35.3 even 12 1470.2.d.c.1469.3 4
35.12 even 12 210.2.t.c.89.2 yes 4
35.17 even 12 1470.2.d.b.1469.2 4
35.18 odd 12 1470.2.d.d.1469.2 4
35.19 odd 6 1050.2.s.d.551.4 8
35.32 odd 12 1470.2.d.a.1469.3 4
35.33 even 12 210.2.t.b.89.1 yes 4
105.17 odd 12 1470.2.d.d.1469.1 4
105.32 even 12 1470.2.d.c.1469.4 4
105.38 odd 12 1470.2.d.a.1469.4 4
105.47 odd 12 210.2.t.a.89.2 yes 4
105.53 even 12 1470.2.d.b.1469.1 4
105.68 odd 12 210.2.t.d.89.1 yes 4
105.89 even 6 inner 1050.2.s.e.551.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.t.a.59.1 4 5.3 odd 4
210.2.t.a.89.2 yes 4 105.47 odd 12
210.2.t.b.59.1 yes 4 15.2 even 4
210.2.t.b.89.1 yes 4 35.33 even 12
210.2.t.c.59.2 yes 4 15.8 even 4
210.2.t.c.89.2 yes 4 35.12 even 12
210.2.t.d.59.2 yes 4 5.2 odd 4
210.2.t.d.89.1 yes 4 105.68 odd 12
1050.2.s.d.101.1 8 3.2 odd 2
1050.2.s.d.101.4 8 15.14 odd 2
1050.2.s.d.551.1 8 7.5 odd 6
1050.2.s.d.551.4 8 35.19 odd 6
1050.2.s.e.101.2 8 5.4 even 2 inner
1050.2.s.e.101.3 8 1.1 even 1 trivial
1050.2.s.e.551.2 8 105.89 even 6 inner
1050.2.s.e.551.3 8 21.5 even 6 inner
1470.2.d.a.1469.3 4 35.32 odd 12
1470.2.d.a.1469.4 4 105.38 odd 12
1470.2.d.b.1469.1 4 105.53 even 12
1470.2.d.b.1469.2 4 35.17 even 12
1470.2.d.c.1469.3 4 35.3 even 12
1470.2.d.c.1469.4 4 105.32 even 12
1470.2.d.d.1469.1 4 105.17 odd 12
1470.2.d.d.1469.2 4 35.18 odd 12