L(s) = 1 | + (0.866 − 0.5i)2-s + (−1.65 + 0.5i)3-s + (0.499 − 0.866i)4-s + (−1.18 + 1.26i)6-s + (−0.866 − 2.5i)7-s − 0.999i·8-s + (2.5 − 1.65i)9-s + (−3.68 − 2.12i)11-s + (−0.396 + 1.68i)12-s + 2i·13-s + (−2 − 1.73i)14-s + (−0.5 − 0.866i)16-s + (−3.31 + 5.74i)17-s + (1.33 − 2.68i)18-s + (3 − 1.73i)19-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.957 + 0.288i)3-s + (0.249 − 0.433i)4-s + (−0.484 + 0.515i)6-s + (−0.327 − 0.944i)7-s − 0.353i·8-s + (0.833 − 0.552i)9-s + (−1.11 − 0.641i)11-s + (−0.114 + 0.486i)12-s + 0.554i·13-s + (−0.534 − 0.462i)14-s + (−0.125 − 0.216i)16-s + (−0.804 + 1.39i)17-s + (0.314 − 0.633i)18-s + (0.688 − 0.397i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.957 - 0.289i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.957 - 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2840391482\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2840391482\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 + (1.65 - 0.5i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (0.866 + 2.5i)T \) |
good | 11 | \( 1 + (3.68 + 2.12i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 17 | \( 1 + (3.31 - 5.74i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3 + 1.73i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.78 - 2.18i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 3.31iT - 29T^{2} \) |
| 31 | \( 1 + (2.05 + 1.18i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (5.84 + 10.1i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 1.62T + 41T^{2} \) |
| 43 | \( 1 + 11.0T + 43T^{2} \) |
| 47 | \( 1 + (0.939 + 1.62i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.18 - 0.686i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.05 + 3.56i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.44 - 1.40i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.78 - 6.55i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 1.87iT - 71T^{2} \) |
| 73 | \( 1 + (1.73 + i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.05 + 7.02i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 1.43T + 83T^{2} \) |
| 89 | \( 1 + (-2.18 - 3.78i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 2.11iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.889365433004482073381076051943, −8.763860171431102660644184750616, −7.51332004808929239143044866838, −6.72973512792788119835339305834, −5.88118447670809373504231843358, −5.10387404152368930720877505970, −4.11744870670310615828978331366, −3.40986358098600541918385928367, −1.73327803801171525311046015014, −0.10989499268457192012348188850,
2.08853295619630967861878049798, 3.13173488171241689632365199273, 4.75156976689730144141414214378, 5.16864988003492542917016682110, 6.02994580652121004824704987274, 6.84649248250504357091445534813, 7.63913640385959028620243048551, 8.492243743081096560133009591164, 9.777915201170384903000671229465, 10.33088512537031903307467689851