Properties

Label 1040.6.a.q.1.4
Level $1040$
Weight $6$
Character 1040.1
Self dual yes
Analytic conductor $166.799$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,6,Mod(1,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-38,0,-150,0,-220] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(166.799172605\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 163x^{4} - 8x^{3} + 6120x^{2} + 6624x - 19440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{11}\cdot 3 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-10.7882\) of defining polynomial
Character \(\chi\) \(=\) 1040.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.527294 q^{3} -25.0000 q^{5} -231.710 q^{7} -242.722 q^{9} +466.402 q^{11} +169.000 q^{13} +13.1824 q^{15} +882.905 q^{17} -167.308 q^{19} +122.180 q^{21} -3037.27 q^{23} +625.000 q^{25} +256.118 q^{27} +6278.22 q^{29} +4294.08 q^{31} -245.931 q^{33} +5792.76 q^{35} -7285.93 q^{37} -89.1127 q^{39} +18984.4 q^{41} -14295.7 q^{43} +6068.05 q^{45} -8375.45 q^{47} +36882.8 q^{49} -465.551 q^{51} +20546.0 q^{53} -11660.0 q^{55} +88.2207 q^{57} +118.006 q^{59} +24590.5 q^{61} +56241.2 q^{63} -4225.00 q^{65} +34789.8 q^{67} +1601.54 q^{69} -9033.72 q^{71} +30590.1 q^{73} -329.559 q^{75} -108070. q^{77} +14290.7 q^{79} +58846.4 q^{81} -65535.3 q^{83} -22072.6 q^{85} -3310.47 q^{87} -85188.3 q^{89} -39159.1 q^{91} -2264.24 q^{93} +4182.71 q^{95} +51071.6 q^{97} -113206. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 38 q^{3} - 150 q^{5} - 220 q^{7} + 518 q^{9} + 170 q^{11} + 1014 q^{13} + 950 q^{15} + 728 q^{17} - 1218 q^{19} - 396 q^{21} - 8954 q^{23} + 3750 q^{25} - 13112 q^{27} + 8364 q^{29} - 2862 q^{31}+ \cdots + 32270 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.527294 −0.0338259 −0.0169130 0.999857i \(-0.505384\pi\)
−0.0169130 + 0.999857i \(0.505384\pi\)
\(4\) 0 0
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) −231.710 −1.78731 −0.893656 0.448752i \(-0.851869\pi\)
−0.893656 + 0.448752i \(0.851869\pi\)
\(8\) 0 0
\(9\) −242.722 −0.998856
\(10\) 0 0
\(11\) 466.402 1.16219 0.581097 0.813835i \(-0.302624\pi\)
0.581097 + 0.813835i \(0.302624\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) 0 0
\(15\) 13.1824 0.0151274
\(16\) 0 0
\(17\) 882.905 0.740955 0.370478 0.928841i \(-0.379194\pi\)
0.370478 + 0.928841i \(0.379194\pi\)
\(18\) 0 0
\(19\) −167.308 −0.106325 −0.0531623 0.998586i \(-0.516930\pi\)
−0.0531623 + 0.998586i \(0.516930\pi\)
\(20\) 0 0
\(21\) 122.180 0.0604575
\(22\) 0 0
\(23\) −3037.27 −1.19719 −0.598597 0.801051i \(-0.704275\pi\)
−0.598597 + 0.801051i \(0.704275\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) 256.118 0.0676132
\(28\) 0 0
\(29\) 6278.22 1.38625 0.693125 0.720818i \(-0.256233\pi\)
0.693125 + 0.720818i \(0.256233\pi\)
\(30\) 0 0
\(31\) 4294.08 0.802538 0.401269 0.915960i \(-0.368569\pi\)
0.401269 + 0.915960i \(0.368569\pi\)
\(32\) 0 0
\(33\) −245.931 −0.0393123
\(34\) 0 0
\(35\) 5792.76 0.799311
\(36\) 0 0
\(37\) −7285.93 −0.874945 −0.437472 0.899232i \(-0.644126\pi\)
−0.437472 + 0.899232i \(0.644126\pi\)
\(38\) 0 0
\(39\) −89.1127 −0.00938162
\(40\) 0 0
\(41\) 18984.4 1.76375 0.881875 0.471482i \(-0.156281\pi\)
0.881875 + 0.471482i \(0.156281\pi\)
\(42\) 0 0
\(43\) −14295.7 −1.17906 −0.589528 0.807748i \(-0.700686\pi\)
−0.589528 + 0.807748i \(0.700686\pi\)
\(44\) 0 0
\(45\) 6068.05 0.446702
\(46\) 0 0
\(47\) −8375.45 −0.553049 −0.276524 0.961007i \(-0.589183\pi\)
−0.276524 + 0.961007i \(0.589183\pi\)
\(48\) 0 0
\(49\) 36882.8 2.19449
\(50\) 0 0
\(51\) −465.551 −0.0250635
\(52\) 0 0
\(53\) 20546.0 1.00470 0.502351 0.864664i \(-0.332468\pi\)
0.502351 + 0.864664i \(0.332468\pi\)
\(54\) 0 0
\(55\) −11660.0 −0.519749
\(56\) 0 0
\(57\) 88.2207 0.00359653
\(58\) 0 0
\(59\) 118.006 0.00441341 0.00220670 0.999998i \(-0.499298\pi\)
0.00220670 + 0.999998i \(0.499298\pi\)
\(60\) 0 0
\(61\) 24590.5 0.846143 0.423071 0.906096i \(-0.360952\pi\)
0.423071 + 0.906096i \(0.360952\pi\)
\(62\) 0 0
\(63\) 56241.2 1.78527
\(64\) 0 0
\(65\) −4225.00 −0.124035
\(66\) 0 0
\(67\) 34789.8 0.946813 0.473407 0.880844i \(-0.343024\pi\)
0.473407 + 0.880844i \(0.343024\pi\)
\(68\) 0 0
\(69\) 1601.54 0.0404962
\(70\) 0 0
\(71\) −9033.72 −0.212677 −0.106339 0.994330i \(-0.533913\pi\)
−0.106339 + 0.994330i \(0.533913\pi\)
\(72\) 0 0
\(73\) 30590.1 0.671853 0.335926 0.941888i \(-0.390951\pi\)
0.335926 + 0.941888i \(0.390951\pi\)
\(74\) 0 0
\(75\) −329.559 −0.00676519
\(76\) 0 0
\(77\) −108070. −2.07720
\(78\) 0 0
\(79\) 14290.7 0.257624 0.128812 0.991669i \(-0.458884\pi\)
0.128812 + 0.991669i \(0.458884\pi\)
\(80\) 0 0
\(81\) 58846.4 0.996569
\(82\) 0 0
\(83\) −65535.3 −1.04419 −0.522096 0.852887i \(-0.674850\pi\)
−0.522096 + 0.852887i \(0.674850\pi\)
\(84\) 0 0
\(85\) −22072.6 −0.331365
\(86\) 0 0
\(87\) −3310.47 −0.0468912
\(88\) 0 0
\(89\) −85188.3 −1.14000 −0.570000 0.821644i \(-0.693057\pi\)
−0.570000 + 0.821644i \(0.693057\pi\)
\(90\) 0 0
\(91\) −39159.1 −0.495711
\(92\) 0 0
\(93\) −2264.24 −0.0271466
\(94\) 0 0
\(95\) 4182.71 0.0475498
\(96\) 0 0
\(97\) 51071.6 0.551124 0.275562 0.961283i \(-0.411136\pi\)
0.275562 + 0.961283i \(0.411136\pi\)
\(98\) 0 0
\(99\) −113206. −1.16086
\(100\) 0 0
\(101\) −149777. −1.46098 −0.730488 0.682926i \(-0.760707\pi\)
−0.730488 + 0.682926i \(0.760707\pi\)
\(102\) 0 0
\(103\) −79535.6 −0.738700 −0.369350 0.929290i \(-0.620420\pi\)
−0.369350 + 0.929290i \(0.620420\pi\)
\(104\) 0 0
\(105\) −3054.49 −0.0270374
\(106\) 0 0
\(107\) −15175.1 −0.128136 −0.0640682 0.997946i \(-0.520408\pi\)
−0.0640682 + 0.997946i \(0.520408\pi\)
\(108\) 0 0
\(109\) −112925. −0.910384 −0.455192 0.890393i \(-0.650429\pi\)
−0.455192 + 0.890393i \(0.650429\pi\)
\(110\) 0 0
\(111\) 3841.83 0.0295958
\(112\) 0 0
\(113\) −30361.7 −0.223682 −0.111841 0.993726i \(-0.535675\pi\)
−0.111841 + 0.993726i \(0.535675\pi\)
\(114\) 0 0
\(115\) 75931.8 0.535401
\(116\) 0 0
\(117\) −41020.0 −0.277033
\(118\) 0 0
\(119\) −204578. −1.32432
\(120\) 0 0
\(121\) 56479.5 0.350693
\(122\) 0 0
\(123\) −10010.4 −0.0596605
\(124\) 0 0
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) −4509.41 −0.0248091 −0.0124045 0.999923i \(-0.503949\pi\)
−0.0124045 + 0.999923i \(0.503949\pi\)
\(128\) 0 0
\(129\) 7538.04 0.0398827
\(130\) 0 0
\(131\) 149727. 0.762292 0.381146 0.924515i \(-0.375529\pi\)
0.381146 + 0.924515i \(0.375529\pi\)
\(132\) 0 0
\(133\) 38767.1 0.190035
\(134\) 0 0
\(135\) −6402.96 −0.0302375
\(136\) 0 0
\(137\) 158516. 0.721558 0.360779 0.932651i \(-0.382511\pi\)
0.360779 + 0.932651i \(0.382511\pi\)
\(138\) 0 0
\(139\) −69849.6 −0.306639 −0.153319 0.988177i \(-0.548996\pi\)
−0.153319 + 0.988177i \(0.548996\pi\)
\(140\) 0 0
\(141\) 4416.33 0.0187074
\(142\) 0 0
\(143\) 78821.9 0.322334
\(144\) 0 0
\(145\) −156955. −0.619950
\(146\) 0 0
\(147\) −19448.1 −0.0742306
\(148\) 0 0
\(149\) −56811.4 −0.209638 −0.104819 0.994491i \(-0.533426\pi\)
−0.104819 + 0.994491i \(0.533426\pi\)
\(150\) 0 0
\(151\) −25593.3 −0.0913447 −0.0456724 0.998956i \(-0.514543\pi\)
−0.0456724 + 0.998956i \(0.514543\pi\)
\(152\) 0 0
\(153\) −214301. −0.740107
\(154\) 0 0
\(155\) −107352. −0.358906
\(156\) 0 0
\(157\) −464261. −1.50319 −0.751593 0.659627i \(-0.770714\pi\)
−0.751593 + 0.659627i \(0.770714\pi\)
\(158\) 0 0
\(159\) −10833.8 −0.0339850
\(160\) 0 0
\(161\) 703768. 2.13976
\(162\) 0 0
\(163\) −233236. −0.687584 −0.343792 0.939046i \(-0.611712\pi\)
−0.343792 + 0.939046i \(0.611712\pi\)
\(164\) 0 0
\(165\) 6148.27 0.0175810
\(166\) 0 0
\(167\) 5473.80 0.0151879 0.00759395 0.999971i \(-0.497583\pi\)
0.00759395 + 0.999971i \(0.497583\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 40609.4 0.106203
\(172\) 0 0
\(173\) −583869. −1.48320 −0.741601 0.670841i \(-0.765933\pi\)
−0.741601 + 0.670841i \(0.765933\pi\)
\(174\) 0 0
\(175\) −144819. −0.357463
\(176\) 0 0
\(177\) −62.2238 −0.000149288 0
\(178\) 0 0
\(179\) −495004. −1.15472 −0.577359 0.816490i \(-0.695917\pi\)
−0.577359 + 0.816490i \(0.695917\pi\)
\(180\) 0 0
\(181\) 648193. 1.47065 0.735323 0.677717i \(-0.237031\pi\)
0.735323 + 0.677717i \(0.237031\pi\)
\(182\) 0 0
\(183\) −12966.4 −0.0286216
\(184\) 0 0
\(185\) 182148. 0.391287
\(186\) 0 0
\(187\) 411789. 0.861133
\(188\) 0 0
\(189\) −59345.3 −0.120846
\(190\) 0 0
\(191\) 882509. 1.75039 0.875197 0.483767i \(-0.160732\pi\)
0.875197 + 0.483767i \(0.160732\pi\)
\(192\) 0 0
\(193\) 693680. 1.34050 0.670249 0.742137i \(-0.266187\pi\)
0.670249 + 0.742137i \(0.266187\pi\)
\(194\) 0 0
\(195\) 2227.82 0.00419559
\(196\) 0 0
\(197\) −190019. −0.348844 −0.174422 0.984671i \(-0.555806\pi\)
−0.174422 + 0.984671i \(0.555806\pi\)
\(198\) 0 0
\(199\) 141002. 0.252403 0.126201 0.992005i \(-0.459721\pi\)
0.126201 + 0.992005i \(0.459721\pi\)
\(200\) 0 0
\(201\) −18344.4 −0.0320268
\(202\) 0 0
\(203\) −1.45473e6 −2.47766
\(204\) 0 0
\(205\) −474610. −0.788773
\(206\) 0 0
\(207\) 737213. 1.19582
\(208\) 0 0
\(209\) −78032.9 −0.123570
\(210\) 0 0
\(211\) 417539. 0.645640 0.322820 0.946460i \(-0.395369\pi\)
0.322820 + 0.946460i \(0.395369\pi\)
\(212\) 0 0
\(213\) 4763.43 0.00719400
\(214\) 0 0
\(215\) 357393. 0.527290
\(216\) 0 0
\(217\) −994982. −1.43439
\(218\) 0 0
\(219\) −16130.0 −0.0227260
\(220\) 0 0
\(221\) 149211. 0.205504
\(222\) 0 0
\(223\) −289938. −0.390429 −0.195215 0.980761i \(-0.562540\pi\)
−0.195215 + 0.980761i \(0.562540\pi\)
\(224\) 0 0
\(225\) −151701. −0.199771
\(226\) 0 0
\(227\) 1.05748e6 1.36210 0.681049 0.732238i \(-0.261524\pi\)
0.681049 + 0.732238i \(0.261524\pi\)
\(228\) 0 0
\(229\) −827977. −1.04335 −0.521674 0.853145i \(-0.674692\pi\)
−0.521674 + 0.853145i \(0.674692\pi\)
\(230\) 0 0
\(231\) 56984.8 0.0702633
\(232\) 0 0
\(233\) 339021. 0.409107 0.204554 0.978855i \(-0.434426\pi\)
0.204554 + 0.978855i \(0.434426\pi\)
\(234\) 0 0
\(235\) 209386. 0.247331
\(236\) 0 0
\(237\) −7535.42 −0.00871438
\(238\) 0 0
\(239\) −1.66517e6 −1.88567 −0.942833 0.333267i \(-0.891849\pi\)
−0.942833 + 0.333267i \(0.891849\pi\)
\(240\) 0 0
\(241\) −9484.31 −0.0105187 −0.00525937 0.999986i \(-0.501674\pi\)
−0.00525937 + 0.999986i \(0.501674\pi\)
\(242\) 0 0
\(243\) −93266.1 −0.101323
\(244\) 0 0
\(245\) −922069. −0.981405
\(246\) 0 0
\(247\) −28275.1 −0.0294891
\(248\) 0 0
\(249\) 34556.4 0.0353207
\(250\) 0 0
\(251\) −872880. −0.874521 −0.437261 0.899335i \(-0.644051\pi\)
−0.437261 + 0.899335i \(0.644051\pi\)
\(252\) 0 0
\(253\) −1.41659e6 −1.39137
\(254\) 0 0
\(255\) 11638.8 0.0112087
\(256\) 0 0
\(257\) −207242. −0.195724 −0.0978622 0.995200i \(-0.531200\pi\)
−0.0978622 + 0.995200i \(0.531200\pi\)
\(258\) 0 0
\(259\) 1.68823e6 1.56380
\(260\) 0 0
\(261\) −1.52386e6 −1.38466
\(262\) 0 0
\(263\) −2.22009e6 −1.97916 −0.989581 0.143976i \(-0.954011\pi\)
−0.989581 + 0.143976i \(0.954011\pi\)
\(264\) 0 0
\(265\) −513650. −0.449317
\(266\) 0 0
\(267\) 44919.3 0.0385616
\(268\) 0 0
\(269\) 939034. 0.791226 0.395613 0.918417i \(-0.370532\pi\)
0.395613 + 0.918417i \(0.370532\pi\)
\(270\) 0 0
\(271\) −404835. −0.334853 −0.167427 0.985885i \(-0.553546\pi\)
−0.167427 + 0.985885i \(0.553546\pi\)
\(272\) 0 0
\(273\) 20648.3 0.0167679
\(274\) 0 0
\(275\) 291501. 0.232439
\(276\) 0 0
\(277\) 484637. 0.379505 0.189752 0.981832i \(-0.439231\pi\)
0.189752 + 0.981832i \(0.439231\pi\)
\(278\) 0 0
\(279\) −1.04227e6 −0.801620
\(280\) 0 0
\(281\) −2.25453e6 −1.70330 −0.851650 0.524111i \(-0.824398\pi\)
−0.851650 + 0.524111i \(0.824398\pi\)
\(282\) 0 0
\(283\) 271952. 0.201849 0.100924 0.994894i \(-0.467820\pi\)
0.100924 + 0.994894i \(0.467820\pi\)
\(284\) 0 0
\(285\) −2205.52 −0.00160842
\(286\) 0 0
\(287\) −4.39889e6 −3.15237
\(288\) 0 0
\(289\) −640335. −0.450986
\(290\) 0 0
\(291\) −26929.7 −0.0186423
\(292\) 0 0
\(293\) −1.81834e6 −1.23739 −0.618694 0.785632i \(-0.712338\pi\)
−0.618694 + 0.785632i \(0.712338\pi\)
\(294\) 0 0
\(295\) −2950.15 −0.00197374
\(296\) 0 0
\(297\) 119454. 0.0785796
\(298\) 0 0
\(299\) −513299. −0.332042
\(300\) 0 0
\(301\) 3.31247e6 2.10734
\(302\) 0 0
\(303\) 78976.7 0.0494188
\(304\) 0 0
\(305\) −614764. −0.378406
\(306\) 0 0
\(307\) 2.29926e6 1.39233 0.696166 0.717881i \(-0.254888\pi\)
0.696166 + 0.717881i \(0.254888\pi\)
\(308\) 0 0
\(309\) 41938.6 0.0249872
\(310\) 0 0
\(311\) 1.59531e6 0.935286 0.467643 0.883917i \(-0.345103\pi\)
0.467643 + 0.883917i \(0.345103\pi\)
\(312\) 0 0
\(313\) −985636. −0.568664 −0.284332 0.958726i \(-0.591772\pi\)
−0.284332 + 0.958726i \(0.591772\pi\)
\(314\) 0 0
\(315\) −1.40603e6 −0.798396
\(316\) 0 0
\(317\) −1.82666e6 −1.02096 −0.510480 0.859890i \(-0.670532\pi\)
−0.510480 + 0.859890i \(0.670532\pi\)
\(318\) 0 0
\(319\) 2.92817e6 1.61109
\(320\) 0 0
\(321\) 8001.74 0.00433433
\(322\) 0 0
\(323\) −147718. −0.0787818
\(324\) 0 0
\(325\) 105625. 0.0554700
\(326\) 0 0
\(327\) 59544.8 0.0307946
\(328\) 0 0
\(329\) 1.94068e6 0.988472
\(330\) 0 0
\(331\) −2.10290e6 −1.05499 −0.527495 0.849558i \(-0.676869\pi\)
−0.527495 + 0.849558i \(0.676869\pi\)
\(332\) 0 0
\(333\) 1.76846e6 0.873944
\(334\) 0 0
\(335\) −869744. −0.423428
\(336\) 0 0
\(337\) −121239. −0.0581526 −0.0290763 0.999577i \(-0.509257\pi\)
−0.0290763 + 0.999577i \(0.509257\pi\)
\(338\) 0 0
\(339\) 16009.6 0.00756624
\(340\) 0 0
\(341\) 2.00276e6 0.932704
\(342\) 0 0
\(343\) −4.65176e6 −2.13492
\(344\) 0 0
\(345\) −40038.4 −0.0181104
\(346\) 0 0
\(347\) −388296. −0.173117 −0.0865584 0.996247i \(-0.527587\pi\)
−0.0865584 + 0.996247i \(0.527587\pi\)
\(348\) 0 0
\(349\) 1.54959e6 0.681011 0.340506 0.940242i \(-0.389402\pi\)
0.340506 + 0.940242i \(0.389402\pi\)
\(350\) 0 0
\(351\) 43284.0 0.0187525
\(352\) 0 0
\(353\) 592554. 0.253100 0.126550 0.991960i \(-0.459610\pi\)
0.126550 + 0.991960i \(0.459610\pi\)
\(354\) 0 0
\(355\) 225843. 0.0951121
\(356\) 0 0
\(357\) 107873. 0.0447963
\(358\) 0 0
\(359\) −589168. −0.241270 −0.120635 0.992697i \(-0.538493\pi\)
−0.120635 + 0.992697i \(0.538493\pi\)
\(360\) 0 0
\(361\) −2.44811e6 −0.988695
\(362\) 0 0
\(363\) −29781.3 −0.0118625
\(364\) 0 0
\(365\) −764753. −0.300462
\(366\) 0 0
\(367\) −3.28606e6 −1.27353 −0.636766 0.771057i \(-0.719728\pi\)
−0.636766 + 0.771057i \(0.719728\pi\)
\(368\) 0 0
\(369\) −4.60793e6 −1.76173
\(370\) 0 0
\(371\) −4.76072e6 −1.79572
\(372\) 0 0
\(373\) 4.94295e6 1.83956 0.919781 0.392432i \(-0.128366\pi\)
0.919781 + 0.392432i \(0.128366\pi\)
\(374\) 0 0
\(375\) 8238.97 0.00302548
\(376\) 0 0
\(377\) 1.06102e6 0.384476
\(378\) 0 0
\(379\) 588891. 0.210590 0.105295 0.994441i \(-0.466421\pi\)
0.105295 + 0.994441i \(0.466421\pi\)
\(380\) 0 0
\(381\) 2377.79 0.000839190 0
\(382\) 0 0
\(383\) 2.27183e6 0.791370 0.395685 0.918386i \(-0.370507\pi\)
0.395685 + 0.918386i \(0.370507\pi\)
\(384\) 0 0
\(385\) 2.70175e6 0.928954
\(386\) 0 0
\(387\) 3.46988e6 1.17771
\(388\) 0 0
\(389\) −5.34339e6 −1.79037 −0.895185 0.445694i \(-0.852957\pi\)
−0.895185 + 0.445694i \(0.852957\pi\)
\(390\) 0 0
\(391\) −2.68163e6 −0.887067
\(392\) 0 0
\(393\) −78950.1 −0.0257852
\(394\) 0 0
\(395\) −357268. −0.115213
\(396\) 0 0
\(397\) 5.07081e6 1.61473 0.807367 0.590050i \(-0.200892\pi\)
0.807367 + 0.590050i \(0.200892\pi\)
\(398\) 0 0
\(399\) −20441.7 −0.00642812
\(400\) 0 0
\(401\) 4.70142e6 1.46005 0.730026 0.683420i \(-0.239508\pi\)
0.730026 + 0.683420i \(0.239508\pi\)
\(402\) 0 0
\(403\) 725699. 0.222584
\(404\) 0 0
\(405\) −1.47116e6 −0.445679
\(406\) 0 0
\(407\) −3.39817e6 −1.01686
\(408\) 0 0
\(409\) −3.15579e6 −0.932824 −0.466412 0.884568i \(-0.654454\pi\)
−0.466412 + 0.884568i \(0.654454\pi\)
\(410\) 0 0
\(411\) −83584.4 −0.0244074
\(412\) 0 0
\(413\) −27343.2 −0.00788814
\(414\) 0 0
\(415\) 1.63838e6 0.466977
\(416\) 0 0
\(417\) 36831.3 0.0103723
\(418\) 0 0
\(419\) 682165. 0.189825 0.0949127 0.995486i \(-0.469743\pi\)
0.0949127 + 0.995486i \(0.469743\pi\)
\(420\) 0 0
\(421\) −706461. −0.194260 −0.0971299 0.995272i \(-0.530966\pi\)
−0.0971299 + 0.995272i \(0.530966\pi\)
\(422\) 0 0
\(423\) 2.03291e6 0.552416
\(424\) 0 0
\(425\) 551816. 0.148191
\(426\) 0 0
\(427\) −5.69789e6 −1.51232
\(428\) 0 0
\(429\) −41562.3 −0.0109033
\(430\) 0 0
\(431\) −4.89113e6 −1.26828 −0.634142 0.773217i \(-0.718646\pi\)
−0.634142 + 0.773217i \(0.718646\pi\)
\(432\) 0 0
\(433\) −4.98945e6 −1.27889 −0.639444 0.768837i \(-0.720836\pi\)
−0.639444 + 0.768837i \(0.720836\pi\)
\(434\) 0 0
\(435\) 82761.7 0.0209704
\(436\) 0 0
\(437\) 508162. 0.127291
\(438\) 0 0
\(439\) 5.44947e6 1.34956 0.674782 0.738017i \(-0.264238\pi\)
0.674782 + 0.738017i \(0.264238\pi\)
\(440\) 0 0
\(441\) −8.95225e6 −2.19198
\(442\) 0 0
\(443\) −1.00675e6 −0.243732 −0.121866 0.992547i \(-0.538888\pi\)
−0.121866 + 0.992547i \(0.538888\pi\)
\(444\) 0 0
\(445\) 2.12971e6 0.509824
\(446\) 0 0
\(447\) 29956.3 0.00709119
\(448\) 0 0
\(449\) 200413. 0.0469148 0.0234574 0.999725i \(-0.492533\pi\)
0.0234574 + 0.999725i \(0.492533\pi\)
\(450\) 0 0
\(451\) 8.85436e6 2.04982
\(452\) 0 0
\(453\) 13495.2 0.00308982
\(454\) 0 0
\(455\) 978977. 0.221689
\(456\) 0 0
\(457\) 647622. 0.145054 0.0725272 0.997366i \(-0.476894\pi\)
0.0725272 + 0.997366i \(0.476894\pi\)
\(458\) 0 0
\(459\) 226128. 0.0500983
\(460\) 0 0
\(461\) −2.89528e6 −0.634509 −0.317254 0.948340i \(-0.602761\pi\)
−0.317254 + 0.948340i \(0.602761\pi\)
\(462\) 0 0
\(463\) −6.96850e6 −1.51073 −0.755364 0.655305i \(-0.772540\pi\)
−0.755364 + 0.655305i \(0.772540\pi\)
\(464\) 0 0
\(465\) 56606.0 0.0121403
\(466\) 0 0
\(467\) −1.46098e6 −0.309994 −0.154997 0.987915i \(-0.549537\pi\)
−0.154997 + 0.987915i \(0.549537\pi\)
\(468\) 0 0
\(469\) −8.06115e6 −1.69225
\(470\) 0 0
\(471\) 244802. 0.0508467
\(472\) 0 0
\(473\) −6.66754e6 −1.37029
\(474\) 0 0
\(475\) −104568. −0.0212649
\(476\) 0 0
\(477\) −4.98697e6 −1.00355
\(478\) 0 0
\(479\) 6.63657e6 1.32162 0.660808 0.750555i \(-0.270214\pi\)
0.660808 + 0.750555i \(0.270214\pi\)
\(480\) 0 0
\(481\) −1.23132e6 −0.242666
\(482\) 0 0
\(483\) −371093. −0.0723793
\(484\) 0 0
\(485\) −1.27679e6 −0.246470
\(486\) 0 0
\(487\) 6.08683e6 1.16297 0.581486 0.813557i \(-0.302472\pi\)
0.581486 + 0.813557i \(0.302472\pi\)
\(488\) 0 0
\(489\) 122984. 0.0232582
\(490\) 0 0
\(491\) −1.91765e6 −0.358976 −0.179488 0.983760i \(-0.557444\pi\)
−0.179488 + 0.983760i \(0.557444\pi\)
\(492\) 0 0
\(493\) 5.54307e6 1.02715
\(494\) 0 0
\(495\) 2.83015e6 0.519154
\(496\) 0 0
\(497\) 2.09321e6 0.380121
\(498\) 0 0
\(499\) −4.96658e6 −0.892907 −0.446453 0.894807i \(-0.647313\pi\)
−0.446453 + 0.894807i \(0.647313\pi\)
\(500\) 0 0
\(501\) −2886.30 −0.000513745 0
\(502\) 0 0
\(503\) 2.49704e6 0.440054 0.220027 0.975494i \(-0.429385\pi\)
0.220027 + 0.975494i \(0.429385\pi\)
\(504\) 0 0
\(505\) 3.74444e6 0.653368
\(506\) 0 0
\(507\) −15060.0 −0.00260199
\(508\) 0 0
\(509\) 8.69294e6 1.48721 0.743605 0.668619i \(-0.233114\pi\)
0.743605 + 0.668619i \(0.233114\pi\)
\(510\) 0 0
\(511\) −7.08805e6 −1.20081
\(512\) 0 0
\(513\) −42850.7 −0.00718894
\(514\) 0 0
\(515\) 1.98839e6 0.330357
\(516\) 0 0
\(517\) −3.90632e6 −0.642750
\(518\) 0 0
\(519\) 307871. 0.0501707
\(520\) 0 0
\(521\) −1.81970e6 −0.293702 −0.146851 0.989159i \(-0.546914\pi\)
−0.146851 + 0.989159i \(0.546914\pi\)
\(522\) 0 0
\(523\) 187933. 0.0300435 0.0150217 0.999887i \(-0.495218\pi\)
0.0150217 + 0.999887i \(0.495218\pi\)
\(524\) 0 0
\(525\) 76362.2 0.0120915
\(526\) 0 0
\(527\) 3.79126e6 0.594644
\(528\) 0 0
\(529\) 2.78869e6 0.433272
\(530\) 0 0
\(531\) −28642.6 −0.00440836
\(532\) 0 0
\(533\) 3.20836e6 0.489177
\(534\) 0 0
\(535\) 379378. 0.0573043
\(536\) 0 0
\(537\) 261013. 0.0390594
\(538\) 0 0
\(539\) 1.72022e7 2.55042
\(540\) 0 0
\(541\) −7.97826e6 −1.17197 −0.585983 0.810324i \(-0.699291\pi\)
−0.585983 + 0.810324i \(0.699291\pi\)
\(542\) 0 0
\(543\) −341788. −0.0497460
\(544\) 0 0
\(545\) 2.82313e6 0.407136
\(546\) 0 0
\(547\) −4.31881e6 −0.617157 −0.308579 0.951199i \(-0.599853\pi\)
−0.308579 + 0.951199i \(0.599853\pi\)
\(548\) 0 0
\(549\) −5.96866e6 −0.845174
\(550\) 0 0
\(551\) −1.05040e6 −0.147392
\(552\) 0 0
\(553\) −3.31131e6 −0.460455
\(554\) 0 0
\(555\) −96045.7 −0.0132357
\(556\) 0 0
\(557\) −9.23520e6 −1.26127 −0.630636 0.776079i \(-0.717206\pi\)
−0.630636 + 0.776079i \(0.717206\pi\)
\(558\) 0 0
\(559\) −2.41597e6 −0.327011
\(560\) 0 0
\(561\) −217134. −0.0291286
\(562\) 0 0
\(563\) 8.89163e6 1.18225 0.591126 0.806579i \(-0.298683\pi\)
0.591126 + 0.806579i \(0.298683\pi\)
\(564\) 0 0
\(565\) 759044. 0.100034
\(566\) 0 0
\(567\) −1.36353e7 −1.78118
\(568\) 0 0
\(569\) −7.25901e6 −0.939932 −0.469966 0.882684i \(-0.655734\pi\)
−0.469966 + 0.882684i \(0.655734\pi\)
\(570\) 0 0
\(571\) 3.72513e6 0.478136 0.239068 0.971003i \(-0.423158\pi\)
0.239068 + 0.971003i \(0.423158\pi\)
\(572\) 0 0
\(573\) −465342. −0.0592087
\(574\) 0 0
\(575\) −1.89830e6 −0.239439
\(576\) 0 0
\(577\) 1.17093e6 0.146417 0.0732086 0.997317i \(-0.476676\pi\)
0.0732086 + 0.997317i \(0.476676\pi\)
\(578\) 0 0
\(579\) −365773. −0.0453436
\(580\) 0 0
\(581\) 1.51852e7 1.86630
\(582\) 0 0
\(583\) 9.58269e6 1.16766
\(584\) 0 0
\(585\) 1.02550e6 0.123893
\(586\) 0 0
\(587\) −8.45511e6 −1.01280 −0.506400 0.862298i \(-0.669024\pi\)
−0.506400 + 0.862298i \(0.669024\pi\)
\(588\) 0 0
\(589\) −718435. −0.0853295
\(590\) 0 0
\(591\) 100196. 0.0118000
\(592\) 0 0
\(593\) 1.34570e7 1.57149 0.785746 0.618550i \(-0.212279\pi\)
0.785746 + 0.618550i \(0.212279\pi\)
\(594\) 0 0
\(595\) 5.11446e6 0.592253
\(596\) 0 0
\(597\) −74349.7 −0.00853775
\(598\) 0 0
\(599\) −9.72026e6 −1.10691 −0.553453 0.832880i \(-0.686690\pi\)
−0.553453 + 0.832880i \(0.686690\pi\)
\(600\) 0 0
\(601\) 1.52752e7 1.72505 0.862525 0.506014i \(-0.168882\pi\)
0.862525 + 0.506014i \(0.168882\pi\)
\(602\) 0 0
\(603\) −8.44424e6 −0.945730
\(604\) 0 0
\(605\) −1.41199e6 −0.156835
\(606\) 0 0
\(607\) 3.44708e6 0.379735 0.189867 0.981810i \(-0.439194\pi\)
0.189867 + 0.981810i \(0.439194\pi\)
\(608\) 0 0
\(609\) 767070. 0.0838092
\(610\) 0 0
\(611\) −1.41545e6 −0.153388
\(612\) 0 0
\(613\) 5.45977e6 0.586844 0.293422 0.955983i \(-0.405206\pi\)
0.293422 + 0.955983i \(0.405206\pi\)
\(614\) 0 0
\(615\) 250259. 0.0266810
\(616\) 0 0
\(617\) 8.48025e6 0.896801 0.448400 0.893833i \(-0.351994\pi\)
0.448400 + 0.893833i \(0.351994\pi\)
\(618\) 0 0
\(619\) −8.43977e6 −0.885328 −0.442664 0.896688i \(-0.645966\pi\)
−0.442664 + 0.896688i \(0.645966\pi\)
\(620\) 0 0
\(621\) −777901. −0.0809460
\(622\) 0 0
\(623\) 1.97390e7 2.03754
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) 41146.3 0.00417986
\(628\) 0 0
\(629\) −6.43279e6 −0.648295
\(630\) 0 0
\(631\) 1.46417e7 1.46392 0.731962 0.681346i \(-0.238605\pi\)
0.731962 + 0.681346i \(0.238605\pi\)
\(632\) 0 0
\(633\) −220166. −0.0218394
\(634\) 0 0
\(635\) 112735. 0.0110950
\(636\) 0 0
\(637\) 6.23319e6 0.608641
\(638\) 0 0
\(639\) 2.19268e6 0.212434
\(640\) 0 0
\(641\) −8.49886e6 −0.816988 −0.408494 0.912761i \(-0.633946\pi\)
−0.408494 + 0.912761i \(0.633946\pi\)
\(642\) 0 0
\(643\) −1.07051e7 −1.02108 −0.510542 0.859853i \(-0.670555\pi\)
−0.510542 + 0.859853i \(0.670555\pi\)
\(644\) 0 0
\(645\) −188451. −0.0178361
\(646\) 0 0
\(647\) −1.94772e7 −1.82922 −0.914609 0.404340i \(-0.867501\pi\)
−0.914609 + 0.404340i \(0.867501\pi\)
\(648\) 0 0
\(649\) 55038.2 0.00512923
\(650\) 0 0
\(651\) 524648. 0.0485194
\(652\) 0 0
\(653\) 1.36819e7 1.25563 0.627817 0.778361i \(-0.283949\pi\)
0.627817 + 0.778361i \(0.283949\pi\)
\(654\) 0 0
\(655\) −3.74317e6 −0.340908
\(656\) 0 0
\(657\) −7.42490e6 −0.671084
\(658\) 0 0
\(659\) 7.40016e6 0.663785 0.331893 0.943317i \(-0.392313\pi\)
0.331893 + 0.943317i \(0.392313\pi\)
\(660\) 0 0
\(661\) 1.88654e7 1.67943 0.839715 0.543028i \(-0.182722\pi\)
0.839715 + 0.543028i \(0.182722\pi\)
\(662\) 0 0
\(663\) −78678.1 −0.00695136
\(664\) 0 0
\(665\) −969178. −0.0849864
\(666\) 0 0
\(667\) −1.90687e7 −1.65961
\(668\) 0 0
\(669\) 152882. 0.0132066
\(670\) 0 0
\(671\) 1.14691e7 0.983381
\(672\) 0 0
\(673\) −1.68803e7 −1.43662 −0.718311 0.695722i \(-0.755085\pi\)
−0.718311 + 0.695722i \(0.755085\pi\)
\(674\) 0 0
\(675\) 160074. 0.0135226
\(676\) 0 0
\(677\) −1.07388e7 −0.900504 −0.450252 0.892902i \(-0.648666\pi\)
−0.450252 + 0.892902i \(0.648666\pi\)
\(678\) 0 0
\(679\) −1.18338e7 −0.985032
\(680\) 0 0
\(681\) −557604. −0.0460742
\(682\) 0 0
\(683\) 3.08525e6 0.253069 0.126535 0.991962i \(-0.459615\pi\)
0.126535 + 0.991962i \(0.459615\pi\)
\(684\) 0 0
\(685\) −3.96290e6 −0.322690
\(686\) 0 0
\(687\) 436587. 0.0352922
\(688\) 0 0
\(689\) 3.47227e6 0.278654
\(690\) 0 0
\(691\) 1.14232e7 0.910110 0.455055 0.890463i \(-0.349620\pi\)
0.455055 + 0.890463i \(0.349620\pi\)
\(692\) 0 0
\(693\) 2.62310e7 2.07483
\(694\) 0 0
\(695\) 1.74624e6 0.137133
\(696\) 0 0
\(697\) 1.67614e7 1.30686
\(698\) 0 0
\(699\) −178764. −0.0138384
\(700\) 0 0
\(701\) −1.28448e7 −0.987264 −0.493632 0.869671i \(-0.664331\pi\)
−0.493632 + 0.869671i \(0.664331\pi\)
\(702\) 0 0
\(703\) 1.21900e6 0.0930282
\(704\) 0 0
\(705\) −110408. −0.00836620
\(706\) 0 0
\(707\) 3.47050e7 2.61122
\(708\) 0 0
\(709\) 1.28235e7 0.958055 0.479028 0.877800i \(-0.340989\pi\)
0.479028 + 0.877800i \(0.340989\pi\)
\(710\) 0 0
\(711\) −3.46867e6 −0.257329
\(712\) 0 0
\(713\) −1.30423e7 −0.960793
\(714\) 0 0
\(715\) −1.97055e6 −0.144152
\(716\) 0 0
\(717\) 878036. 0.0637844
\(718\) 0 0
\(719\) −7.59185e6 −0.547678 −0.273839 0.961776i \(-0.588294\pi\)
−0.273839 + 0.961776i \(0.588294\pi\)
\(720\) 0 0
\(721\) 1.84292e7 1.32029
\(722\) 0 0
\(723\) 5001.02 0.000355806 0
\(724\) 0 0
\(725\) 3.92389e6 0.277250
\(726\) 0 0
\(727\) −2.64094e6 −0.185320 −0.0926600 0.995698i \(-0.529537\pi\)
−0.0926600 + 0.995698i \(0.529537\pi\)
\(728\) 0 0
\(729\) −1.42505e7 −0.993141
\(730\) 0 0
\(731\) −1.26218e7 −0.873628
\(732\) 0 0
\(733\) −2.36492e6 −0.162576 −0.0812881 0.996691i \(-0.525903\pi\)
−0.0812881 + 0.996691i \(0.525903\pi\)
\(734\) 0 0
\(735\) 486201. 0.0331969
\(736\) 0 0
\(737\) 1.62260e7 1.10038
\(738\) 0 0
\(739\) 6.44734e6 0.434280 0.217140 0.976140i \(-0.430327\pi\)
0.217140 + 0.976140i \(0.430327\pi\)
\(740\) 0 0
\(741\) 14909.3 0.000997498 0
\(742\) 0 0
\(743\) −7.54303e6 −0.501273 −0.250636 0.968081i \(-0.580640\pi\)
−0.250636 + 0.968081i \(0.580640\pi\)
\(744\) 0 0
\(745\) 1.42028e6 0.0937529
\(746\) 0 0
\(747\) 1.59069e7 1.04300
\(748\) 0 0
\(749\) 3.51623e6 0.229020
\(750\) 0 0
\(751\) 2.33272e7 1.50925 0.754627 0.656154i \(-0.227818\pi\)
0.754627 + 0.656154i \(0.227818\pi\)
\(752\) 0 0
\(753\) 460264. 0.0295815
\(754\) 0 0
\(755\) 639832. 0.0408506
\(756\) 0 0
\(757\) −2.12561e7 −1.34817 −0.674085 0.738654i \(-0.735462\pi\)
−0.674085 + 0.738654i \(0.735462\pi\)
\(758\) 0 0
\(759\) 746959. 0.0470644
\(760\) 0 0
\(761\) −5.46782e6 −0.342257 −0.171129 0.985249i \(-0.554741\pi\)
−0.171129 + 0.985249i \(0.554741\pi\)
\(762\) 0 0
\(763\) 2.61660e7 1.62714
\(764\) 0 0
\(765\) 5.35751e6 0.330986
\(766\) 0 0
\(767\) 19943.0 0.00122406
\(768\) 0 0
\(769\) 1.12535e7 0.686234 0.343117 0.939293i \(-0.388517\pi\)
0.343117 + 0.939293i \(0.388517\pi\)
\(770\) 0 0
\(771\) 109277. 0.00662056
\(772\) 0 0
\(773\) 1.16249e7 0.699747 0.349873 0.936797i \(-0.386225\pi\)
0.349873 + 0.936797i \(0.386225\pi\)
\(774\) 0 0
\(775\) 2.68380e6 0.160508
\(776\) 0 0
\(777\) −890192. −0.0528970
\(778\) 0 0
\(779\) −3.17625e6 −0.187530
\(780\) 0 0
\(781\) −4.21334e6 −0.247172
\(782\) 0 0
\(783\) 1.60797e6 0.0937287
\(784\) 0 0
\(785\) 1.16065e7 0.672245
\(786\) 0 0
\(787\) 2.48768e7 1.43172 0.715859 0.698245i \(-0.246035\pi\)
0.715859 + 0.698245i \(0.246035\pi\)
\(788\) 0 0
\(789\) 1.17064e6 0.0669470
\(790\) 0 0
\(791\) 7.03514e6 0.399789
\(792\) 0 0
\(793\) 4.15580e6 0.234678
\(794\) 0 0
\(795\) 270845. 0.0151986
\(796\) 0 0
\(797\) −1.88084e7 −1.04883 −0.524416 0.851462i \(-0.675716\pi\)
−0.524416 + 0.851462i \(0.675716\pi\)
\(798\) 0 0
\(799\) −7.39473e6 −0.409784
\(800\) 0 0
\(801\) 2.06771e7 1.13870
\(802\) 0 0
\(803\) 1.42673e7 0.780823
\(804\) 0 0
\(805\) −1.75942e7 −0.956930
\(806\) 0 0
\(807\) −495147. −0.0267640
\(808\) 0 0
\(809\) 1.38160e7 0.742184 0.371092 0.928596i \(-0.378983\pi\)
0.371092 + 0.928596i \(0.378983\pi\)
\(810\) 0 0
\(811\) −3.04514e7 −1.62575 −0.812877 0.582435i \(-0.802100\pi\)
−0.812877 + 0.582435i \(0.802100\pi\)
\(812\) 0 0
\(813\) 213467. 0.0113267
\(814\) 0 0
\(815\) 5.83089e6 0.307497
\(816\) 0 0
\(817\) 2.39179e6 0.125363
\(818\) 0 0
\(819\) 9.50477e6 0.495144
\(820\) 0 0
\(821\) −5.01920e6 −0.259882 −0.129941 0.991522i \(-0.541479\pi\)
−0.129941 + 0.991522i \(0.541479\pi\)
\(822\) 0 0
\(823\) −3.70421e7 −1.90632 −0.953162 0.302462i \(-0.902192\pi\)
−0.953162 + 0.302462i \(0.902192\pi\)
\(824\) 0 0
\(825\) −153707. −0.00786245
\(826\) 0 0
\(827\) 1.52758e7 0.776674 0.388337 0.921517i \(-0.373050\pi\)
0.388337 + 0.921517i \(0.373050\pi\)
\(828\) 0 0
\(829\) 1.13644e7 0.574327 0.287163 0.957882i \(-0.407288\pi\)
0.287163 + 0.957882i \(0.407288\pi\)
\(830\) 0 0
\(831\) −255546. −0.0128371
\(832\) 0 0
\(833\) 3.25640e7 1.62602
\(834\) 0 0
\(835\) −136845. −0.00679223
\(836\) 0 0
\(837\) 1.09979e6 0.0542621
\(838\) 0 0
\(839\) −2.16145e7 −1.06008 −0.530042 0.847971i \(-0.677824\pi\)
−0.530042 + 0.847971i \(0.677824\pi\)
\(840\) 0 0
\(841\) 1.89049e7 0.921688
\(842\) 0 0
\(843\) 1.18880e6 0.0576157
\(844\) 0 0
\(845\) −714025. −0.0344010
\(846\) 0 0
\(847\) −1.30869e7 −0.626799
\(848\) 0 0
\(849\) −143399. −0.00682772
\(850\) 0 0
\(851\) 2.21294e7 1.04748
\(852\) 0 0
\(853\) −3.22268e7 −1.51651 −0.758253 0.651960i \(-0.773947\pi\)
−0.758253 + 0.651960i \(0.773947\pi\)
\(854\) 0 0
\(855\) −1.01524e6 −0.0474954
\(856\) 0 0
\(857\) −2.07998e7 −0.967404 −0.483702 0.875233i \(-0.660708\pi\)
−0.483702 + 0.875233i \(0.660708\pi\)
\(858\) 0 0
\(859\) −2.66909e7 −1.23418 −0.617092 0.786891i \(-0.711689\pi\)
−0.617092 + 0.786891i \(0.711689\pi\)
\(860\) 0 0
\(861\) 2.31951e6 0.106632
\(862\) 0 0
\(863\) 6.44627e6 0.294633 0.147316 0.989089i \(-0.452936\pi\)
0.147316 + 0.989089i \(0.452936\pi\)
\(864\) 0 0
\(865\) 1.45967e7 0.663308
\(866\) 0 0
\(867\) 337645. 0.0152550
\(868\) 0 0
\(869\) 6.66522e6 0.299409
\(870\) 0 0
\(871\) 5.87947e6 0.262599
\(872\) 0 0
\(873\) −1.23962e7 −0.550494
\(874\) 0 0
\(875\) 3.62048e6 0.159862
\(876\) 0 0
\(877\) −2.93830e7 −1.29002 −0.645012 0.764173i \(-0.723148\pi\)
−0.645012 + 0.764173i \(0.723148\pi\)
\(878\) 0 0
\(879\) 958799. 0.0418558
\(880\) 0 0
\(881\) 6.33454e6 0.274964 0.137482 0.990504i \(-0.456099\pi\)
0.137482 + 0.990504i \(0.456099\pi\)
\(882\) 0 0
\(883\) 1.53999e7 0.664686 0.332343 0.943159i \(-0.392161\pi\)
0.332343 + 0.943159i \(0.392161\pi\)
\(884\) 0 0
\(885\) 1555.60 6.67634e−5 0
\(886\) 0 0
\(887\) 823263. 0.0351342 0.0175671 0.999846i \(-0.494408\pi\)
0.0175671 + 0.999846i \(0.494408\pi\)
\(888\) 0 0
\(889\) 1.04488e6 0.0443416
\(890\) 0 0
\(891\) 2.74461e7 1.15821
\(892\) 0 0
\(893\) 1.40128e6 0.0588027
\(894\) 0 0
\(895\) 1.23751e7 0.516406
\(896\) 0 0
\(897\) 270660. 0.0112316
\(898\) 0 0
\(899\) 2.69591e7 1.11252
\(900\) 0 0
\(901\) 1.81402e7 0.744440
\(902\) 0 0
\(903\) −1.74664e6 −0.0712828
\(904\) 0 0
\(905\) −1.62048e7 −0.657693
\(906\) 0 0
\(907\) 3.29987e6 0.133192 0.0665961 0.997780i \(-0.478786\pi\)
0.0665961 + 0.997780i \(0.478786\pi\)
\(908\) 0 0
\(909\) 3.63543e7 1.45930
\(910\) 0 0
\(911\) 3.58804e7 1.43239 0.716196 0.697900i \(-0.245882\pi\)
0.716196 + 0.697900i \(0.245882\pi\)
\(912\) 0 0
\(913\) −3.05658e7 −1.21355
\(914\) 0 0
\(915\) 324161. 0.0127999
\(916\) 0 0
\(917\) −3.46933e7 −1.36246
\(918\) 0 0
\(919\) −4.29501e7 −1.67755 −0.838776 0.544477i \(-0.816728\pi\)
−0.838776 + 0.544477i \(0.816728\pi\)
\(920\) 0 0
\(921\) −1.21239e6 −0.0470969
\(922\) 0 0
\(923\) −1.52670e6 −0.0589860
\(924\) 0 0
\(925\) −4.55371e6 −0.174989
\(926\) 0 0
\(927\) 1.93050e7 0.737855
\(928\) 0 0
\(929\) −4.75514e6 −0.180769 −0.0903845 0.995907i \(-0.528810\pi\)
−0.0903845 + 0.995907i \(0.528810\pi\)
\(930\) 0 0
\(931\) −6.17080e6 −0.233328
\(932\) 0 0
\(933\) −841198. −0.0316369
\(934\) 0 0
\(935\) −1.02947e7 −0.385110
\(936\) 0 0
\(937\) 4.86133e7 1.80886 0.904432 0.426617i \(-0.140295\pi\)
0.904432 + 0.426617i \(0.140295\pi\)
\(938\) 0 0
\(939\) 519720. 0.0192356
\(940\) 0 0
\(941\) 825014. 0.0303730 0.0151865 0.999885i \(-0.495166\pi\)
0.0151865 + 0.999885i \(0.495166\pi\)
\(942\) 0 0
\(943\) −5.76608e7 −2.11155
\(944\) 0 0
\(945\) 1.48363e6 0.0540439
\(946\) 0 0
\(947\) 2.90200e7 1.05153 0.525766 0.850630i \(-0.323779\pi\)
0.525766 + 0.850630i \(0.323779\pi\)
\(948\) 0 0
\(949\) 5.16973e6 0.186338
\(950\) 0 0
\(951\) 963185. 0.0345349
\(952\) 0 0
\(953\) −1.85279e7 −0.660838 −0.330419 0.943834i \(-0.607190\pi\)
−0.330419 + 0.943834i \(0.607190\pi\)
\(954\) 0 0
\(955\) −2.20627e7 −0.782800
\(956\) 0 0
\(957\) −1.54401e6 −0.0544966
\(958\) 0 0
\(959\) −3.67298e7 −1.28965
\(960\) 0 0
\(961\) −1.01901e7 −0.355933
\(962\) 0 0
\(963\) 3.68333e6 0.127990
\(964\) 0 0
\(965\) −1.73420e7 −0.599489
\(966\) 0 0
\(967\) −1.43655e7 −0.494032 −0.247016 0.969011i \(-0.579450\pi\)
−0.247016 + 0.969011i \(0.579450\pi\)
\(968\) 0 0
\(969\) 77890.6 0.00266487
\(970\) 0 0
\(971\) 2.66582e7 0.907368 0.453684 0.891163i \(-0.350110\pi\)
0.453684 + 0.891163i \(0.350110\pi\)
\(972\) 0 0
\(973\) 1.61849e7 0.548059
\(974\) 0 0
\(975\) −55695.4 −0.00187632
\(976\) 0 0
\(977\) −1.84613e6 −0.0618767 −0.0309383 0.999521i \(-0.509850\pi\)
−0.0309383 + 0.999521i \(0.509850\pi\)
\(978\) 0 0
\(979\) −3.97320e7 −1.32490
\(980\) 0 0
\(981\) 2.74094e7 0.909342
\(982\) 0 0
\(983\) 3.85226e7 1.27154 0.635772 0.771877i \(-0.280682\pi\)
0.635772 + 0.771877i \(0.280682\pi\)
\(984\) 0 0
\(985\) 4.75048e6 0.156008
\(986\) 0 0
\(987\) −1.02331e6 −0.0334360
\(988\) 0 0
\(989\) 4.34200e7 1.41156
\(990\) 0 0
\(991\) −4.70175e7 −1.52081 −0.760406 0.649448i \(-0.775000\pi\)
−0.760406 + 0.649448i \(0.775000\pi\)
\(992\) 0 0
\(993\) 1.10885e6 0.0356860
\(994\) 0 0
\(995\) −3.52506e6 −0.112878
\(996\) 0 0
\(997\) 1.02621e6 0.0326961 0.0163481 0.999866i \(-0.494796\pi\)
0.0163481 + 0.999866i \(0.494796\pi\)
\(998\) 0 0
\(999\) −1.86606e6 −0.0591578
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.6.a.q.1.4 6
4.3 odd 2 65.6.a.d.1.1 6
12.11 even 2 585.6.a.m.1.6 6
20.3 even 4 325.6.b.g.274.12 12
20.7 even 4 325.6.b.g.274.1 12
20.19 odd 2 325.6.a.g.1.6 6
52.51 odd 2 845.6.a.h.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.d.1.1 6 4.3 odd 2
325.6.a.g.1.6 6 20.19 odd 2
325.6.b.g.274.1 12 20.7 even 4
325.6.b.g.274.12 12 20.3 even 4
585.6.a.m.1.6 6 12.11 even 2
845.6.a.h.1.6 6 52.51 odd 2
1040.6.a.q.1.4 6 1.1 even 1 trivial