Properties

Label 1040.6
Level 1040
Weight 6
Dimension 81872
Nonzero newspaces 52
Sturm bound 387072
Trace bound 13

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 52 \)
Sturm bound: \(387072\)
Trace bound: \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(1040))\).

Total New Old
Modular forms 162624 82468 80156
Cusp forms 159936 81872 78064
Eisenstein series 2688 596 2092

Trace form

\( 81872 q - 40 q^{2} - 64 q^{3} - 128 q^{4} - 114 q^{5} + 336 q^{6} + 424 q^{7} + 944 q^{8} + 228 q^{9} - 928 q^{10} - 5164 q^{11} - 16 q^{12} + 310 q^{13} - 480 q^{14} + 2070 q^{15} - 3600 q^{16} - 888 q^{17}+ \cdots - 2781204 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(1040))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1040.6.a \(\chi_{1040}(1, \cdot)\) 1040.6.a.a 1 1
1040.6.a.b 1
1040.6.a.c 2
1040.6.a.d 2
1040.6.a.e 2
1040.6.a.f 2
1040.6.a.g 2
1040.6.a.h 2
1040.6.a.i 2
1040.6.a.j 3
1040.6.a.k 3
1040.6.a.l 3
1040.6.a.m 4
1040.6.a.n 4
1040.6.a.o 4
1040.6.a.p 4
1040.6.a.q 6
1040.6.a.r 6
1040.6.a.s 6
1040.6.a.t 7
1040.6.a.u 7
1040.6.a.v 7
1040.6.a.w 8
1040.6.a.x 8
1040.6.a.y 8
1040.6.a.z 8
1040.6.a.ba 8
1040.6.d \(\chi_{1040}(209, \cdot)\) n/a 180 1
1040.6.e \(\chi_{1040}(441, \cdot)\) None 0 1
1040.6.f \(\chi_{1040}(129, \cdot)\) n/a 208 1
1040.6.g \(\chi_{1040}(521, \cdot)\) None 0 1
1040.6.j \(\chi_{1040}(729, \cdot)\) None 0 1
1040.6.k \(\chi_{1040}(961, \cdot)\) n/a 140 1
1040.6.p \(\chi_{1040}(649, \cdot)\) None 0 1
1040.6.q \(\chi_{1040}(81, \cdot)\) n/a 280 2
1040.6.s \(\chi_{1040}(437, \cdot)\) n/a 1672 2
1040.6.u \(\chi_{1040}(31, \cdot)\) n/a 280 2
1040.6.v \(\chi_{1040}(443, \cdot)\) n/a 1440 2
1040.6.y \(\chi_{1040}(363, \cdot)\) n/a 1672 2
1040.6.z \(\chi_{1040}(359, \cdot)\) None 0 2
1040.6.bb \(\chi_{1040}(333, \cdot)\) n/a 1672 2
1040.6.be \(\chi_{1040}(389, \cdot)\) n/a 1672 2
1040.6.bg \(\chi_{1040}(577, \cdot)\) n/a 416 2
1040.6.bi \(\chi_{1040}(57, \cdot)\) None 0 2
1040.6.bj \(\chi_{1040}(261, \cdot)\) n/a 960 2
1040.6.bm \(\chi_{1040}(291, \cdot)\) n/a 1120 2
1040.6.bp \(\chi_{1040}(287, \cdot)\) n/a 360 2
1040.6.bq \(\chi_{1040}(103, \cdot)\) None 0 2
1040.6.bs \(\chi_{1040}(499, \cdot)\) n/a 1672 2
1040.6.bt \(\chi_{1040}(811, \cdot)\) n/a 1120 2
1040.6.bv \(\chi_{1040}(207, \cdot)\) n/a 420 2
1040.6.bw \(\chi_{1040}(183, \cdot)\) None 0 2
1040.6.bz \(\chi_{1040}(99, \cdot)\) n/a 1672 2
1040.6.cc \(\chi_{1040}(469, \cdot)\) n/a 1440 2
1040.6.cd \(\chi_{1040}(177, \cdot)\) n/a 416 2
1040.6.cf \(\chi_{1040}(473, \cdot)\) None 0 2
1040.6.ch \(\chi_{1040}(181, \cdot)\) n/a 1120 2
1040.6.cj \(\chi_{1040}(213, \cdot)\) n/a 1672 2
1040.6.cm \(\chi_{1040}(151, \cdot)\) None 0 2
1040.6.cn \(\chi_{1040}(27, \cdot)\) n/a 1440 2
1040.6.cq \(\chi_{1040}(883, \cdot)\) n/a 1672 2
1040.6.cr \(\chi_{1040}(239, \cdot)\) n/a 420 2
1040.6.cu \(\chi_{1040}(317, \cdot)\) n/a 1672 2
1040.6.cv \(\chi_{1040}(329, \cdot)\) None 0 2
1040.6.da \(\chi_{1040}(641, \cdot)\) n/a 280 2
1040.6.db \(\chi_{1040}(9, \cdot)\) None 0 2
1040.6.de \(\chi_{1040}(601, \cdot)\) None 0 2
1040.6.df \(\chi_{1040}(49, \cdot)\) n/a 416 2
1040.6.dg \(\chi_{1040}(121, \cdot)\) None 0 2
1040.6.dh \(\chi_{1040}(289, \cdot)\) n/a 416 2
1040.6.dk \(\chi_{1040}(293, \cdot)\) n/a 3344 4
1040.6.dn \(\chi_{1040}(319, \cdot)\) n/a 840 4
1040.6.dp \(\chi_{1040}(3, \cdot)\) n/a 3344 4
1040.6.dq \(\chi_{1040}(563, \cdot)\) n/a 3344 4
1040.6.ds \(\chi_{1040}(71, \cdot)\) None 0 4
1040.6.dv \(\chi_{1040}(397, \cdot)\) n/a 3344 4
1040.6.dx \(\chi_{1040}(101, \cdot)\) n/a 2240 4
1040.6.dz \(\chi_{1040}(137, \cdot)\) None 0 4
1040.6.eb \(\chi_{1040}(353, \cdot)\) n/a 832 4
1040.6.ec \(\chi_{1040}(29, \cdot)\) n/a 3344 4
1040.6.ee \(\chi_{1040}(379, \cdot)\) n/a 3344 4
1040.6.eg \(\chi_{1040}(87, \cdot)\) None 0 4
1040.6.eh \(\chi_{1040}(127, \cdot)\) n/a 840 4
1040.6.ek \(\chi_{1040}(171, \cdot)\) n/a 2240 4
1040.6.en \(\chi_{1040}(19, \cdot)\) n/a 3344 4
1040.6.eq \(\chi_{1040}(23, \cdot)\) None 0 4
1040.6.er \(\chi_{1040}(367, \cdot)\) n/a 840 4
1040.6.et \(\chi_{1040}(11, \cdot)\) n/a 2240 4
1040.6.ev \(\chi_{1040}(61, \cdot)\) n/a 2240 4
1040.6.ew \(\chi_{1040}(457, \cdot)\) None 0 4
1040.6.ey \(\chi_{1040}(33, \cdot)\) n/a 832 4
1040.6.fa \(\chi_{1040}(69, \cdot)\) n/a 3344 4
1040.6.fd \(\chi_{1040}(197, \cdot)\) n/a 3344 4
1040.6.ff \(\chi_{1040}(119, \cdot)\) None 0 4
1040.6.fh \(\chi_{1040}(523, \cdot)\) n/a 3344 4
1040.6.fi \(\chi_{1040}(43, \cdot)\) n/a 3344 4
1040.6.fk \(\chi_{1040}(111, \cdot)\) n/a 560 4
1040.6.fm \(\chi_{1040}(37, \cdot)\) n/a 3344 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(1040))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(1040)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 20}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 16}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(65))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(130))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(208))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(260))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(520))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(1040))\)\(^{\oplus 1}\)