Properties

Label 65.6.a.d.1.1
Level $65$
Weight $6$
Character 65.1
Self dual yes
Analytic conductor $10.425$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,6,Mod(1,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 65.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.4249482878\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 163x^{4} - 8x^{3} + 6120x^{2} + 6624x - 19440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-10.7882\) of defining polynomial
Character \(\chi\) \(=\) 65.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-10.7882 q^{2} +0.527294 q^{3} +84.3852 q^{4} -25.0000 q^{5} -5.68855 q^{6} +231.710 q^{7} -565.142 q^{8} -242.722 q^{9} +269.705 q^{10} -466.402 q^{11} +44.4958 q^{12} +169.000 q^{13} -2499.74 q^{14} -13.1824 q^{15} +3396.54 q^{16} +882.905 q^{17} +2618.53 q^{18} +167.308 q^{19} -2109.63 q^{20} +122.180 q^{21} +5031.63 q^{22} +3037.27 q^{23} -297.996 q^{24} +625.000 q^{25} -1823.21 q^{26} -256.118 q^{27} +19552.9 q^{28} +6278.22 q^{29} +142.214 q^{30} -4294.08 q^{31} -18558.0 q^{32} -245.931 q^{33} -9524.96 q^{34} -5792.76 q^{35} -20482.2 q^{36} -7285.93 q^{37} -1804.96 q^{38} +89.1127 q^{39} +14128.6 q^{40} +18984.4 q^{41} -1318.10 q^{42} +14295.7 q^{43} -39357.4 q^{44} +6068.05 q^{45} -32766.7 q^{46} +8375.45 q^{47} +1790.98 q^{48} +36882.8 q^{49} -6742.62 q^{50} +465.551 q^{51} +14261.1 q^{52} +20546.0 q^{53} +2763.06 q^{54} +11660.0 q^{55} -130949. q^{56} +88.2207 q^{57} -67730.7 q^{58} -118.006 q^{59} -1112.40 q^{60} +24590.5 q^{61} +46325.3 q^{62} -56241.2 q^{63} +91518.2 q^{64} -4225.00 q^{65} +2653.15 q^{66} -34789.8 q^{67} +74504.2 q^{68} +1601.54 q^{69} +62493.5 q^{70} +9033.72 q^{71} +137172. q^{72} +30590.1 q^{73} +78602.1 q^{74} +329.559 q^{75} +14118.4 q^{76} -108070. q^{77} -961.365 q^{78} -14290.7 q^{79} -84913.5 q^{80} +58846.4 q^{81} -204808. q^{82} +65535.3 q^{83} +10310.2 q^{84} -22072.6 q^{85} -154225. q^{86} +3310.47 q^{87} +263583. q^{88} -85188.3 q^{89} -65463.3 q^{90} +39159.1 q^{91} +256301. q^{92} -2264.24 q^{93} -90356.0 q^{94} -4182.71 q^{95} -9785.53 q^{96} +51071.6 q^{97} -397898. q^{98} +113206. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 38 q^{3} + 134 q^{4} - 150 q^{5} + 318 q^{6} + 220 q^{7} + 24 q^{8} + 518 q^{9} - 170 q^{11} + 2238 q^{12} + 1014 q^{13} - 1440 q^{14} - 950 q^{15} + 3506 q^{16} + 728 q^{17} + 7788 q^{18} + 1218 q^{19}+ \cdots - 32270 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −10.7882 −1.90710 −0.953551 0.301231i \(-0.902602\pi\)
−0.953551 + 0.301231i \(0.902602\pi\)
\(3\) 0.527294 0.0338259 0.0169130 0.999857i \(-0.494616\pi\)
0.0169130 + 0.999857i \(0.494616\pi\)
\(4\) 84.3852 2.63704
\(5\) −25.0000 −0.447214
\(6\) −5.68855 −0.0645095
\(7\) 231.710 1.78731 0.893656 0.448752i \(-0.148131\pi\)
0.893656 + 0.448752i \(0.148131\pi\)
\(8\) −565.142 −3.12200
\(9\) −242.722 −0.998856
\(10\) 269.705 0.852882
\(11\) −466.402 −1.16219 −0.581097 0.813835i \(-0.697376\pi\)
−0.581097 + 0.813835i \(0.697376\pi\)
\(12\) 44.4958 0.0892003
\(13\) 169.000 0.277350
\(14\) −2499.74 −3.40859
\(15\) −13.1824 −0.0151274
\(16\) 3396.54 3.31693
\(17\) 882.905 0.740955 0.370478 0.928841i \(-0.379194\pi\)
0.370478 + 0.928841i \(0.379194\pi\)
\(18\) 2618.53 1.90492
\(19\) 167.308 0.106325 0.0531623 0.998586i \(-0.483070\pi\)
0.0531623 + 0.998586i \(0.483070\pi\)
\(20\) −2109.63 −1.17932
\(21\) 122.180 0.0604575
\(22\) 5031.63 2.21642
\(23\) 3037.27 1.19719 0.598597 0.801051i \(-0.295725\pi\)
0.598597 + 0.801051i \(0.295725\pi\)
\(24\) −297.996 −0.105605
\(25\) 625.000 0.200000
\(26\) −1823.21 −0.528935
\(27\) −256.118 −0.0676132
\(28\) 19552.9 4.71321
\(29\) 6278.22 1.38625 0.693125 0.720818i \(-0.256233\pi\)
0.693125 + 0.720818i \(0.256233\pi\)
\(30\) 142.214 0.0288495
\(31\) −4294.08 −0.802538 −0.401269 0.915960i \(-0.631431\pi\)
−0.401269 + 0.915960i \(0.631431\pi\)
\(32\) −18558.0 −3.20373
\(33\) −245.931 −0.0393123
\(34\) −9524.96 −1.41308
\(35\) −5792.76 −0.799311
\(36\) −20482.2 −2.63402
\(37\) −7285.93 −0.874945 −0.437472 0.899232i \(-0.644126\pi\)
−0.437472 + 0.899232i \(0.644126\pi\)
\(38\) −1804.96 −0.202772
\(39\) 89.1127 0.00938162
\(40\) 14128.6 1.39620
\(41\) 18984.4 1.76375 0.881875 0.471482i \(-0.156281\pi\)
0.881875 + 0.471482i \(0.156281\pi\)
\(42\) −1318.10 −0.115299
\(43\) 14295.7 1.17906 0.589528 0.807748i \(-0.299314\pi\)
0.589528 + 0.807748i \(0.299314\pi\)
\(44\) −39357.4 −3.06475
\(45\) 6068.05 0.446702
\(46\) −32766.7 −2.28317
\(47\) 8375.45 0.553049 0.276524 0.961007i \(-0.410817\pi\)
0.276524 + 0.961007i \(0.410817\pi\)
\(48\) 1790.98 0.112198
\(49\) 36882.8 2.19449
\(50\) −6742.62 −0.381420
\(51\) 465.551 0.0250635
\(52\) 14261.1 0.731383
\(53\) 20546.0 1.00470 0.502351 0.864664i \(-0.332468\pi\)
0.502351 + 0.864664i \(0.332468\pi\)
\(54\) 2763.06 0.128945
\(55\) 11660.0 0.519749
\(56\) −130949. −5.57999
\(57\) 88.2207 0.00359653
\(58\) −67730.7 −2.64372
\(59\) −118.006 −0.00441341 −0.00220670 0.999998i \(-0.500702\pi\)
−0.00220670 + 0.999998i \(0.500702\pi\)
\(60\) −1112.40 −0.0398916
\(61\) 24590.5 0.846143 0.423071 0.906096i \(-0.360952\pi\)
0.423071 + 0.906096i \(0.360952\pi\)
\(62\) 46325.3 1.53052
\(63\) −56241.2 −1.78527
\(64\) 91518.2 2.79291
\(65\) −4225.00 −0.124035
\(66\) 2653.15 0.0749725
\(67\) −34789.8 −0.946813 −0.473407 0.880844i \(-0.656976\pi\)
−0.473407 + 0.880844i \(0.656976\pi\)
\(68\) 74504.2 1.95393
\(69\) 1601.54 0.0404962
\(70\) 62493.5 1.52437
\(71\) 9033.72 0.212677 0.106339 0.994330i \(-0.466087\pi\)
0.106339 + 0.994330i \(0.466087\pi\)
\(72\) 137172. 3.11843
\(73\) 30590.1 0.671853 0.335926 0.941888i \(-0.390951\pi\)
0.335926 + 0.941888i \(0.390951\pi\)
\(74\) 78602.1 1.66861
\(75\) 329.559 0.00676519
\(76\) 14118.4 0.280382
\(77\) −108070. −2.07720
\(78\) −961.365 −0.0178917
\(79\) −14290.7 −0.257624 −0.128812 0.991669i \(-0.541116\pi\)
−0.128812 + 0.991669i \(0.541116\pi\)
\(80\) −84913.5 −1.48338
\(81\) 58846.4 0.996569
\(82\) −204808. −3.36365
\(83\) 65535.3 1.04419 0.522096 0.852887i \(-0.325150\pi\)
0.522096 + 0.852887i \(0.325150\pi\)
\(84\) 10310.2 0.159429
\(85\) −22072.6 −0.331365
\(86\) −154225. −2.24858
\(87\) 3310.47 0.0468912
\(88\) 263583. 3.62837
\(89\) −85188.3 −1.14000 −0.570000 0.821644i \(-0.693057\pi\)
−0.570000 + 0.821644i \(0.693057\pi\)
\(90\) −65463.3 −0.851906
\(91\) 39159.1 0.495711
\(92\) 256301. 3.15705
\(93\) −2264.24 −0.0271466
\(94\) −90356.0 −1.05472
\(95\) −4182.71 −0.0475498
\(96\) −9785.53 −0.108369
\(97\) 51071.6 0.551124 0.275562 0.961283i \(-0.411136\pi\)
0.275562 + 0.961283i \(0.411136\pi\)
\(98\) −397898. −4.18511
\(99\) 113206. 1.16086
\(100\) 52740.8 0.527408
\(101\) −149777. −1.46098 −0.730488 0.682926i \(-0.760707\pi\)
−0.730488 + 0.682926i \(0.760707\pi\)
\(102\) −5022.45 −0.0477986
\(103\) 79535.6 0.738700 0.369350 0.929290i \(-0.379580\pi\)
0.369350 + 0.929290i \(0.379580\pi\)
\(104\) −95509.1 −0.865887
\(105\) −3054.49 −0.0270374
\(106\) −221654. −1.91607
\(107\) 15175.1 0.128136 0.0640682 0.997946i \(-0.479592\pi\)
0.0640682 + 0.997946i \(0.479592\pi\)
\(108\) −21612.6 −0.178299
\(109\) −112925. −0.910384 −0.455192 0.890393i \(-0.650429\pi\)
−0.455192 + 0.890393i \(0.650429\pi\)
\(110\) −125791. −0.991214
\(111\) −3841.83 −0.0295958
\(112\) 787014. 5.92840
\(113\) −30361.7 −0.223682 −0.111841 0.993726i \(-0.535675\pi\)
−0.111841 + 0.993726i \(0.535675\pi\)
\(114\) −951.743 −0.00685895
\(115\) −75931.8 −0.535401
\(116\) 529789. 3.65559
\(117\) −41020.0 −0.277033
\(118\) 1273.07 0.00841682
\(119\) 204578. 1.32432
\(120\) 7449.91 0.0472278
\(121\) 56479.5 0.350693
\(122\) −265288. −1.61368
\(123\) 10010.4 0.0596605
\(124\) −362357. −2.11632
\(125\) −15625.0 −0.0894427
\(126\) 606742. 3.40469
\(127\) 4509.41 0.0248091 0.0124045 0.999923i \(-0.496051\pi\)
0.0124045 + 0.999923i \(0.496051\pi\)
\(128\) −393460. −2.12264
\(129\) 7538.04 0.0398827
\(130\) 45580.1 0.236547
\(131\) −149727. −0.762292 −0.381146 0.924515i \(-0.624471\pi\)
−0.381146 + 0.924515i \(0.624471\pi\)
\(132\) −20752.9 −0.103668
\(133\) 38767.1 0.190035
\(134\) 375319. 1.80567
\(135\) 6402.96 0.0302375
\(136\) −498967. −2.31326
\(137\) 158516. 0.721558 0.360779 0.932651i \(-0.382511\pi\)
0.360779 + 0.932651i \(0.382511\pi\)
\(138\) −17277.7 −0.0772304
\(139\) 69849.6 0.306639 0.153319 0.988177i \(-0.451004\pi\)
0.153319 + 0.988177i \(0.451004\pi\)
\(140\) −488824. −2.10781
\(141\) 4416.33 0.0187074
\(142\) −97457.6 −0.405597
\(143\) −78821.9 −0.322334
\(144\) −824415. −3.31314
\(145\) −156955. −0.619950
\(146\) −330012. −1.28129
\(147\) 19448.1 0.0742306
\(148\) −614825. −2.30726
\(149\) −56811.4 −0.209638 −0.104819 0.994491i \(-0.533426\pi\)
−0.104819 + 0.994491i \(0.533426\pi\)
\(150\) −3555.35 −0.0129019
\(151\) 25593.3 0.0913447 0.0456724 0.998956i \(-0.485457\pi\)
0.0456724 + 0.998956i \(0.485457\pi\)
\(152\) −94553.1 −0.331945
\(153\) −214301. −0.740107
\(154\) 1.16588e6 3.96144
\(155\) 107352. 0.358906
\(156\) 7519.80 0.0247397
\(157\) −464261. −1.50319 −0.751593 0.659627i \(-0.770714\pi\)
−0.751593 + 0.659627i \(0.770714\pi\)
\(158\) 154171. 0.491316
\(159\) 10833.8 0.0339850
\(160\) 463950. 1.43275
\(161\) 703768. 2.13976
\(162\) −634847. −1.90056
\(163\) 233236. 0.687584 0.343792 0.939046i \(-0.388288\pi\)
0.343792 + 0.939046i \(0.388288\pi\)
\(164\) 1.60200e6 4.65108
\(165\) 6148.27 0.0175810
\(166\) −707008. −1.99138
\(167\) −5473.80 −0.0151879 −0.00759395 0.999971i \(-0.502417\pi\)
−0.00759395 + 0.999971i \(0.502417\pi\)
\(168\) −69048.9 −0.188748
\(169\) 28561.0 0.0769231
\(170\) 238124. 0.631947
\(171\) −40609.4 −0.106203
\(172\) 1.20635e6 3.10922
\(173\) −583869. −1.48320 −0.741601 0.670841i \(-0.765933\pi\)
−0.741601 + 0.670841i \(0.765933\pi\)
\(174\) −35714.0 −0.0894263
\(175\) 144819. 0.357463
\(176\) −1.58415e6 −3.85492
\(177\) −62.2238 −0.000149288 0
\(178\) 919029. 2.17410
\(179\) 495004. 1.15472 0.577359 0.816490i \(-0.304083\pi\)
0.577359 + 0.816490i \(0.304083\pi\)
\(180\) 512054. 1.17797
\(181\) 648193. 1.47065 0.735323 0.677717i \(-0.237031\pi\)
0.735323 + 0.677717i \(0.237031\pi\)
\(182\) −422456. −0.945372
\(183\) 12966.4 0.0286216
\(184\) −1.71649e6 −3.73764
\(185\) 182148. 0.391287
\(186\) 24427.1 0.0517713
\(187\) −411789. −0.861133
\(188\) 706765. 1.45841
\(189\) −59345.3 −0.120846
\(190\) 45123.9 0.0906824
\(191\) −882509. −1.75039 −0.875197 0.483767i \(-0.839268\pi\)
−0.875197 + 0.483767i \(0.839268\pi\)
\(192\) 48257.0 0.0944729
\(193\) 693680. 1.34050 0.670249 0.742137i \(-0.266187\pi\)
0.670249 + 0.742137i \(0.266187\pi\)
\(194\) −550970. −1.05105
\(195\) −2227.82 −0.00419559
\(196\) 3.11236e6 5.78695
\(197\) −190019. −0.348844 −0.174422 0.984671i \(-0.555806\pi\)
−0.174422 + 0.984671i \(0.555806\pi\)
\(198\) −1.22129e6 −2.21389
\(199\) −141002. −0.252403 −0.126201 0.992005i \(-0.540279\pi\)
−0.126201 + 0.992005i \(0.540279\pi\)
\(200\) −353214. −0.624400
\(201\) −18344.4 −0.0320268
\(202\) 1.61583e6 2.78623
\(203\) 1.45473e6 2.47766
\(204\) 39285.6 0.0660934
\(205\) −474610. −0.788773
\(206\) −858045. −1.40878
\(207\) −737213. −1.19582
\(208\) 574015. 0.919952
\(209\) −78032.9 −0.123570
\(210\) 32952.4 0.0515631
\(211\) −417539. −0.645640 −0.322820 0.946460i \(-0.604631\pi\)
−0.322820 + 0.946460i \(0.604631\pi\)
\(212\) 1.73378e6 2.64944
\(213\) 4763.43 0.00719400
\(214\) −163712. −0.244369
\(215\) −357393. −0.527290
\(216\) 144743. 0.211088
\(217\) −994982. −1.43439
\(218\) 1.21826e6 1.73620
\(219\) 16130.0 0.0227260
\(220\) 983935. 1.37060
\(221\) 149211. 0.205504
\(222\) 41446.4 0.0564422
\(223\) 289938. 0.390429 0.195215 0.980761i \(-0.437460\pi\)
0.195215 + 0.980761i \(0.437460\pi\)
\(224\) −4.30008e6 −5.72607
\(225\) −151701. −0.199771
\(226\) 327549. 0.426584
\(227\) −1.05748e6 −1.36210 −0.681049 0.732238i \(-0.738476\pi\)
−0.681049 + 0.732238i \(0.738476\pi\)
\(228\) 7444.53 0.00948419
\(229\) −827977. −1.04335 −0.521674 0.853145i \(-0.674692\pi\)
−0.521674 + 0.853145i \(0.674692\pi\)
\(230\) 819168. 1.02106
\(231\) −56984.8 −0.0702633
\(232\) −3.54809e6 −4.32787
\(233\) 339021. 0.409107 0.204554 0.978855i \(-0.434426\pi\)
0.204554 + 0.978855i \(0.434426\pi\)
\(234\) 442532. 0.528330
\(235\) −209386. −0.247331
\(236\) −9957.96 −0.0116383
\(237\) −7535.42 −0.00871438
\(238\) −2.20703e6 −2.52561
\(239\) 1.66517e6 1.88567 0.942833 0.333267i \(-0.108151\pi\)
0.942833 + 0.333267i \(0.108151\pi\)
\(240\) −44774.4 −0.0501767
\(241\) −9484.31 −0.0105187 −0.00525937 0.999986i \(-0.501674\pi\)
−0.00525937 + 0.999986i \(0.501674\pi\)
\(242\) −609312. −0.668808
\(243\) 93266.1 0.101323
\(244\) 2.07508e6 2.23131
\(245\) −922069. −0.981405
\(246\) −107994. −0.113779
\(247\) 28275.1 0.0294891
\(248\) 2.42676e6 2.50552
\(249\) 34556.4 0.0353207
\(250\) 168566. 0.170576
\(251\) 872880. 0.874521 0.437261 0.899335i \(-0.355949\pi\)
0.437261 + 0.899335i \(0.355949\pi\)
\(252\) −4.74593e6 −4.70782
\(253\) −1.41659e6 −1.39137
\(254\) −48648.4 −0.0473135
\(255\) −11638.8 −0.0112087
\(256\) 1.31614e6 1.25517
\(257\) −207242. −0.195724 −0.0978622 0.995200i \(-0.531200\pi\)
−0.0978622 + 0.995200i \(0.531200\pi\)
\(258\) −81321.9 −0.0760603
\(259\) −1.68823e6 −1.56380
\(260\) −356528. −0.327084
\(261\) −1.52386e6 −1.38466
\(262\) 1.61528e6 1.45377
\(263\) 2.22009e6 1.97916 0.989581 0.143976i \(-0.0459888\pi\)
0.989581 + 0.143976i \(0.0459888\pi\)
\(264\) 138986. 0.122733
\(265\) −513650. −0.449317
\(266\) −418227. −0.362417
\(267\) −44919.3 −0.0385616
\(268\) −2.93574e6 −2.49678
\(269\) 939034. 0.791226 0.395613 0.918417i \(-0.370532\pi\)
0.395613 + 0.918417i \(0.370532\pi\)
\(270\) −69076.4 −0.0576660
\(271\) 404835. 0.334853 0.167427 0.985885i \(-0.446454\pi\)
0.167427 + 0.985885i \(0.446454\pi\)
\(272\) 2.99882e6 2.45770
\(273\) 20648.3 0.0167679
\(274\) −1.71010e6 −1.37608
\(275\) −291501. −0.232439
\(276\) 135146. 0.106790
\(277\) 484637. 0.379505 0.189752 0.981832i \(-0.439231\pi\)
0.189752 + 0.981832i \(0.439231\pi\)
\(278\) −753552. −0.584792
\(279\) 1.04227e6 0.801620
\(280\) 3.27374e6 2.49545
\(281\) −2.25453e6 −1.70330 −0.851650 0.524111i \(-0.824398\pi\)
−0.851650 + 0.524111i \(0.824398\pi\)
\(282\) −47644.2 −0.0356769
\(283\) −271952. −0.201849 −0.100924 0.994894i \(-0.532180\pi\)
−0.100924 + 0.994894i \(0.532180\pi\)
\(284\) 762313. 0.560838
\(285\) −2205.52 −0.00160842
\(286\) 850346. 0.614725
\(287\) 4.39889e6 3.15237
\(288\) 4.50444e6 3.20007
\(289\) −640335. −0.450986
\(290\) 1.69327e6 1.18231
\(291\) 26929.7 0.0186423
\(292\) 2.58136e6 1.77170
\(293\) −1.81834e6 −1.23739 −0.618694 0.785632i \(-0.712338\pi\)
−0.618694 + 0.785632i \(0.712338\pi\)
\(294\) −209809. −0.141565
\(295\) 2950.15 0.00197374
\(296\) 4.11759e6 2.73158
\(297\) 119454. 0.0785796
\(298\) 612892. 0.399801
\(299\) 513299. 0.332042
\(300\) 27809.9 0.0178401
\(301\) 3.31247e6 2.10734
\(302\) −276105. −0.174204
\(303\) −78976.7 −0.0494188
\(304\) 568270. 0.352672
\(305\) −614764. −0.378406
\(306\) 2.31192e6 1.41146
\(307\) −2.29926e6 −1.39233 −0.696166 0.717881i \(-0.745112\pi\)
−0.696166 + 0.717881i \(0.745112\pi\)
\(308\) −9.11953e6 −5.47767
\(309\) 41938.6 0.0249872
\(310\) −1.15813e6 −0.684470
\(311\) −1.59531e6 −0.935286 −0.467643 0.883917i \(-0.654897\pi\)
−0.467643 + 0.883917i \(0.654897\pi\)
\(312\) −50361.4 −0.0292894
\(313\) −985636. −0.568664 −0.284332 0.958726i \(-0.591772\pi\)
−0.284332 + 0.958726i \(0.591772\pi\)
\(314\) 5.00854e6 2.86673
\(315\) 1.40603e6 0.798396
\(316\) −1.20593e6 −0.679365
\(317\) −1.82666e6 −1.02096 −0.510480 0.859890i \(-0.670532\pi\)
−0.510480 + 0.859890i \(0.670532\pi\)
\(318\) −116877. −0.0648129
\(319\) −2.92817e6 −1.61109
\(320\) −2.28795e6 −1.24903
\(321\) 8001.74 0.00433433
\(322\) −7.59239e6 −4.08074
\(323\) 147718. 0.0787818
\(324\) 4.96577e6 2.62799
\(325\) 105625. 0.0554700
\(326\) −2.51619e6 −1.31129
\(327\) −59544.8 −0.0307946
\(328\) −1.07289e7 −5.50643
\(329\) 1.94068e6 0.988472
\(330\) −66328.8 −0.0335287
\(331\) 2.10290e6 1.05499 0.527495 0.849558i \(-0.323131\pi\)
0.527495 + 0.849558i \(0.323131\pi\)
\(332\) 5.53021e6 2.75357
\(333\) 1.76846e6 0.873944
\(334\) 59052.4 0.0289649
\(335\) 869744. 0.423428
\(336\) 414988. 0.200534
\(337\) −121239. −0.0581526 −0.0290763 0.999577i \(-0.509257\pi\)
−0.0290763 + 0.999577i \(0.509257\pi\)
\(338\) −308122. −0.146700
\(339\) −16009.6 −0.00756624
\(340\) −1.86260e6 −0.873823
\(341\) 2.00276e6 0.932704
\(342\) 438103. 0.202540
\(343\) 4.65176e6 2.13492
\(344\) −8.07911e6 −3.68101
\(345\) −40038.4 −0.0181104
\(346\) 6.29890e6 2.82862
\(347\) 388296. 0.173117 0.0865584 0.996247i \(-0.472413\pi\)
0.0865584 + 0.996247i \(0.472413\pi\)
\(348\) 279355. 0.123654
\(349\) 1.54959e6 0.681011 0.340506 0.940242i \(-0.389402\pi\)
0.340506 + 0.940242i \(0.389402\pi\)
\(350\) −1.56234e6 −0.681718
\(351\) −43284.0 −0.0187525
\(352\) 8.65549e6 3.72336
\(353\) 592554. 0.253100 0.126550 0.991960i \(-0.459610\pi\)
0.126550 + 0.991960i \(0.459610\pi\)
\(354\) 671.283 0.000284707 0
\(355\) −225843. −0.0951121
\(356\) −7.18864e6 −3.00623
\(357\) 107873. 0.0447963
\(358\) −5.34020e6 −2.20217
\(359\) 589168. 0.241270 0.120635 0.992697i \(-0.461507\pi\)
0.120635 + 0.992697i \(0.461507\pi\)
\(360\) −3.42931e6 −1.39460
\(361\) −2.44811e6 −0.988695
\(362\) −6.99284e6 −2.80467
\(363\) 29781.3 0.0118625
\(364\) 3.30445e6 1.30721
\(365\) −764753. −0.300462
\(366\) −139885. −0.0545842
\(367\) 3.28606e6 1.27353 0.636766 0.771057i \(-0.280272\pi\)
0.636766 + 0.771057i \(0.280272\pi\)
\(368\) 1.03162e7 3.97101
\(369\) −4.60793e6 −1.76173
\(370\) −1.96505e6 −0.746225
\(371\) 4.76072e6 1.79572
\(372\) −191068. −0.0715866
\(373\) 4.94295e6 1.83956 0.919781 0.392432i \(-0.128366\pi\)
0.919781 + 0.392432i \(0.128366\pi\)
\(374\) 4.44246e6 1.64227
\(375\) −8238.97 −0.00302548
\(376\) −4.73332e6 −1.72662
\(377\) 1.06102e6 0.384476
\(378\) 640229. 0.230465
\(379\) −588891. −0.210590 −0.105295 0.994441i \(-0.533579\pi\)
−0.105295 + 0.994441i \(0.533579\pi\)
\(380\) −352959. −0.125391
\(381\) 2377.79 0.000839190 0
\(382\) 9.52068e6 3.33818
\(383\) −2.27183e6 −0.791370 −0.395685 0.918386i \(-0.629493\pi\)
−0.395685 + 0.918386i \(0.629493\pi\)
\(384\) −207469. −0.0718001
\(385\) 2.70175e6 0.928954
\(386\) −7.48356e6 −2.55647
\(387\) −3.46988e6 −1.17771
\(388\) 4.30969e6 1.45334
\(389\) −5.34339e6 −1.79037 −0.895185 0.445694i \(-0.852957\pi\)
−0.895185 + 0.445694i \(0.852957\pi\)
\(390\) 24034.1 0.00800142
\(391\) 2.68163e6 0.887067
\(392\) −2.08440e7 −6.85119
\(393\) −78950.1 −0.0257852
\(394\) 2.04996e6 0.665282
\(395\) 357268. 0.115213
\(396\) 9.55291e6 3.06124
\(397\) 5.07081e6 1.61473 0.807367 0.590050i \(-0.200892\pi\)
0.807367 + 0.590050i \(0.200892\pi\)
\(398\) 1.52116e6 0.481357
\(399\) 20441.7 0.00642812
\(400\) 2.12284e6 0.663387
\(401\) 4.70142e6 1.46005 0.730026 0.683420i \(-0.239508\pi\)
0.730026 + 0.683420i \(0.239508\pi\)
\(402\) 197903. 0.0610785
\(403\) −725699. −0.222584
\(404\) −1.26390e7 −3.85265
\(405\) −1.47116e6 −0.445679
\(406\) −1.56939e7 −4.72515
\(407\) 3.39817e6 1.01686
\(408\) −263102. −0.0782482
\(409\) −3.15579e6 −0.932824 −0.466412 0.884568i \(-0.654454\pi\)
−0.466412 + 0.884568i \(0.654454\pi\)
\(410\) 5.12019e6 1.50427
\(411\) 83584.4 0.0244074
\(412\) 6.71163e6 1.94798
\(413\) −27343.2 −0.00788814
\(414\) 7.95320e6 2.28056
\(415\) −1.63838e6 −0.466977
\(416\) −3.13630e6 −0.888556
\(417\) 36831.3 0.0103723
\(418\) 841835. 0.235660
\(419\) −682165. −0.189825 −0.0949127 0.995486i \(-0.530257\pi\)
−0.0949127 + 0.995486i \(0.530257\pi\)
\(420\) −257754. −0.0712987
\(421\) −706461. −0.194260 −0.0971299 0.995272i \(-0.530966\pi\)
−0.0971299 + 0.995272i \(0.530966\pi\)
\(422\) 4.50449e6 1.23130
\(423\) −2.03291e6 −0.552416
\(424\) −1.16114e7 −3.13668
\(425\) 551816. 0.148191
\(426\) −51388.8 −0.0137197
\(427\) 5.69789e6 1.51232
\(428\) 1.28055e6 0.337900
\(429\) −41562.3 −0.0109033
\(430\) 3.85562e6 1.00560
\(431\) 4.89113e6 1.26828 0.634142 0.773217i \(-0.281354\pi\)
0.634142 + 0.773217i \(0.281354\pi\)
\(432\) −869916. −0.224268
\(433\) −4.98945e6 −1.27889 −0.639444 0.768837i \(-0.720836\pi\)
−0.639444 + 0.768837i \(0.720836\pi\)
\(434\) 1.07341e7 2.73552
\(435\) −82761.7 −0.0209704
\(436\) −9.52922e6 −2.40072
\(437\) 508162. 0.127291
\(438\) −174014. −0.0433409
\(439\) −5.44947e6 −1.34956 −0.674782 0.738017i \(-0.735762\pi\)
−0.674782 + 0.738017i \(0.735762\pi\)
\(440\) −6.58958e6 −1.62266
\(441\) −8.95225e6 −2.19198
\(442\) −1.60972e6 −0.391917
\(443\) 1.00675e6 0.243732 0.121866 0.992547i \(-0.461112\pi\)
0.121866 + 0.992547i \(0.461112\pi\)
\(444\) −324193. −0.0780453
\(445\) 2.12971e6 0.509824
\(446\) −3.12791e6 −0.744589
\(447\) −29956.3 −0.00709119
\(448\) 2.12057e7 4.99181
\(449\) 200413. 0.0469148 0.0234574 0.999725i \(-0.492533\pi\)
0.0234574 + 0.999725i \(0.492533\pi\)
\(450\) 1.63658e6 0.380984
\(451\) −8.85436e6 −2.04982
\(452\) −2.56208e6 −0.589858
\(453\) 13495.2 0.00308982
\(454\) 1.14083e7 2.59766
\(455\) −978977. −0.221689
\(456\) −49857.3 −0.0112284
\(457\) 647622. 0.145054 0.0725272 0.997366i \(-0.476894\pi\)
0.0725272 + 0.997366i \(0.476894\pi\)
\(458\) 8.93238e6 1.98977
\(459\) −226128. −0.0500983
\(460\) −6.40753e6 −1.41187
\(461\) −2.89528e6 −0.634509 −0.317254 0.948340i \(-0.602761\pi\)
−0.317254 + 0.948340i \(0.602761\pi\)
\(462\) 614763. 0.133999
\(463\) 6.96850e6 1.51073 0.755364 0.655305i \(-0.227460\pi\)
0.755364 + 0.655305i \(0.227460\pi\)
\(464\) 2.13242e7 4.59810
\(465\) 56606.0 0.0121403
\(466\) −3.65743e6 −0.780209
\(467\) 1.46098e6 0.309994 0.154997 0.987915i \(-0.450463\pi\)
0.154997 + 0.987915i \(0.450463\pi\)
\(468\) −3.46148e6 −0.730546
\(469\) −8.06115e6 −1.69225
\(470\) 2.25890e6 0.471686
\(471\) −244802. −0.0508467
\(472\) 66690.2 0.0137787
\(473\) −6.66754e6 −1.37029
\(474\) 81293.6 0.0166192
\(475\) 104568. 0.0212649
\(476\) 1.72634e7 3.49228
\(477\) −4.98697e6 −1.00355
\(478\) −1.79642e7 −3.59616
\(479\) −6.63657e6 −1.32162 −0.660808 0.750555i \(-0.729786\pi\)
−0.660808 + 0.750555i \(0.729786\pi\)
\(480\) 244638. 0.0484642
\(481\) −1.23132e6 −0.242666
\(482\) 102319. 0.0200603
\(483\) 371093. 0.0723793
\(484\) 4.76604e6 0.924792
\(485\) −1.27679e6 −0.246470
\(486\) −1.00617e6 −0.193233
\(487\) −6.08683e6 −1.16297 −0.581486 0.813557i \(-0.697528\pi\)
−0.581486 + 0.813557i \(0.697528\pi\)
\(488\) −1.38972e7 −2.64166
\(489\) 122984. 0.0232582
\(490\) 9.94746e6 1.87164
\(491\) 1.91765e6 0.358976 0.179488 0.983760i \(-0.442556\pi\)
0.179488 + 0.983760i \(0.442556\pi\)
\(492\) 844727. 0.157327
\(493\) 5.54307e6 1.02715
\(494\) −305038. −0.0562388
\(495\) −2.83015e6 −0.519154
\(496\) −1.45850e7 −2.66197
\(497\) 2.09321e6 0.380121
\(498\) −372801. −0.0673603
\(499\) 4.96658e6 0.892907 0.446453 0.894807i \(-0.352687\pi\)
0.446453 + 0.894807i \(0.352687\pi\)
\(500\) −1.31852e6 −0.235864
\(501\) −2886.30 −0.000513745 0
\(502\) −9.41680e6 −1.66780
\(503\) −2.49704e6 −0.440054 −0.220027 0.975494i \(-0.570615\pi\)
−0.220027 + 0.975494i \(0.570615\pi\)
\(504\) 3.17843e7 5.57361
\(505\) 3.74444e6 0.653368
\(506\) 1.52825e7 2.65349
\(507\) 15060.0 0.00260199
\(508\) 380528. 0.0654225
\(509\) 8.69294e6 1.48721 0.743605 0.668619i \(-0.233114\pi\)
0.743605 + 0.668619i \(0.233114\pi\)
\(510\) 125561. 0.0213762
\(511\) 7.08805e6 1.20081
\(512\) −1.60809e6 −0.271104
\(513\) −42850.7 −0.00718894
\(514\) 2.23577e6 0.373266
\(515\) −1.98839e6 −0.330357
\(516\) 636099. 0.105172
\(517\) −3.90632e6 −0.642750
\(518\) 1.82129e7 2.98233
\(519\) −307871. −0.0501707
\(520\) 2.38773e6 0.387236
\(521\) −1.81970e6 −0.293702 −0.146851 0.989159i \(-0.546914\pi\)
−0.146851 + 0.989159i \(0.546914\pi\)
\(522\) 1.64397e7 2.64069
\(523\) −187933. −0.0300435 −0.0150217 0.999887i \(-0.504782\pi\)
−0.0150217 + 0.999887i \(0.504782\pi\)
\(524\) −1.26347e7 −2.01019
\(525\) 76362.2 0.0120915
\(526\) −2.39508e7 −3.77446
\(527\) −3.79126e6 −0.594644
\(528\) −835314. −0.130396
\(529\) 2.78869e6 0.433272
\(530\) 5.54136e6 0.856893
\(531\) 28642.6 0.00440836
\(532\) 3.27137e6 0.501131
\(533\) 3.20836e6 0.489177
\(534\) 484598. 0.0735409
\(535\) −379378. −0.0573043
\(536\) 1.96612e7 2.95595
\(537\) 261013. 0.0390594
\(538\) −1.01305e7 −1.50895
\(539\) −1.72022e7 −2.55042
\(540\) 540315. 0.0797375
\(541\) −7.97826e6 −1.17197 −0.585983 0.810324i \(-0.699291\pi\)
−0.585983 + 0.810324i \(0.699291\pi\)
\(542\) −4.36744e6 −0.638599
\(543\) 341788. 0.0497460
\(544\) −1.63850e7 −2.37382
\(545\) 2.82313e6 0.407136
\(546\) −222758. −0.0319781
\(547\) 4.31881e6 0.617157 0.308579 0.951199i \(-0.400147\pi\)
0.308579 + 0.951199i \(0.400147\pi\)
\(548\) 1.33764e7 1.90278
\(549\) −5.96866e6 −0.845174
\(550\) 3.14477e6 0.443284
\(551\) 1.05040e6 0.147392
\(552\) −905096. −0.126429
\(553\) −3.31131e6 −0.460455
\(554\) −5.22836e6 −0.723754
\(555\) 96045.7 0.0132357
\(556\) 5.89428e6 0.808618
\(557\) −9.23520e6 −1.26127 −0.630636 0.776079i \(-0.717206\pi\)
−0.630636 + 0.776079i \(0.717206\pi\)
\(558\) −1.12442e7 −1.52877
\(559\) 2.41597e6 0.327011
\(560\) −1.96754e7 −2.65126
\(561\) −217134. −0.0291286
\(562\) 2.43224e7 3.24837
\(563\) −8.89163e6 −1.18225 −0.591126 0.806579i \(-0.701317\pi\)
−0.591126 + 0.806579i \(0.701317\pi\)
\(564\) 372673. 0.0493321
\(565\) 759044. 0.100034
\(566\) 2.93387e6 0.384946
\(567\) 1.36353e7 1.78118
\(568\) −5.10534e6 −0.663978
\(569\) −7.25901e6 −0.939932 −0.469966 0.882684i \(-0.655734\pi\)
−0.469966 + 0.882684i \(0.655734\pi\)
\(570\) 23793.6 0.00306741
\(571\) −3.72513e6 −0.478136 −0.239068 0.971003i \(-0.576842\pi\)
−0.239068 + 0.971003i \(0.576842\pi\)
\(572\) −6.65140e6 −0.850008
\(573\) −465342. −0.0592087
\(574\) −4.74560e7 −6.01190
\(575\) 1.89830e6 0.239439
\(576\) −2.22135e7 −2.78972
\(577\) 1.17093e6 0.146417 0.0732086 0.997317i \(-0.476676\pi\)
0.0732086 + 0.997317i \(0.476676\pi\)
\(578\) 6.90806e6 0.860075
\(579\) 365773. 0.0453436
\(580\) −1.32447e7 −1.63483
\(581\) 1.51852e7 1.86630
\(582\) −290523. −0.0355528
\(583\) −9.58269e6 −1.16766
\(584\) −1.72878e7 −2.09752
\(585\) 1.02550e6 0.123893
\(586\) 1.96166e7 2.35982
\(587\) 8.45511e6 1.01280 0.506400 0.862298i \(-0.330976\pi\)
0.506400 + 0.862298i \(0.330976\pi\)
\(588\) 1.64113e6 0.195749
\(589\) −718435. −0.0853295
\(590\) −31826.8 −0.00376411
\(591\) −100196. −0.0118000
\(592\) −2.47470e7 −2.90213
\(593\) 1.34570e7 1.57149 0.785746 0.618550i \(-0.212279\pi\)
0.785746 + 0.618550i \(0.212279\pi\)
\(594\) −1.28869e6 −0.149859
\(595\) −5.11446e6 −0.592253
\(596\) −4.79404e6 −0.552823
\(597\) −74349.7 −0.00853775
\(598\) −5.53757e6 −0.633238
\(599\) 9.72026e6 1.10691 0.553453 0.832880i \(-0.313310\pi\)
0.553453 + 0.832880i \(0.313310\pi\)
\(600\) −186248. −0.0211209
\(601\) 1.52752e7 1.72505 0.862525 0.506014i \(-0.168882\pi\)
0.862525 + 0.506014i \(0.168882\pi\)
\(602\) −3.57355e7 −4.01892
\(603\) 8.44424e6 0.945730
\(604\) 2.15969e6 0.240880
\(605\) −1.41199e6 −0.156835
\(606\) 852017. 0.0942468
\(607\) −3.44708e6 −0.379735 −0.189867 0.981810i \(-0.560806\pi\)
−0.189867 + 0.981810i \(0.560806\pi\)
\(608\) −3.10491e6 −0.340636
\(609\) 767070. 0.0838092
\(610\) 6.63219e6 0.721660
\(611\) 1.41545e6 0.153388
\(612\) −1.80838e7 −1.95169
\(613\) 5.45977e6 0.586844 0.293422 0.955983i \(-0.405206\pi\)
0.293422 + 0.955983i \(0.405206\pi\)
\(614\) 2.48049e7 2.65532
\(615\) −250259. −0.0266810
\(616\) 6.10750e7 6.48503
\(617\) 8.48025e6 0.896801 0.448400 0.893833i \(-0.351994\pi\)
0.448400 + 0.893833i \(0.351994\pi\)
\(618\) −452442. −0.0476532
\(619\) 8.43977e6 0.885328 0.442664 0.896688i \(-0.354034\pi\)
0.442664 + 0.896688i \(0.354034\pi\)
\(620\) 9.05892e6 0.946449
\(621\) −777901. −0.0809460
\(622\) 1.72105e7 1.78369
\(623\) −1.97390e7 −2.03754
\(624\) 302675. 0.0311182
\(625\) 390625. 0.0400000
\(626\) 1.06332e7 1.08450
\(627\) −41146.3 −0.00417986
\(628\) −3.91768e7 −3.96396
\(629\) −6.43279e6 −0.648295
\(630\) −1.51685e7 −1.52262
\(631\) −1.46417e7 −1.46392 −0.731962 0.681346i \(-0.761395\pi\)
−0.731962 + 0.681346i \(0.761395\pi\)
\(632\) 8.07630e6 0.804303
\(633\) −220166. −0.0218394
\(634\) 1.97063e7 1.94707
\(635\) −112735. −0.0110950
\(636\) 914211. 0.0896198
\(637\) 6.23319e6 0.608641
\(638\) 3.15897e7 3.07251
\(639\) −2.19268e6 −0.212434
\(640\) 9.83650e6 0.949272
\(641\) −8.49886e6 −0.816988 −0.408494 0.912761i \(-0.633946\pi\)
−0.408494 + 0.912761i \(0.633946\pi\)
\(642\) −86324.4 −0.00826601
\(643\) 1.07051e7 1.02108 0.510542 0.859853i \(-0.329445\pi\)
0.510542 + 0.859853i \(0.329445\pi\)
\(644\) 5.93877e7 5.64263
\(645\) −188451. −0.0178361
\(646\) −1.59361e6 −0.150245
\(647\) 1.94772e7 1.82922 0.914609 0.404340i \(-0.132499\pi\)
0.914609 + 0.404340i \(0.132499\pi\)
\(648\) −3.32566e7 −3.11129
\(649\) 55038.2 0.00512923
\(650\) −1.13950e6 −0.105787
\(651\) −524648. −0.0485194
\(652\) 1.96816e7 1.81319
\(653\) 1.36819e7 1.25563 0.627817 0.778361i \(-0.283949\pi\)
0.627817 + 0.778361i \(0.283949\pi\)
\(654\) 642381. 0.0587284
\(655\) 3.74317e6 0.340908
\(656\) 6.44813e7 5.85025
\(657\) −7.42490e6 −0.671084
\(658\) −2.09364e7 −1.88512
\(659\) −7.40016e6 −0.663785 −0.331893 0.943317i \(-0.607687\pi\)
−0.331893 + 0.943317i \(0.607687\pi\)
\(660\) 518823. 0.0463617
\(661\) 1.88654e7 1.67943 0.839715 0.543028i \(-0.182722\pi\)
0.839715 + 0.543028i \(0.182722\pi\)
\(662\) −2.26865e7 −2.01197
\(663\) 78678.1 0.00695136
\(664\) −3.70368e7 −3.25997
\(665\) −969178. −0.0849864
\(666\) −1.90784e7 −1.66670
\(667\) 1.90687e7 1.65961
\(668\) −461908. −0.0400511
\(669\) 152882. 0.0132066
\(670\) −9.38297e6 −0.807520
\(671\) −1.14691e7 −0.983381
\(672\) −2.26741e6 −0.193690
\(673\) −1.68803e7 −1.43662 −0.718311 0.695722i \(-0.755085\pi\)
−0.718311 + 0.695722i \(0.755085\pi\)
\(674\) 1.30795e6 0.110903
\(675\) −160074. −0.0135226
\(676\) 2.41013e6 0.202849
\(677\) −1.07388e7 −0.900504 −0.450252 0.892902i \(-0.648666\pi\)
−0.450252 + 0.892902i \(0.648666\pi\)
\(678\) 172714. 0.0144296
\(679\) 1.18338e7 0.985032
\(680\) 1.24742e7 1.03452
\(681\) −557604. −0.0460742
\(682\) −2.16062e7 −1.77876
\(683\) −3.08525e6 −0.253069 −0.126535 0.991962i \(-0.540385\pi\)
−0.126535 + 0.991962i \(0.540385\pi\)
\(684\) −3.42684e6 −0.280061
\(685\) −3.96290e6 −0.322690
\(686\) −5.01841e7 −4.07152
\(687\) −436587. −0.0352922
\(688\) 4.85560e7 3.91085
\(689\) 3.47227e6 0.278654
\(690\) 431942. 0.0345385
\(691\) −1.14232e7 −0.910110 −0.455055 0.890463i \(-0.650380\pi\)
−0.455055 + 0.890463i \(0.650380\pi\)
\(692\) −4.92700e7 −3.91126
\(693\) 2.62310e7 2.07483
\(694\) −4.18902e6 −0.330152
\(695\) −1.74624e6 −0.137133
\(696\) −1.87089e6 −0.146394
\(697\) 1.67614e7 1.30686
\(698\) −1.67173e7 −1.29876
\(699\) 178764. 0.0138384
\(700\) 1.22206e7 0.942643
\(701\) −1.28448e7 −0.987264 −0.493632 0.869671i \(-0.664331\pi\)
−0.493632 + 0.869671i \(0.664331\pi\)
\(702\) 466956. 0.0357630
\(703\) −1.21900e6 −0.0930282
\(704\) −4.26842e7 −3.24590
\(705\) −110408. −0.00836620
\(706\) −6.39259e6 −0.482687
\(707\) −3.47050e7 −2.61122
\(708\) −5250.77 −0.000393677 0
\(709\) 1.28235e7 0.958055 0.479028 0.877800i \(-0.340989\pi\)
0.479028 + 0.877800i \(0.340989\pi\)
\(710\) 2.43644e6 0.181388
\(711\) 3.46867e6 0.257329
\(712\) 4.81435e7 3.55908
\(713\) −1.30423e7 −0.960793
\(714\) −1.16376e6 −0.0854311
\(715\) 1.97055e6 0.144152
\(716\) 4.17710e7 3.04504
\(717\) 878036. 0.0637844
\(718\) −6.35607e6 −0.460127
\(719\) 7.59185e6 0.547678 0.273839 0.961776i \(-0.411706\pi\)
0.273839 + 0.961776i \(0.411706\pi\)
\(720\) 2.06104e7 1.48168
\(721\) 1.84292e7 1.32029
\(722\) 2.64107e7 1.88554
\(723\) −5001.02 −0.000355806 0
\(724\) 5.46979e7 3.87815
\(725\) 3.92389e6 0.277250
\(726\) −321287. −0.0226231
\(727\) 2.64094e6 0.185320 0.0926600 0.995698i \(-0.470463\pi\)
0.0926600 + 0.995698i \(0.470463\pi\)
\(728\) −2.21305e7 −1.54761
\(729\) −1.42505e7 −0.993141
\(730\) 8.25031e6 0.573011
\(731\) 1.26218e7 0.873628
\(732\) 1.09418e6 0.0754762
\(733\) −2.36492e6 −0.162576 −0.0812881 0.996691i \(-0.525903\pi\)
−0.0812881 + 0.996691i \(0.525903\pi\)
\(734\) −3.54506e7 −2.42876
\(735\) −486201. −0.0331969
\(736\) −5.63657e7 −3.83549
\(737\) 1.62260e7 1.10038
\(738\) 4.97113e7 3.35980
\(739\) −6.44734e6 −0.434280 −0.217140 0.976140i \(-0.569673\pi\)
−0.217140 + 0.976140i \(0.569673\pi\)
\(740\) 1.53706e7 1.03184
\(741\) 14909.3 0.000997498 0
\(742\) −5.13596e7 −3.42462
\(743\) 7.54303e6 0.501273 0.250636 0.968081i \(-0.419360\pi\)
0.250636 + 0.968081i \(0.419360\pi\)
\(744\) 1.27962e6 0.0847516
\(745\) 1.42028e6 0.0937529
\(746\) −5.33256e7 −3.50823
\(747\) −1.59069e7 −1.04300
\(748\) −3.47489e7 −2.27084
\(749\) 3.51623e6 0.229020
\(750\) 88883.6 0.00576991
\(751\) −2.33272e7 −1.50925 −0.754627 0.656154i \(-0.772182\pi\)
−0.754627 + 0.656154i \(0.772182\pi\)
\(752\) 2.84476e7 1.83443
\(753\) 460264. 0.0295815
\(754\) −1.14465e7 −0.733236
\(755\) −639832. −0.0408506
\(756\) −5.00787e6 −0.318675
\(757\) −2.12561e7 −1.34817 −0.674085 0.738654i \(-0.735462\pi\)
−0.674085 + 0.738654i \(0.735462\pi\)
\(758\) 6.35307e6 0.401616
\(759\) −746959. −0.0470644
\(760\) 2.36383e6 0.148451
\(761\) −5.46782e6 −0.342257 −0.171129 0.985249i \(-0.554741\pi\)
−0.171129 + 0.985249i \(0.554741\pi\)
\(762\) −25652.0 −0.00160042
\(763\) −2.61660e7 −1.62714
\(764\) −7.44707e7 −4.61585
\(765\) 5.35751e6 0.330986
\(766\) 2.45090e7 1.50922
\(767\) −19943.0 −0.00122406
\(768\) 693994. 0.0424573
\(769\) 1.12535e7 0.686234 0.343117 0.939293i \(-0.388517\pi\)
0.343117 + 0.939293i \(0.388517\pi\)
\(770\) −2.91471e7 −1.77161
\(771\) −109277. −0.00662056
\(772\) 5.85364e7 3.53494
\(773\) 1.16249e7 0.699747 0.349873 0.936797i \(-0.386225\pi\)
0.349873 + 0.936797i \(0.386225\pi\)
\(774\) 3.74338e7 2.24601
\(775\) −2.68380e6 −0.160508
\(776\) −2.88627e7 −1.72061
\(777\) −890192. −0.0528970
\(778\) 5.76456e7 3.41442
\(779\) 3.17625e6 0.187530
\(780\) −187995. −0.0110639
\(781\) −4.21334e6 −0.247172
\(782\) −2.89299e7 −1.69173
\(783\) −1.60797e6 −0.0937287
\(784\) 1.25274e8 7.27897
\(785\) 1.16065e7 0.672245
\(786\) 851729. 0.0491751
\(787\) −2.48768e7 −1.43172 −0.715859 0.698245i \(-0.753965\pi\)
−0.715859 + 0.698245i \(0.753965\pi\)
\(788\) −1.60348e7 −0.919916
\(789\) 1.17064e6 0.0669470
\(790\) −3.85428e6 −0.219723
\(791\) −7.03514e6 −0.399789
\(792\) −6.39775e7 −3.62422
\(793\) 4.15580e6 0.234678
\(794\) −5.47049e7 −3.07946
\(795\) −270845. −0.0151986
\(796\) −1.18985e7 −0.665595
\(797\) −1.88084e7 −1.04883 −0.524416 0.851462i \(-0.675716\pi\)
−0.524416 + 0.851462i \(0.675716\pi\)
\(798\) −220529. −0.0122591
\(799\) 7.39473e6 0.409784
\(800\) −1.15988e7 −0.640747
\(801\) 2.06771e7 1.13870
\(802\) −5.07199e7 −2.78447
\(803\) −1.42673e7 −0.780823
\(804\) −1.54800e6 −0.0844560
\(805\) −1.75942e7 −0.956930
\(806\) 7.82898e6 0.424490
\(807\) 495147. 0.0267640
\(808\) 8.46456e7 4.56117
\(809\) 1.38160e7 0.742184 0.371092 0.928596i \(-0.378983\pi\)
0.371092 + 0.928596i \(0.378983\pi\)
\(810\) 1.58712e7 0.849956
\(811\) 3.04514e7 1.62575 0.812877 0.582435i \(-0.197900\pi\)
0.812877 + 0.582435i \(0.197900\pi\)
\(812\) 1.22758e8 6.53369
\(813\) 213467. 0.0113267
\(814\) −3.66601e7 −1.93925
\(815\) −5.83089e6 −0.307497
\(816\) 1.58126e6 0.0831340
\(817\) 2.39179e6 0.125363
\(818\) 3.40453e7 1.77899
\(819\) −9.50477e6 −0.495144
\(820\) −4.00501e7 −2.08003
\(821\) −5.01920e6 −0.259882 −0.129941 0.991522i \(-0.541479\pi\)
−0.129941 + 0.991522i \(0.541479\pi\)
\(822\) −901726. −0.0465473
\(823\) 3.70421e7 1.90632 0.953162 0.302462i \(-0.0978085\pi\)
0.953162 + 0.302462i \(0.0978085\pi\)
\(824\) −4.49489e7 −2.30622
\(825\) −153707. −0.00786245
\(826\) 294984. 0.0150435
\(827\) −1.52758e7 −0.776674 −0.388337 0.921517i \(-0.626950\pi\)
−0.388337 + 0.921517i \(0.626950\pi\)
\(828\) −6.22099e7 −3.15343
\(829\) 1.13644e7 0.574327 0.287163 0.957882i \(-0.407288\pi\)
0.287163 + 0.957882i \(0.407288\pi\)
\(830\) 1.76752e7 0.890572
\(831\) 255546. 0.0128371
\(832\) 1.54666e7 0.774615
\(833\) 3.25640e7 1.62602
\(834\) −397343. −0.0197811
\(835\) 136845. 0.00679223
\(836\) −6.58483e6 −0.325858
\(837\) 1.09979e6 0.0542621
\(838\) 7.35933e6 0.362016
\(839\) 2.16145e7 1.06008 0.530042 0.847971i \(-0.322176\pi\)
0.530042 + 0.847971i \(0.322176\pi\)
\(840\) 1.72622e6 0.0844108
\(841\) 1.89049e7 0.921688
\(842\) 7.62144e6 0.370473
\(843\) −1.18880e6 −0.0576157
\(844\) −3.52341e7 −1.70258
\(845\) −714025. −0.0344010
\(846\) 2.19314e7 1.05351
\(847\) 1.30869e7 0.626799
\(848\) 6.97853e7 3.33253
\(849\) −143399. −0.00682772
\(850\) −5.95310e6 −0.282615
\(851\) −2.21294e7 −1.04748
\(852\) 401963. 0.0189709
\(853\) −3.22268e7 −1.51651 −0.758253 0.651960i \(-0.773947\pi\)
−0.758253 + 0.651960i \(0.773947\pi\)
\(854\) −6.14699e7 −2.88415
\(855\) 1.01524e6 0.0474954
\(856\) −8.57609e6 −0.400042
\(857\) −2.07998e7 −0.967404 −0.483702 0.875233i \(-0.660708\pi\)
−0.483702 + 0.875233i \(0.660708\pi\)
\(858\) 448382. 0.0207936
\(859\) 2.66909e7 1.23418 0.617092 0.786891i \(-0.288311\pi\)
0.617092 + 0.786891i \(0.288311\pi\)
\(860\) −3.01587e7 −1.39048
\(861\) 2.31951e6 0.106632
\(862\) −5.27665e7 −2.41875
\(863\) −6.44627e6 −0.294633 −0.147316 0.989089i \(-0.547064\pi\)
−0.147316 + 0.989089i \(0.547064\pi\)
\(864\) 4.75305e6 0.216615
\(865\) 1.45967e7 0.663308
\(866\) 5.38272e7 2.43897
\(867\) −337645. −0.0152550
\(868\) −8.39618e7 −3.78253
\(869\) 6.66522e6 0.299409
\(870\) 892849. 0.0399926
\(871\) −5.87947e6 −0.262599
\(872\) 6.38188e7 2.84222
\(873\) −1.23962e7 −0.550494
\(874\) −5.48215e6 −0.242757
\(875\) −3.62048e6 −0.159862
\(876\) 1.36113e6 0.0599295
\(877\) −2.93830e7 −1.29002 −0.645012 0.764173i \(-0.723148\pi\)
−0.645012 + 0.764173i \(0.723148\pi\)
\(878\) 5.87900e7 2.57376
\(879\) −958799. −0.0418558
\(880\) 3.96038e7 1.72397
\(881\) 6.33454e6 0.274964 0.137482 0.990504i \(-0.456099\pi\)
0.137482 + 0.990504i \(0.456099\pi\)
\(882\) 9.65787e7 4.18032
\(883\) −1.53999e7 −0.664686 −0.332343 0.943159i \(-0.607839\pi\)
−0.332343 + 0.943159i \(0.607839\pi\)
\(884\) 1.25912e7 0.541922
\(885\) 1555.60 6.67634e−5 0
\(886\) −1.08610e7 −0.464822
\(887\) −823263. −0.0351342 −0.0175671 0.999846i \(-0.505592\pi\)
−0.0175671 + 0.999846i \(0.505592\pi\)
\(888\) 2.17118e6 0.0923982
\(889\) 1.04488e6 0.0443416
\(890\) −2.29757e7 −0.972286
\(891\) −2.74461e7 −1.15821
\(892\) 2.44665e7 1.02958
\(893\) 1.40128e6 0.0588027
\(894\) 323174. 0.0135236
\(895\) −1.23751e7 −0.516406
\(896\) −9.11688e7 −3.79381
\(897\) 270660. 0.0112316
\(898\) −2.16209e6 −0.0894713
\(899\) −2.69591e7 −1.11252
\(900\) −1.28013e7 −0.526804
\(901\) 1.81402e7 0.744440
\(902\) 9.55226e7 3.90922
\(903\) 1.74664e6 0.0712828
\(904\) 1.71587e7 0.698335
\(905\) −1.62048e7 −0.657693
\(906\) −145589. −0.00589260
\(907\) −3.29987e6 −0.133192 −0.0665961 0.997780i \(-0.521214\pi\)
−0.0665961 + 0.997780i \(0.521214\pi\)
\(908\) −8.92359e7 −3.59191
\(909\) 3.63543e7 1.45930
\(910\) 1.05614e7 0.422783
\(911\) −3.58804e7 −1.43239 −0.716196 0.697900i \(-0.754118\pi\)
−0.716196 + 0.697900i \(0.754118\pi\)
\(912\) 299645. 0.0119295
\(913\) −3.05658e7 −1.21355
\(914\) −6.98667e6 −0.276633
\(915\) −324161. −0.0127999
\(916\) −6.98690e7 −2.75135
\(917\) −3.46933e7 −1.36246
\(918\) 2.43952e6 0.0955426
\(919\) 4.29501e7 1.67755 0.838776 0.544477i \(-0.183272\pi\)
0.838776 + 0.544477i \(0.183272\pi\)
\(920\) 4.29123e7 1.67152
\(921\) −1.21239e6 −0.0470969
\(922\) 3.12348e7 1.21007
\(923\) 1.52670e6 0.0589860
\(924\) −4.80867e6 −0.185287
\(925\) −4.55371e6 −0.174989
\(926\) −7.51775e7 −2.88111
\(927\) −1.93050e7 −0.737855
\(928\) −1.16511e8 −4.44117
\(929\) −4.75514e6 −0.180769 −0.0903845 0.995907i \(-0.528810\pi\)
−0.0903845 + 0.995907i \(0.528810\pi\)
\(930\) −610677. −0.0231528
\(931\) 6.17080e6 0.233328
\(932\) 2.86084e7 1.07883
\(933\) −841198. −0.0316369
\(934\) −1.57614e7 −0.591190
\(935\) 1.02947e7 0.385110
\(936\) 2.31821e7 0.864896
\(937\) 4.86133e7 1.80886 0.904432 0.426617i \(-0.140295\pi\)
0.904432 + 0.426617i \(0.140295\pi\)
\(938\) 8.69653e7 3.22730
\(939\) −519720. −0.0192356
\(940\) −1.76691e7 −0.652222
\(941\) 825014. 0.0303730 0.0151865 0.999885i \(-0.495166\pi\)
0.0151865 + 0.999885i \(0.495166\pi\)
\(942\) 2.64097e6 0.0969698
\(943\) 5.76608e7 2.11155
\(944\) −400812. −0.0146390
\(945\) 1.48363e6 0.0540439
\(946\) 7.19308e7 2.61329
\(947\) −2.90200e7 −1.05153 −0.525766 0.850630i \(-0.676221\pi\)
−0.525766 + 0.850630i \(0.676221\pi\)
\(948\) −635878. −0.0229802
\(949\) 5.16973e6 0.186338
\(950\) −1.12810e6 −0.0405544
\(951\) −963185. −0.0345349
\(952\) −1.15616e8 −4.13452
\(953\) −1.85279e7 −0.660838 −0.330419 0.943834i \(-0.607190\pi\)
−0.330419 + 0.943834i \(0.607190\pi\)
\(954\) 5.38004e7 1.91388
\(955\) 2.20627e7 0.782800
\(956\) 1.40516e8 4.97257
\(957\) −1.54401e6 −0.0544966
\(958\) 7.15967e7 2.52046
\(959\) 3.67298e7 1.28965
\(960\) −1.20642e6 −0.0422495
\(961\) −1.01901e7 −0.355933
\(962\) 1.32837e7 0.462789
\(963\) −3.68333e6 −0.127990
\(964\) −800336. −0.0277383
\(965\) −1.73420e7 −0.599489
\(966\) −4.00342e6 −0.138035
\(967\) 1.43655e7 0.494032 0.247016 0.969011i \(-0.420550\pi\)
0.247016 + 0.969011i \(0.420550\pi\)
\(968\) −3.19190e7 −1.09487
\(969\) 77890.6 0.00266487
\(970\) 1.37743e7 0.470044
\(971\) −2.66582e7 −0.907368 −0.453684 0.891163i \(-0.649890\pi\)
−0.453684 + 0.891163i \(0.649890\pi\)
\(972\) 7.87028e6 0.267193
\(973\) 1.61849e7 0.548059
\(974\) 6.56660e7 2.21791
\(975\) 55695.4 0.00187632
\(976\) 8.35228e7 2.80660
\(977\) −1.84613e6 −0.0618767 −0.0309383 0.999521i \(-0.509850\pi\)
−0.0309383 + 0.999521i \(0.509850\pi\)
\(978\) −1.32677e6 −0.0443557
\(979\) 3.97320e7 1.32490
\(980\) −7.78090e7 −2.58800
\(981\) 2.74094e7 0.909342
\(982\) −2.06880e7 −0.684604
\(983\) −3.85226e7 −1.27154 −0.635772 0.771877i \(-0.719318\pi\)
−0.635772 + 0.771877i \(0.719318\pi\)
\(984\) −5.65728e6 −0.186260
\(985\) 4.75048e6 0.156008
\(986\) −5.97998e7 −1.95888
\(987\) 1.02331e6 0.0334360
\(988\) 2.38600e6 0.0777640
\(989\) 4.34200e7 1.41156
\(990\) 3.05322e7 0.990080
\(991\) 4.70175e7 1.52081 0.760406 0.649448i \(-0.225000\pi\)
0.760406 + 0.649448i \(0.225000\pi\)
\(992\) 7.96895e7 2.57112
\(993\) 1.10885e6 0.0356860
\(994\) −2.25819e7 −0.724929
\(995\) 3.52506e6 0.112878
\(996\) 2.91605e6 0.0931422
\(997\) 1.02621e6 0.0326961 0.0163481 0.999866i \(-0.494796\pi\)
0.0163481 + 0.999866i \(0.494796\pi\)
\(998\) −5.35805e7 −1.70286
\(999\) 1.86606e6 0.0591578
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.6.a.d.1.1 6
3.2 odd 2 585.6.a.m.1.6 6
4.3 odd 2 1040.6.a.q.1.4 6
5.2 odd 4 325.6.b.g.274.1 12
5.3 odd 4 325.6.b.g.274.12 12
5.4 even 2 325.6.a.g.1.6 6
13.12 even 2 845.6.a.h.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.d.1.1 6 1.1 even 1 trivial
325.6.a.g.1.6 6 5.4 even 2
325.6.b.g.274.1 12 5.2 odd 4
325.6.b.g.274.12 12 5.3 odd 4
585.6.a.m.1.6 6 3.2 odd 2
845.6.a.h.1.6 6 13.12 even 2
1040.6.a.q.1.4 6 4.3 odd 2