Properties

Label 104.10.f.a.25.7
Level $104$
Weight $10$
Character 104.25
Analytic conductor $53.564$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [104,10,Mod(25,104)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(104, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("104.25"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 104.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(53.5637269610\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 25.7
Character \(\chi\) \(=\) 104.25
Dual form 104.10.f.a.25.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-178.824 q^{3} -872.510i q^{5} +12429.2i q^{7} +12295.0 q^{9} +20342.9i q^{11} +(65751.3 - 79254.4i) q^{13} +156026. i q^{15} +182499. q^{17} -354678. i q^{19} -2.22264e6i q^{21} -1.23045e6 q^{23} +1.19185e6 q^{25} +1.32115e6 q^{27} +4.17940e6 q^{29} +3.16248e6i q^{31} -3.63780e6i q^{33} +1.08446e7 q^{35} -1.27577e6i q^{37} +(-1.17579e7 + 1.41726e7i) q^{39} +7.40821e6i q^{41} +1.11930e7 q^{43} -1.07275e7i q^{45} +944086. i q^{47} -1.14131e8 q^{49} -3.26353e7 q^{51} -9.68577e7 q^{53} +1.77494e7 q^{55} +6.34249e7i q^{57} +1.05521e8i q^{59} -1.66607e6 q^{61} +1.52817e8i q^{63} +(-6.91503e7 - 5.73686e7i) q^{65} +2.19175e8i q^{67} +2.20034e8 q^{69} +5.98629e7i q^{71} +3.96875e7i q^{73} -2.13132e8 q^{75} -2.52846e8 q^{77} -2.20092e7 q^{79} -4.78256e8 q^{81} -6.19116e8i q^{83} -1.59232e8i q^{85} -7.47377e8 q^{87} +6.79975e7i q^{89} +(9.85068e8 + 8.17235e8i) q^{91} -5.65527e8i q^{93} -3.09460e8 q^{95} +1.66575e9i q^{97} +2.50117e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 162 q^{3} + 223074 q^{9} + 66270 q^{13} - 487902 q^{17} + 3171556 q^{23} - 13526722 q^{25} - 3694974 q^{27} + 8833508 q^{29} - 8281126 q^{35} - 12056860 q^{39} + 89959038 q^{43} - 172344874 q^{49}+ \cdots + 1741143356 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −178.824 −1.27462 −0.637309 0.770608i \(-0.719953\pi\)
−0.637309 + 0.770608i \(0.719953\pi\)
\(4\) 0 0
\(5\) 872.510i 0.624317i −0.950030 0.312159i \(-0.898948\pi\)
0.950030 0.312159i \(-0.101052\pi\)
\(6\) 0 0
\(7\) 12429.2i 1.95660i 0.207198 + 0.978299i \(0.433565\pi\)
−0.207198 + 0.978299i \(0.566435\pi\)
\(8\) 0 0
\(9\) 12295.0 0.624652
\(10\) 0 0
\(11\) 20342.9i 0.418934i 0.977816 + 0.209467i \(0.0671729\pi\)
−0.977816 + 0.209467i \(0.932827\pi\)
\(12\) 0 0
\(13\) 65751.3 79254.4i 0.638497 0.769624i
\(14\) 0 0
\(15\) 156026.i 0.795766i
\(16\) 0 0
\(17\) 182499. 0.529958 0.264979 0.964254i \(-0.414635\pi\)
0.264979 + 0.964254i \(0.414635\pi\)
\(18\) 0 0
\(19\) 354678.i 0.624371i −0.950021 0.312186i \(-0.898939\pi\)
0.950021 0.312186i \(-0.101061\pi\)
\(20\) 0 0
\(21\) 2.22264e6i 2.49392i
\(22\) 0 0
\(23\) −1.23045e6 −0.916830 −0.458415 0.888738i \(-0.651583\pi\)
−0.458415 + 0.888738i \(0.651583\pi\)
\(24\) 0 0
\(25\) 1.19185e6 0.610228
\(26\) 0 0
\(27\) 1.32115e6 0.478425
\(28\) 0 0
\(29\) 4.17940e6 1.09729 0.548647 0.836054i \(-0.315143\pi\)
0.548647 + 0.836054i \(0.315143\pi\)
\(30\) 0 0
\(31\) 3.16248e6i 0.615035i 0.951542 + 0.307517i \(0.0994983\pi\)
−0.951542 + 0.307517i \(0.900502\pi\)
\(32\) 0 0
\(33\) 3.63780e6i 0.533981i
\(34\) 0 0
\(35\) 1.08446e7 1.22154
\(36\) 0 0
\(37\) 1.27577e6i 0.111909i −0.998433 0.0559545i \(-0.982180\pi\)
0.998433 0.0559545i \(-0.0178202\pi\)
\(38\) 0 0
\(39\) −1.17579e7 + 1.41726e7i −0.813841 + 0.980977i
\(40\) 0 0
\(41\) 7.40821e6i 0.409436i 0.978821 + 0.204718i \(0.0656277\pi\)
−0.978821 + 0.204718i \(0.934372\pi\)
\(42\) 0 0
\(43\) 1.11930e7 0.499274 0.249637 0.968339i \(-0.419689\pi\)
0.249637 + 0.968339i \(0.419689\pi\)
\(44\) 0 0
\(45\) 1.07275e7i 0.389981i
\(46\) 0 0
\(47\) 944086.i 0.0282209i 0.999900 + 0.0141105i \(0.00449165\pi\)
−0.999900 + 0.0141105i \(0.995508\pi\)
\(48\) 0 0
\(49\) −1.14131e8 −2.82828
\(50\) 0 0
\(51\) −3.26353e7 −0.675494
\(52\) 0 0
\(53\) −9.68577e7 −1.68614 −0.843068 0.537806i \(-0.819253\pi\)
−0.843068 + 0.537806i \(0.819253\pi\)
\(54\) 0 0
\(55\) 1.77494e7 0.261548
\(56\) 0 0
\(57\) 6.34249e7i 0.795835i
\(58\) 0 0
\(59\) 1.05521e8i 1.13372i 0.823813 + 0.566861i \(0.191842\pi\)
−0.823813 + 0.566861i \(0.808158\pi\)
\(60\) 0 0
\(61\) −1.66607e6 −0.0154067 −0.00770336 0.999970i \(-0.502452\pi\)
−0.00770336 + 0.999970i \(0.502452\pi\)
\(62\) 0 0
\(63\) 1.52817e8i 1.22219i
\(64\) 0 0
\(65\) −6.91503e7 5.73686e7i −0.480489 0.398625i
\(66\) 0 0
\(67\) 2.19175e8i 1.32878i 0.747385 + 0.664391i \(0.231309\pi\)
−0.747385 + 0.664391i \(0.768691\pi\)
\(68\) 0 0
\(69\) 2.20034e8 1.16861
\(70\) 0 0
\(71\) 5.98629e7i 0.279573i 0.990182 + 0.139786i \(0.0446416\pi\)
−0.990182 + 0.139786i \(0.955358\pi\)
\(72\) 0 0
\(73\) 3.96875e7i 0.163569i 0.996650 + 0.0817845i \(0.0260619\pi\)
−0.996650 + 0.0817845i \(0.973938\pi\)
\(74\) 0 0
\(75\) −2.13132e8 −0.777808
\(76\) 0 0
\(77\) −2.52846e8 −0.819686
\(78\) 0 0
\(79\) −2.20092e7 −0.0635744 −0.0317872 0.999495i \(-0.510120\pi\)
−0.0317872 + 0.999495i \(0.510120\pi\)
\(80\) 0 0
\(81\) −4.78256e8 −1.23446
\(82\) 0 0
\(83\) 6.19116e8i 1.43193i −0.698138 0.715963i \(-0.745988\pi\)
0.698138 0.715963i \(-0.254012\pi\)
\(84\) 0 0
\(85\) 1.59232e8i 0.330862i
\(86\) 0 0
\(87\) −7.47377e8 −1.39863
\(88\) 0 0
\(89\) 6.79975e7i 0.114878i 0.998349 + 0.0574392i \(0.0182935\pi\)
−0.998349 + 0.0574392i \(0.981706\pi\)
\(90\) 0 0
\(91\) 9.85068e8 + 8.17235e8i 1.50584 + 1.24928i
\(92\) 0 0
\(93\) 5.65527e8i 0.783935i
\(94\) 0 0
\(95\) −3.09460e8 −0.389806
\(96\) 0 0
\(97\) 1.66575e9i 1.91045i 0.295879 + 0.955225i \(0.404387\pi\)
−0.295879 + 0.955225i \(0.595613\pi\)
\(98\) 0 0
\(99\) 2.50117e8i 0.261688i
\(100\) 0 0
\(101\) 9.66630e8 0.924302 0.462151 0.886801i \(-0.347078\pi\)
0.462151 + 0.886801i \(0.347078\pi\)
\(102\) 0 0
\(103\) −5.37076e8 −0.470185 −0.235092 0.971973i \(-0.575539\pi\)
−0.235092 + 0.971973i \(0.575539\pi\)
\(104\) 0 0
\(105\) −1.93927e9 −1.55699
\(106\) 0 0
\(107\) −7.30059e8 −0.538432 −0.269216 0.963080i \(-0.586765\pi\)
−0.269216 + 0.963080i \(0.586765\pi\)
\(108\) 0 0
\(109\) 2.08808e9i 1.41686i 0.705780 + 0.708431i \(0.250597\pi\)
−0.705780 + 0.708431i \(0.749403\pi\)
\(110\) 0 0
\(111\) 2.28138e8i 0.142641i
\(112\) 0 0
\(113\) −3.12325e9 −1.80200 −0.900998 0.433823i \(-0.857164\pi\)
−0.900998 + 0.433823i \(0.857164\pi\)
\(114\) 0 0
\(115\) 1.07358e9i 0.572393i
\(116\) 0 0
\(117\) 8.08414e8 9.74436e8i 0.398839 0.480747i
\(118\) 0 0
\(119\) 2.26832e9i 1.03691i
\(120\) 0 0
\(121\) 1.94411e9 0.824494
\(122\) 0 0
\(123\) 1.32477e9i 0.521874i
\(124\) 0 0
\(125\) 2.74402e9i 1.00529i
\(126\) 0 0
\(127\) 1.71367e9 0.584534 0.292267 0.956337i \(-0.405590\pi\)
0.292267 + 0.956337i \(0.405590\pi\)
\(128\) 0 0
\(129\) −2.00158e9 −0.636384
\(130\) 0 0
\(131\) −6.41271e9 −1.90248 −0.951241 0.308449i \(-0.900190\pi\)
−0.951241 + 0.308449i \(0.900190\pi\)
\(132\) 0 0
\(133\) 4.40836e9 1.22164
\(134\) 0 0
\(135\) 1.15271e9i 0.298689i
\(136\) 0 0
\(137\) 5.19325e9i 1.25950i −0.776800 0.629748i \(-0.783158\pi\)
0.776800 0.629748i \(-0.216842\pi\)
\(138\) 0 0
\(139\) 3.07823e9 0.699414 0.349707 0.936859i \(-0.386281\pi\)
0.349707 + 0.936859i \(0.386281\pi\)
\(140\) 0 0
\(141\) 1.68825e8i 0.0359709i
\(142\) 0 0
\(143\) 1.61227e9 + 1.33757e9i 0.322422 + 0.267488i
\(144\) 0 0
\(145\) 3.64657e9i 0.685059i
\(146\) 0 0
\(147\) 2.04094e10 3.60497
\(148\) 0 0
\(149\) 3.58609e9i 0.596050i −0.954558 0.298025i \(-0.903672\pi\)
0.954558 0.298025i \(-0.0963278\pi\)
\(150\) 0 0
\(151\) 3.75641e9i 0.588000i 0.955805 + 0.294000i \(0.0949865\pi\)
−0.955805 + 0.294000i \(0.905013\pi\)
\(152\) 0 0
\(153\) 2.24384e9 0.331039
\(154\) 0 0
\(155\) 2.75929e9 0.383977
\(156\) 0 0
\(157\) −1.24409e10 −1.63419 −0.817096 0.576502i \(-0.804417\pi\)
−0.817096 + 0.576502i \(0.804417\pi\)
\(158\) 0 0
\(159\) 1.73205e10 2.14918
\(160\) 0 0
\(161\) 1.52935e10i 1.79387i
\(162\) 0 0
\(163\) 6.63286e9i 0.735964i −0.929833 0.367982i \(-0.880049\pi\)
0.929833 0.367982i \(-0.119951\pi\)
\(164\) 0 0
\(165\) −3.17401e9 −0.333374
\(166\) 0 0
\(167\) 5.92980e9i 0.589951i 0.955505 + 0.294976i \(0.0953115\pi\)
−0.955505 + 0.294976i \(0.904689\pi\)
\(168\) 0 0
\(169\) −1.95804e9 1.04222e10i −0.184642 0.982806i
\(170\) 0 0
\(171\) 4.36078e9i 0.390015i
\(172\) 0 0
\(173\) 1.14700e10 0.973548 0.486774 0.873528i \(-0.338173\pi\)
0.486774 + 0.873528i \(0.338173\pi\)
\(174\) 0 0
\(175\) 1.48138e10i 1.19397i
\(176\) 0 0
\(177\) 1.88698e10i 1.44506i
\(178\) 0 0
\(179\) 9.33032e9 0.679294 0.339647 0.940553i \(-0.389692\pi\)
0.339647 + 0.940553i \(0.389692\pi\)
\(180\) 0 0
\(181\) −1.42971e10 −0.990133 −0.495066 0.868855i \(-0.664856\pi\)
−0.495066 + 0.868855i \(0.664856\pi\)
\(182\) 0 0
\(183\) 2.97934e8 0.0196377
\(184\) 0 0
\(185\) −1.11312e9 −0.0698667
\(186\) 0 0
\(187\) 3.71257e9i 0.222017i
\(188\) 0 0
\(189\) 1.64208e10i 0.936085i
\(190\) 0 0
\(191\) −2.06764e10 −1.12415 −0.562075 0.827087i \(-0.689997\pi\)
−0.562075 + 0.827087i \(0.689997\pi\)
\(192\) 0 0
\(193\) 2.82166e9i 0.146385i −0.997318 0.0731927i \(-0.976681\pi\)
0.997318 0.0731927i \(-0.0233188\pi\)
\(194\) 0 0
\(195\) 1.23657e10 + 1.02589e10i 0.612441 + 0.508095i
\(196\) 0 0
\(197\) 3.11937e10i 1.47560i 0.675018 + 0.737801i \(0.264136\pi\)
−0.675018 + 0.737801i \(0.735864\pi\)
\(198\) 0 0
\(199\) 1.59157e10 0.719426 0.359713 0.933063i \(-0.382875\pi\)
0.359713 + 0.933063i \(0.382875\pi\)
\(200\) 0 0
\(201\) 3.91937e10i 1.69369i
\(202\) 0 0
\(203\) 5.19466e10i 2.14696i
\(204\) 0 0
\(205\) 6.46373e9 0.255618
\(206\) 0 0
\(207\) −1.51284e10 −0.572700
\(208\) 0 0
\(209\) 7.21518e9 0.261570
\(210\) 0 0
\(211\) −5.45855e10 −1.89586 −0.947931 0.318476i \(-0.896829\pi\)
−0.947931 + 0.318476i \(0.896829\pi\)
\(212\) 0 0
\(213\) 1.07049e10i 0.356349i
\(214\) 0 0
\(215\) 9.76602e9i 0.311705i
\(216\) 0 0
\(217\) −3.93070e10 −1.20338
\(218\) 0 0
\(219\) 7.09708e9i 0.208488i
\(220\) 0 0
\(221\) 1.19996e10 1.44639e10i 0.338377 0.407868i
\(222\) 0 0
\(223\) 5.64556e10i 1.52875i −0.644775 0.764373i \(-0.723049\pi\)
0.644775 0.764373i \(-0.276951\pi\)
\(224\) 0 0
\(225\) 1.46539e10 0.381181
\(226\) 0 0
\(227\) 1.65635e10i 0.414034i 0.978337 + 0.207017i \(0.0663756\pi\)
−0.978337 + 0.207017i \(0.933624\pi\)
\(228\) 0 0
\(229\) 4.42815e10i 1.06405i 0.846728 + 0.532026i \(0.178569\pi\)
−0.846728 + 0.532026i \(0.821431\pi\)
\(230\) 0 0
\(231\) 4.52149e10 1.04479
\(232\) 0 0
\(233\) −5.13087e10 −1.14049 −0.570243 0.821476i \(-0.693151\pi\)
−0.570243 + 0.821476i \(0.693151\pi\)
\(234\) 0 0
\(235\) 8.23724e8 0.0176188
\(236\) 0 0
\(237\) 3.93577e9 0.0810331
\(238\) 0 0
\(239\) 3.70720e10i 0.734946i −0.930034 0.367473i \(-0.880223\pi\)
0.930034 0.367473i \(-0.119777\pi\)
\(240\) 0 0
\(241\) 1.68658e10i 0.322055i −0.986950 0.161028i \(-0.948519\pi\)
0.986950 0.161028i \(-0.0514809\pi\)
\(242\) 0 0
\(243\) 5.95195e10 1.09504
\(244\) 0 0
\(245\) 9.95805e10i 1.76574i
\(246\) 0 0
\(247\) −2.81098e10 2.33205e10i −0.480531 0.398659i
\(248\) 0 0
\(249\) 1.10713e11i 1.82516i
\(250\) 0 0
\(251\) −6.18959e10 −0.984306 −0.492153 0.870509i \(-0.663790\pi\)
−0.492153 + 0.870509i \(0.663790\pi\)
\(252\) 0 0
\(253\) 2.50309e10i 0.384092i
\(254\) 0 0
\(255\) 2.84746e10i 0.421722i
\(256\) 0 0
\(257\) −3.86249e10 −0.552291 −0.276145 0.961116i \(-0.589057\pi\)
−0.276145 + 0.961116i \(0.589057\pi\)
\(258\) 0 0
\(259\) 1.58568e10 0.218961
\(260\) 0 0
\(261\) 5.13859e10 0.685427
\(262\) 0 0
\(263\) −9.89872e10 −1.27579 −0.637894 0.770124i \(-0.720194\pi\)
−0.637894 + 0.770124i \(0.720194\pi\)
\(264\) 0 0
\(265\) 8.45093e10i 1.05268i
\(266\) 0 0
\(267\) 1.21596e10i 0.146426i
\(268\) 0 0
\(269\) 1.49995e11 1.74659 0.873293 0.487195i \(-0.161980\pi\)
0.873293 + 0.487195i \(0.161980\pi\)
\(270\) 0 0
\(271\) 1.41916e11i 1.59834i 0.601103 + 0.799172i \(0.294728\pi\)
−0.601103 + 0.799172i \(0.705272\pi\)
\(272\) 0 0
\(273\) −1.76154e11 1.46141e11i −1.91938 1.59236i
\(274\) 0 0
\(275\) 2.42457e10i 0.255645i
\(276\) 0 0
\(277\) −5.28360e10 −0.539226 −0.269613 0.962969i \(-0.586896\pi\)
−0.269613 + 0.962969i \(0.586896\pi\)
\(278\) 0 0
\(279\) 3.88828e10i 0.384183i
\(280\) 0 0
\(281\) 3.28951e10i 0.314740i 0.987540 + 0.157370i \(0.0503016\pi\)
−0.987540 + 0.157370i \(0.949698\pi\)
\(282\) 0 0
\(283\) −1.71935e11 −1.59340 −0.796702 0.604372i \(-0.793424\pi\)
−0.796702 + 0.604372i \(0.793424\pi\)
\(284\) 0 0
\(285\) 5.53389e10 0.496853
\(286\) 0 0
\(287\) −9.20780e10 −0.801101
\(288\) 0 0
\(289\) −8.52819e10 −0.719145
\(290\) 0 0
\(291\) 2.97875e11i 2.43510i
\(292\) 0 0
\(293\) 1.80544e11i 1.43113i −0.698548 0.715563i \(-0.746170\pi\)
0.698548 0.715563i \(-0.253830\pi\)
\(294\) 0 0
\(295\) 9.20684e10 0.707802
\(296\) 0 0
\(297\) 2.68759e10i 0.200429i
\(298\) 0 0
\(299\) −8.09037e10 + 9.75187e10i −0.585394 + 0.705615i
\(300\) 0 0
\(301\) 1.39120e11i 0.976879i
\(302\) 0 0
\(303\) −1.72857e11 −1.17813
\(304\) 0 0
\(305\) 1.45367e9i 0.00961868i
\(306\) 0 0
\(307\) 2.74566e11i 1.76410i 0.471155 + 0.882050i \(0.343837\pi\)
−0.471155 + 0.882050i \(0.656163\pi\)
\(308\) 0 0
\(309\) 9.60422e10 0.599306
\(310\) 0 0
\(311\) 2.51067e11 1.52183 0.760917 0.648849i \(-0.224749\pi\)
0.760917 + 0.648849i \(0.224749\pi\)
\(312\) 0 0
\(313\) 1.97868e11 1.16527 0.582633 0.812735i \(-0.302022\pi\)
0.582633 + 0.812735i \(0.302022\pi\)
\(314\) 0 0
\(315\) 1.33335e11 0.763036
\(316\) 0 0
\(317\) 7.71521e10i 0.429122i 0.976711 + 0.214561i \(0.0688321\pi\)
−0.976711 + 0.214561i \(0.931168\pi\)
\(318\) 0 0
\(319\) 8.50211e10i 0.459694i
\(320\) 0 0
\(321\) 1.30552e11 0.686296
\(322\) 0 0
\(323\) 6.47285e10i 0.330890i
\(324\) 0 0
\(325\) 7.83658e10 9.44596e10i 0.389629 0.469646i
\(326\) 0 0
\(327\) 3.73399e11i 1.80596i
\(328\) 0 0
\(329\) −1.17342e10 −0.0552170
\(330\) 0 0
\(331\) 2.43934e10i 0.111698i −0.998439 0.0558491i \(-0.982213\pi\)
0.998439 0.0558491i \(-0.0177866\pi\)
\(332\) 0 0
\(333\) 1.56856e10i 0.0699042i
\(334\) 0 0
\(335\) 1.91232e11 0.829581
\(336\) 0 0
\(337\) 2.20289e11 0.930373 0.465187 0.885213i \(-0.345987\pi\)
0.465187 + 0.885213i \(0.345987\pi\)
\(338\) 0 0
\(339\) 5.58512e11 2.29686
\(340\) 0 0
\(341\) −6.43340e10 −0.257659
\(342\) 0 0
\(343\) 9.16995e11i 3.57720i
\(344\) 0 0
\(345\) 1.91982e11i 0.729583i
\(346\) 0 0
\(347\) −9.62069e10 −0.356224 −0.178112 0.984010i \(-0.556999\pi\)
−0.178112 + 0.984010i \(0.556999\pi\)
\(348\) 0 0
\(349\) 3.83556e11i 1.38393i 0.721931 + 0.691965i \(0.243255\pi\)
−0.721931 + 0.691965i \(0.756745\pi\)
\(350\) 0 0
\(351\) 8.68670e10 1.04707e11i 0.305473 0.368207i
\(352\) 0 0
\(353\) 3.25469e11i 1.11564i 0.829963 + 0.557818i \(0.188361\pi\)
−0.829963 + 0.557818i \(0.811639\pi\)
\(354\) 0 0
\(355\) 5.22309e10 0.174542
\(356\) 0 0
\(357\) 4.05630e11i 1.32167i
\(358\) 0 0
\(359\) 1.48039e11i 0.470382i −0.971949 0.235191i \(-0.924428\pi\)
0.971949 0.235191i \(-0.0755716\pi\)
\(360\) 0 0
\(361\) 1.96891e11 0.610160
\(362\) 0 0
\(363\) −3.47654e11 −1.05092
\(364\) 0 0
\(365\) 3.46277e10 0.102119
\(366\) 0 0
\(367\) −6.02521e11 −1.73370 −0.866851 0.498567i \(-0.833860\pi\)
−0.866851 + 0.498567i \(0.833860\pi\)
\(368\) 0 0
\(369\) 9.10841e10i 0.255755i
\(370\) 0 0
\(371\) 1.20386e12i 3.29909i
\(372\) 0 0
\(373\) 3.39160e10 0.0907224 0.0453612 0.998971i \(-0.485556\pi\)
0.0453612 + 0.998971i \(0.485556\pi\)
\(374\) 0 0
\(375\) 4.90697e11i 1.28137i
\(376\) 0 0
\(377\) 2.74801e11 3.31236e11i 0.700619 0.844504i
\(378\) 0 0
\(379\) 5.05542e11i 1.25858i 0.777170 + 0.629290i \(0.216654\pi\)
−0.777170 + 0.629290i \(0.783346\pi\)
\(380\) 0 0
\(381\) −3.06445e11 −0.745058
\(382\) 0 0
\(383\) 4.79295e11i 1.13817i 0.822278 + 0.569087i \(0.192703\pi\)
−0.822278 + 0.569087i \(0.807297\pi\)
\(384\) 0 0
\(385\) 2.20610e11i 0.511744i
\(386\) 0 0
\(387\) 1.37619e11 0.311873
\(388\) 0 0
\(389\) 2.51652e11 0.557220 0.278610 0.960404i \(-0.410126\pi\)
0.278610 + 0.960404i \(0.410126\pi\)
\(390\) 0 0
\(391\) −2.24556e11 −0.485881
\(392\) 0 0
\(393\) 1.14675e12 2.42494
\(394\) 0 0
\(395\) 1.92032e10i 0.0396906i
\(396\) 0 0
\(397\) 4.05274e11i 0.818826i 0.912349 + 0.409413i \(0.134267\pi\)
−0.912349 + 0.409413i \(0.865733\pi\)
\(398\) 0 0
\(399\) −7.88320e11 −1.55713
\(400\) 0 0
\(401\) 9.16320e11i 1.76969i 0.465885 + 0.884845i \(0.345736\pi\)
−0.465885 + 0.884845i \(0.654264\pi\)
\(402\) 0 0
\(403\) 2.50640e11 + 2.07937e11i 0.473346 + 0.392698i
\(404\) 0 0
\(405\) 4.17283e11i 0.770696i
\(406\) 0 0
\(407\) 2.59529e10 0.0468825
\(408\) 0 0
\(409\) 4.36484e11i 0.771283i −0.922649 0.385641i \(-0.873980\pi\)
0.922649 0.385641i \(-0.126020\pi\)
\(410\) 0 0
\(411\) 9.28678e11i 1.60538i
\(412\) 0 0
\(413\) −1.31155e12 −2.21824
\(414\) 0 0
\(415\) −5.40185e11 −0.893976
\(416\) 0 0
\(417\) −5.50461e11 −0.891486
\(418\) 0 0
\(419\) 5.55256e11 0.880096 0.440048 0.897974i \(-0.354961\pi\)
0.440048 + 0.897974i \(0.354961\pi\)
\(420\) 0 0
\(421\) 1.10385e12i 1.71254i −0.516532 0.856268i \(-0.672777\pi\)
0.516532 0.856268i \(-0.327223\pi\)
\(422\) 0 0
\(423\) 1.16076e10i 0.0176283i
\(424\) 0 0
\(425\) 2.17512e11 0.323395
\(426\) 0 0
\(427\) 2.07080e10i 0.0301448i
\(428\) 0 0
\(429\) −2.88312e11 2.39190e11i −0.410965 0.340946i
\(430\) 0 0
\(431\) 6.45409e11i 0.900922i −0.892796 0.450461i \(-0.851260\pi\)
0.892796 0.450461i \(-0.148740\pi\)
\(432\) 0 0
\(433\) 5.94512e11 0.812765 0.406383 0.913703i \(-0.366790\pi\)
0.406383 + 0.913703i \(0.366790\pi\)
\(434\) 0 0
\(435\) 6.52094e11i 0.873189i
\(436\) 0 0
\(437\) 4.36414e11i 0.572443i
\(438\) 0 0
\(439\) −5.14469e11 −0.661102 −0.330551 0.943788i \(-0.607235\pi\)
−0.330551 + 0.943788i \(0.607235\pi\)
\(440\) 0 0
\(441\) −1.40325e12 −1.76669
\(442\) 0 0
\(443\) −6.20213e11 −0.765110 −0.382555 0.923933i \(-0.624956\pi\)
−0.382555 + 0.923933i \(0.624956\pi\)
\(444\) 0 0
\(445\) 5.93285e10 0.0717205
\(446\) 0 0
\(447\) 6.41278e11i 0.759736i
\(448\) 0 0
\(449\) 1.46150e9i 0.00169703i −1.00000 0.000848514i \(-0.999730\pi\)
1.00000 0.000848514i \(-0.000270090\pi\)
\(450\) 0 0
\(451\) −1.50704e11 −0.171527
\(452\) 0 0
\(453\) 6.71737e11i 0.749475i
\(454\) 0 0
\(455\) 7.13045e11 8.59482e11i 0.779949 0.940124i
\(456\) 0 0
\(457\) 2.62753e11i 0.281790i 0.990025 + 0.140895i \(0.0449979\pi\)
−0.990025 + 0.140895i \(0.955002\pi\)
\(458\) 0 0
\(459\) 2.41108e11 0.253545
\(460\) 0 0
\(461\) 5.56713e11i 0.574087i −0.957918 0.287043i \(-0.907328\pi\)
0.957918 0.287043i \(-0.0926724\pi\)
\(462\) 0 0
\(463\) 2.92683e11i 0.295994i 0.988988 + 0.147997i \(0.0472825\pi\)
−0.988988 + 0.147997i \(0.952717\pi\)
\(464\) 0 0
\(465\) −4.93428e11 −0.489424
\(466\) 0 0
\(467\) 1.47515e12 1.43519 0.717595 0.696461i \(-0.245243\pi\)
0.717595 + 0.696461i \(0.245243\pi\)
\(468\) 0 0
\(469\) −2.72416e12 −2.59989
\(470\) 0 0
\(471\) 2.22473e12 2.08297
\(472\) 0 0
\(473\) 2.27699e11i 0.209163i
\(474\) 0 0
\(475\) 4.22724e11i 0.381009i
\(476\) 0 0
\(477\) −1.19087e12 −1.05325
\(478\) 0 0
\(479\) 4.83412e11i 0.419573i 0.977747 + 0.209787i \(0.0672769\pi\)
−0.977747 + 0.209787i \(0.932723\pi\)
\(480\) 0 0
\(481\) −1.01111e11 8.38836e10i −0.0861278 0.0714536i
\(482\) 0 0
\(483\) 2.73485e12i 2.28650i
\(484\) 0 0
\(485\) 1.45338e12 1.19273
\(486\) 0 0
\(487\) 1.27915e11i 0.103049i 0.998672 + 0.0515243i \(0.0164080\pi\)
−0.998672 + 0.0515243i \(0.983592\pi\)
\(488\) 0 0
\(489\) 1.18612e12i 0.938074i
\(490\) 0 0
\(491\) 1.76741e12 1.37237 0.686186 0.727426i \(-0.259284\pi\)
0.686186 + 0.727426i \(0.259284\pi\)
\(492\) 0 0
\(493\) 7.62738e11 0.581519
\(494\) 0 0
\(495\) 2.18229e11 0.163376
\(496\) 0 0
\(497\) −7.44047e11 −0.547011
\(498\) 0 0
\(499\) 9.65216e11i 0.696903i 0.937327 + 0.348451i \(0.113292\pi\)
−0.937327 + 0.348451i \(0.886708\pi\)
\(500\) 0 0
\(501\) 1.06039e12i 0.751963i
\(502\) 0 0
\(503\) −2.40140e12 −1.67266 −0.836331 0.548224i \(-0.815304\pi\)
−0.836331 + 0.548224i \(0.815304\pi\)
\(504\) 0 0
\(505\) 8.43394e11i 0.577058i
\(506\) 0 0
\(507\) 3.50144e11 + 1.86373e12i 0.235348 + 1.25270i
\(508\) 0 0
\(509\) 2.19424e12i 1.44895i −0.689300 0.724476i \(-0.742082\pi\)
0.689300 0.724476i \(-0.257918\pi\)
\(510\) 0 0
\(511\) −4.93284e11 −0.320039
\(512\) 0 0
\(513\) 4.68581e11i 0.298715i
\(514\) 0 0
\(515\) 4.68604e11i 0.293544i
\(516\) 0 0
\(517\) −1.92054e10 −0.0118227
\(518\) 0 0
\(519\) −2.05112e12 −1.24090
\(520\) 0 0
\(521\) −4.95469e11 −0.294609 −0.147305 0.989091i \(-0.547060\pi\)
−0.147305 + 0.989091i \(0.547060\pi\)
\(522\) 0 0
\(523\) −2.61822e12 −1.53020 −0.765100 0.643912i \(-0.777310\pi\)
−0.765100 + 0.643912i \(0.777310\pi\)
\(524\) 0 0
\(525\) 2.64906e12i 1.52186i
\(526\) 0 0
\(527\) 5.77150e11i 0.325942i
\(528\) 0 0
\(529\) −2.87143e11 −0.159422
\(530\) 0 0
\(531\) 1.29739e12i 0.708182i
\(532\) 0 0
\(533\) 5.87133e11 + 4.87099e11i 0.315111 + 0.261424i
\(534\) 0 0
\(535\) 6.36983e11i 0.336152i
\(536\) 0 0
\(537\) −1.66849e12 −0.865841
\(538\) 0 0
\(539\) 2.32176e12i 1.18486i
\(540\) 0 0
\(541\) 2.57741e12i 1.29359i 0.762665 + 0.646793i \(0.223890\pi\)
−0.762665 + 0.646793i \(0.776110\pi\)
\(542\) 0 0
\(543\) 2.55666e12 1.26204
\(544\) 0 0
\(545\) 1.82187e12 0.884571
\(546\) 0 0
\(547\) 1.86894e12 0.892589 0.446295 0.894886i \(-0.352743\pi\)
0.446295 + 0.894886i \(0.352743\pi\)
\(548\) 0 0
\(549\) −2.04844e10 −0.00962385
\(550\) 0 0
\(551\) 1.48234e12i 0.685119i
\(552\) 0 0
\(553\) 2.73556e11i 0.124390i
\(554\) 0 0
\(555\) 1.99053e11 0.0890534
\(556\) 0 0
\(557\) 1.81436e12i 0.798684i −0.916802 0.399342i \(-0.869239\pi\)
0.916802 0.399342i \(-0.130761\pi\)
\(558\) 0 0
\(559\) 7.35956e11 8.87097e11i 0.318785 0.384254i
\(560\) 0 0
\(561\) 6.63896e11i 0.282987i
\(562\) 0 0
\(563\) 5.15732e11 0.216340 0.108170 0.994132i \(-0.465501\pi\)
0.108170 + 0.994132i \(0.465501\pi\)
\(564\) 0 0
\(565\) 2.72507e12i 1.12502i
\(566\) 0 0
\(567\) 5.94433e12i 2.41535i
\(568\) 0 0
\(569\) −1.32815e12 −0.531180 −0.265590 0.964086i \(-0.585567\pi\)
−0.265590 + 0.964086i \(0.585567\pi\)
\(570\) 0 0
\(571\) 3.17589e12 1.25027 0.625133 0.780518i \(-0.285045\pi\)
0.625133 + 0.780518i \(0.285045\pi\)
\(572\) 0 0
\(573\) 3.69743e12 1.43286
\(574\) 0 0
\(575\) −1.46652e12 −0.559476
\(576\) 0 0
\(577\) 4.86230e12i 1.82621i 0.407725 + 0.913105i \(0.366322\pi\)
−0.407725 + 0.913105i \(0.633678\pi\)
\(578\) 0 0
\(579\) 5.04581e11i 0.186585i
\(580\) 0 0
\(581\) 7.69511e12 2.80170
\(582\) 0 0
\(583\) 1.97037e12i 0.706380i
\(584\) 0 0
\(585\) −8.50205e11 7.05349e11i −0.300139 0.249002i
\(586\) 0 0
\(587\) 2.28065e12i 0.792843i 0.918069 + 0.396421i \(0.129748\pi\)
−0.918069 + 0.396421i \(0.870252\pi\)
\(588\) 0 0
\(589\) 1.12166e12 0.384010
\(590\) 0 0
\(591\) 5.57819e12i 1.88083i
\(592\) 0 0
\(593\) 2.89812e11i 0.0962433i −0.998841 0.0481216i \(-0.984676\pi\)
0.998841 0.0481216i \(-0.0153235\pi\)
\(594\) 0 0
\(595\) 1.97913e12 0.647363
\(596\) 0 0
\(597\) −2.84610e12 −0.916993
\(598\) 0 0
\(599\) 1.19267e12 0.378528 0.189264 0.981926i \(-0.439390\pi\)
0.189264 + 0.981926i \(0.439390\pi\)
\(600\) 0 0
\(601\) 1.34698e12 0.421140 0.210570 0.977579i \(-0.432468\pi\)
0.210570 + 0.977579i \(0.432468\pi\)
\(602\) 0 0
\(603\) 2.69476e12i 0.830027i
\(604\) 0 0
\(605\) 1.69626e12i 0.514746i
\(606\) 0 0
\(607\) 1.07605e11 0.0321724 0.0160862 0.999871i \(-0.494879\pi\)
0.0160862 + 0.999871i \(0.494879\pi\)
\(608\) 0 0
\(609\) 9.28929e12i 2.73656i
\(610\) 0 0
\(611\) 7.48230e10 + 6.20749e10i 0.0217195 + 0.0180190i
\(612\) 0 0
\(613\) 7.68586e11i 0.219847i 0.993940 + 0.109923i \(0.0350606\pi\)
−0.993940 + 0.109923i \(0.964939\pi\)
\(614\) 0 0
\(615\) −1.15587e12 −0.325815
\(616\) 0 0
\(617\) 1.45026e12i 0.402868i −0.979502 0.201434i \(-0.935440\pi\)
0.979502 0.201434i \(-0.0645602\pi\)
\(618\) 0 0
\(619\) 4.23653e12i 1.15985i −0.814669 0.579926i \(-0.803081\pi\)
0.814669 0.579926i \(-0.196919\pi\)
\(620\) 0 0
\(621\) −1.62560e12 −0.438635
\(622\) 0 0
\(623\) −8.45154e11 −0.224771
\(624\) 0 0
\(625\) −6.63500e10 −0.0173933
\(626\) 0 0
\(627\) −1.29025e12 −0.333403
\(628\) 0 0
\(629\) 2.32827e11i 0.0593070i
\(630\) 0 0
\(631\) 4.40245e12i 1.10551i −0.833344 0.552754i \(-0.813577\pi\)
0.833344 0.552754i \(-0.186423\pi\)
\(632\) 0 0
\(633\) 9.76121e12 2.41650
\(634\) 0 0
\(635\) 1.49519e12i 0.364935i
\(636\) 0 0
\(637\) −7.50427e12 + 9.04540e12i −1.80585 + 2.17671i
\(638\) 0 0
\(639\) 7.36016e11i 0.174636i
\(640\) 0 0
\(641\) 2.29586e12 0.537136 0.268568 0.963261i \(-0.413450\pi\)
0.268568 + 0.963261i \(0.413450\pi\)
\(642\) 0 0
\(643\) 6.50802e12i 1.50141i 0.660637 + 0.750705i \(0.270286\pi\)
−0.660637 + 0.750705i \(0.729714\pi\)
\(644\) 0 0
\(645\) 1.74640e12i 0.397306i
\(646\) 0 0
\(647\) −3.71987e12 −0.834561 −0.417280 0.908778i \(-0.637017\pi\)
−0.417280 + 0.908778i \(0.637017\pi\)
\(648\) 0 0
\(649\) −2.14661e12 −0.474955
\(650\) 0 0
\(651\) 7.02904e12 1.53385
\(652\) 0 0
\(653\) 5.52818e12 1.18980 0.594898 0.803801i \(-0.297192\pi\)
0.594898 + 0.803801i \(0.297192\pi\)
\(654\) 0 0
\(655\) 5.59515e12i 1.18775i
\(656\) 0 0
\(657\) 4.87960e11i 0.102174i
\(658\) 0 0
\(659\) −8.04400e11 −0.166145 −0.0830726 0.996543i \(-0.526473\pi\)
−0.0830726 + 0.996543i \(0.526473\pi\)
\(660\) 0 0
\(661\) 3.35982e11i 0.0684557i 0.999414 + 0.0342278i \(0.0108972\pi\)
−0.999414 + 0.0342278i \(0.989103\pi\)
\(662\) 0 0
\(663\) −2.14581e12 + 2.58649e12i −0.431301 + 0.519876i
\(664\) 0 0
\(665\) 3.84633e12i 0.762693i
\(666\) 0 0
\(667\) −5.14255e12 −1.00603
\(668\) 0 0
\(669\) 1.00956e13i 1.94857i
\(670\) 0 0
\(671\) 3.38928e10i 0.00645440i
\(672\) 0 0
\(673\) −6.72025e12 −1.26275 −0.631376 0.775477i \(-0.717509\pi\)
−0.631376 + 0.775477i \(0.717509\pi\)
\(674\) 0 0
\(675\) 1.57461e12 0.291948
\(676\) 0 0
\(677\) −7.28330e11 −0.133254 −0.0666268 0.997778i \(-0.521224\pi\)
−0.0666268 + 0.997778i \(0.521224\pi\)
\(678\) 0 0
\(679\) −2.07039e13 −3.73798
\(680\) 0 0
\(681\) 2.96196e12i 0.527736i
\(682\) 0 0
\(683\) 2.33811e12i 0.411123i 0.978644 + 0.205561i \(0.0659020\pi\)
−0.978644 + 0.205561i \(0.934098\pi\)
\(684\) 0 0
\(685\) −4.53116e12 −0.786324
\(686\) 0 0
\(687\) 7.91860e12i 1.35626i
\(688\) 0 0
\(689\) −6.36852e12 + 7.67640e12i −1.07659 + 1.29769i
\(690\) 0 0
\(691\) 1.87535e12i 0.312918i 0.987684 + 0.156459i \(0.0500080\pi\)
−0.987684 + 0.156459i \(0.949992\pi\)
\(692\) 0 0
\(693\) −3.10875e12 −0.512019
\(694\) 0 0
\(695\) 2.68578e12i 0.436656i
\(696\) 0 0
\(697\) 1.35199e12i 0.216984i
\(698\) 0 0
\(699\) 9.17523e12 1.45368
\(700\) 0 0
\(701\) 7.63818e11 0.119470 0.0597350 0.998214i \(-0.480974\pi\)
0.0597350 + 0.998214i \(0.480974\pi\)
\(702\) 0 0
\(703\) −4.52488e11 −0.0698727
\(704\) 0 0
\(705\) −1.47302e11 −0.0224573
\(706\) 0 0
\(707\) 1.20144e13i 1.80849i
\(708\) 0 0
\(709\) 3.19158e12i 0.474348i 0.971467 + 0.237174i \(0.0762212\pi\)
−0.971467 + 0.237174i \(0.923779\pi\)
\(710\) 0 0
\(711\) −2.70604e11 −0.0397119
\(712\) 0 0
\(713\) 3.89127e12i 0.563883i
\(714\) 0 0
\(715\) 1.16704e12 1.40672e12i 0.166998 0.201293i
\(716\) 0 0
\(717\) 6.62937e12i 0.936776i
\(718\) 0 0
\(719\) −3.34548e12 −0.466852 −0.233426 0.972375i \(-0.574994\pi\)
−0.233426 + 0.972375i \(0.574994\pi\)
\(720\) 0 0
\(721\) 6.67542e12i 0.919962i
\(722\) 0 0
\(723\) 3.01601e12i 0.410498i
\(724\) 0 0
\(725\) 4.98123e12 0.669600
\(726\) 0 0
\(727\) −7.76320e12 −1.03071 −0.515354 0.856977i \(-0.672340\pi\)
−0.515354 + 0.856977i \(0.672340\pi\)
\(728\) 0 0
\(729\) −1.23001e12 −0.161300
\(730\) 0 0
\(731\) 2.04272e12 0.264594
\(732\) 0 0
\(733\) 4.28627e12i 0.548417i 0.961670 + 0.274209i \(0.0884159\pi\)
−0.961670 + 0.274209i \(0.911584\pi\)
\(734\) 0 0
\(735\) 1.78074e13i 2.25065i
\(736\) 0 0
\(737\) −4.45865e12 −0.556672
\(738\) 0 0
\(739\) 2.44262e12i 0.301270i −0.988589 0.150635i \(-0.951868\pi\)
0.988589 0.150635i \(-0.0481319\pi\)
\(740\) 0 0
\(741\) 5.02671e12 + 4.17027e12i 0.612494 + 0.508139i
\(742\) 0 0
\(743\) 7.65598e12i 0.921618i 0.887499 + 0.460809i \(0.152441\pi\)
−0.887499 + 0.460809i \(0.847559\pi\)
\(744\) 0 0
\(745\) −3.12889e12 −0.372124
\(746\) 0 0
\(747\) 7.61206e12i 0.894457i
\(748\) 0 0
\(749\) 9.07404e12i 1.05350i
\(750\) 0 0
\(751\) 7.61452e12 0.873500 0.436750 0.899583i \(-0.356129\pi\)
0.436750 + 0.899583i \(0.356129\pi\)
\(752\) 0 0
\(753\) 1.10685e13 1.25461
\(754\) 0 0
\(755\) 3.27751e12 0.367098
\(756\) 0 0
\(757\) 3.87823e12 0.429242 0.214621 0.976697i \(-0.431148\pi\)
0.214621 + 0.976697i \(0.431148\pi\)
\(758\) 0 0
\(759\) 4.47613e12i 0.489570i
\(760\) 0 0
\(761\) 7.72485e12i 0.834947i 0.908689 + 0.417473i \(0.137084\pi\)
−0.908689 + 0.417473i \(0.862916\pi\)
\(762\) 0 0
\(763\) −2.59531e13 −2.77223
\(764\) 0 0
\(765\) 1.95777e12i 0.206673i
\(766\) 0 0
\(767\) 8.36304e12 + 6.93817e12i 0.872540 + 0.723879i
\(768\) 0 0
\(769\) 1.32730e13i 1.36868i 0.729164 + 0.684339i \(0.239909\pi\)
−0.729164 + 0.684339i \(0.760091\pi\)
\(770\) 0 0
\(771\) 6.90705e12 0.703960
\(772\) 0 0
\(773\) 4.57301e12i 0.460675i −0.973111 0.230337i \(-0.926017\pi\)
0.973111 0.230337i \(-0.0739829\pi\)
\(774\) 0 0
\(775\) 3.76920e12i 0.375312i
\(776\) 0 0
\(777\) −2.83558e12 −0.279092
\(778\) 0 0
\(779\) 2.62753e12 0.255640
\(780\) 0 0
\(781\) −1.21778e12 −0.117123
\(782\) 0 0
\(783\) 5.52160e12 0.524973
\(784\) 0 0
\(785\) 1.08548e13i 1.02025i
\(786\) 0 0
\(787\) 1.76744e13i 1.64232i 0.570700 + 0.821159i \(0.306672\pi\)
−0.570700 + 0.821159i \(0.693328\pi\)
\(788\) 0 0
\(789\) 1.77013e13 1.62614
\(790\) 0 0
\(791\) 3.88195e13i 3.52578i
\(792\) 0 0
\(793\) −1.09547e11 + 1.32044e11i −0.00983715 + 0.0118574i
\(794\) 0 0
\(795\) 1.51123e13i 1.34177i
\(796\) 0 0
\(797\) 1.08571e13 0.953125 0.476563 0.879140i \(-0.341883\pi\)
0.476563 + 0.879140i \(0.341883\pi\)
\(798\) 0 0
\(799\) 1.72295e11i 0.0149559i
\(800\) 0 0
\(801\) 8.36032e11i 0.0717590i
\(802\) 0 0
\(803\) −8.07359e11 −0.0685247
\(804\) 0 0
\(805\) −1.33437e13 −1.11994
\(806\) 0 0
\(807\) −2.68226e13 −2.22623
\(808\) 0 0
\(809\) 7.43378e12 0.610157 0.305078 0.952327i \(-0.401317\pi\)
0.305078 + 0.952327i \(0.401317\pi\)
\(810\) 0 0
\(811\) 2.89877e12i 0.235299i −0.993055 0.117649i \(-0.962464\pi\)
0.993055 0.117649i \(-0.0375359\pi\)
\(812\) 0 0
\(813\) 2.53780e13i 2.03728i
\(814\) 0 0
\(815\) −5.78724e12 −0.459475
\(816\) 0 0
\(817\) 3.96992e12i 0.311733i
\(818\) 0 0
\(819\) 1.21115e13 + 1.00479e13i 0.940630 + 0.780368i
\(820\) 0 0
\(821\) 9.41158e11i 0.0722967i −0.999346 0.0361484i \(-0.988491\pi\)
0.999346 0.0361484i \(-0.0115089\pi\)
\(822\) 0 0
\(823\) −1.18579e13 −0.900963 −0.450482 0.892786i \(-0.648748\pi\)
−0.450482 + 0.892786i \(0.648748\pi\)
\(824\) 0 0
\(825\) 4.33572e12i 0.325850i
\(826\) 0 0
\(827\) 7.69904e12i 0.572350i 0.958177 + 0.286175i \(0.0923839\pi\)
−0.958177 + 0.286175i \(0.907616\pi\)
\(828\) 0 0
\(829\) −6.20673e12 −0.456423 −0.228211 0.973612i \(-0.573288\pi\)
−0.228211 + 0.973612i \(0.573288\pi\)
\(830\) 0 0
\(831\) 9.44835e12 0.687308
\(832\) 0 0
\(833\) −2.08288e13 −1.49887
\(834\) 0 0
\(835\) 5.17381e12 0.368316
\(836\) 0 0
\(837\) 4.17809e12i 0.294248i
\(838\) 0 0
\(839\) 6.25209e12i 0.435609i −0.975992 0.217804i \(-0.930111\pi\)
0.975992 0.217804i \(-0.0698895\pi\)
\(840\) 0 0
\(841\) 2.96024e12 0.204054
\(842\) 0 0
\(843\) 5.88243e12i 0.401174i
\(844\) 0 0
\(845\) −9.09344e12 + 1.70841e12i −0.613582 + 0.115275i
\(846\) 0 0
\(847\) 2.41638e13i 1.61320i
\(848\) 0 0
\(849\) 3.07462e13 2.03098
\(850\) 0 0
\(851\) 1.56977e12i 0.102602i
\(852\) 0 0
\(853\) 1.05576e13i 0.682804i −0.939917 0.341402i \(-0.889098\pi\)
0.939917 0.341402i \(-0.110902\pi\)
\(854\) 0 0
\(855\) −3.80482e12 −0.243493
\(856\) 0 0
\(857\) −1.84183e13 −1.16637 −0.583184 0.812340i \(-0.698194\pi\)
−0.583184 + 0.812340i \(0.698194\pi\)
\(858\) 0 0
\(859\) 7.81498e12 0.489732 0.244866 0.969557i \(-0.421256\pi\)
0.244866 + 0.969557i \(0.421256\pi\)
\(860\) 0 0
\(861\) 1.64658e13 1.02110
\(862\) 0 0
\(863\) 2.64440e13i 1.62285i −0.584456 0.811425i \(-0.698692\pi\)
0.584456 0.811425i \(-0.301308\pi\)
\(864\) 0 0
\(865\) 1.00077e13i 0.607803i
\(866\) 0 0
\(867\) 1.52505e13 0.916636
\(868\) 0 0
\(869\) 4.47731e11i 0.0266335i
\(870\) 0 0
\(871\) 1.73706e13 + 1.44110e13i 1.02266 + 0.848424i
\(872\) 0 0
\(873\) 2.04804e13i 1.19337i
\(874\) 0 0
\(875\) 3.41060e13 1.96695
\(876\) 0 0
\(877\) 4.20549e12i 0.240059i −0.992770 0.120030i \(-0.961701\pi\)
0.992770 0.120030i \(-0.0382990\pi\)
\(878\) 0 0
\(879\) 3.22855e13i 1.82414i
\(880\) 0 0
\(881\) −2.01404e13 −1.12636 −0.563180 0.826334i \(-0.690422\pi\)
−0.563180 + 0.826334i \(0.690422\pi\)
\(882\) 0 0
\(883\) 6.51095e12 0.360430 0.180215 0.983627i \(-0.442321\pi\)
0.180215 + 0.983627i \(0.442321\pi\)
\(884\) 0 0
\(885\) −1.64641e13 −0.902177
\(886\) 0 0
\(887\) 3.19150e13 1.73116 0.865582 0.500767i \(-0.166949\pi\)
0.865582 + 0.500767i \(0.166949\pi\)
\(888\) 0 0
\(889\) 2.12995e13i 1.14370i
\(890\) 0 0
\(891\) 9.72911e12i 0.517158i
\(892\) 0 0
\(893\) 3.34846e11 0.0176203
\(894\) 0 0
\(895\) 8.14080e12i 0.424095i
\(896\) 0 0
\(897\) 1.44675e13 1.74387e13i 0.746154 0.899389i
\(898\) 0 0
\(899\) 1.32173e13i 0.674874i
\(900\) 0 0
\(901\) −1.76765e13 −0.893581
\(902\) 0 0
\(903\) 2.48780e13i 1.24515i
\(904\) 0 0
\(905\) 1.24743e13i 0.618157i
\(906\) 0 0
\(907\) 7.63795e12 0.374752 0.187376 0.982288i \(-0.440002\pi\)
0.187376 + 0.982288i \(0.440002\pi\)
\(908\) 0 0
\(909\) 1.18847e13 0.577368
\(910\) 0 0
\(911\) 2.29839e13 1.10558 0.552791 0.833320i \(-0.313563\pi\)
0.552791 + 0.833320i \(0.313563\pi\)
\(912\) 0 0
\(913\) 1.25946e13 0.599883
\(914\) 0 0
\(915\) 2.59950e11i 0.0122601i
\(916\) 0 0
\(917\) 7.97047e13i 3.72239i
\(918\) 0 0
\(919\) −3.29468e13 −1.52368 −0.761840 0.647765i \(-0.775704\pi\)
−0.761840 + 0.647765i \(0.775704\pi\)
\(920\) 0 0
\(921\) 4.90989e13i 2.24856i
\(922\) 0 0
\(923\) 4.74440e12 + 3.93606e12i 0.215166 + 0.178506i
\(924\) 0 0
\(925\) 1.52053e12i 0.0682900i
\(926\) 0 0
\(927\) −6.60337e12 −0.293702
\(928\) 0 0
\(929\) 3.70200e13i 1.63067i −0.578991 0.815334i \(-0.696553\pi\)
0.578991 0.815334i \(-0.303447\pi\)
\(930\) 0 0
\(931\) 4.04798e13i 1.76589i
\(932\) 0 0
\(933\) −4.48968e13 −1.93976
\(934\) 0 0
\(935\) 3.23925e12 0.138609
\(936\) 0 0
\(937\) 2.43607e13 1.03243 0.516216 0.856458i \(-0.327340\pi\)
0.516216 + 0.856458i \(0.327340\pi\)
\(938\) 0 0
\(939\) −3.53835e13 −1.48527
\(940\) 0 0
\(941\) 1.87203e13i 0.778323i −0.921169 0.389162i \(-0.872765\pi\)
0.921169 0.389162i \(-0.127235\pi\)
\(942\) 0 0
\(943\) 9.11543e12i 0.375383i
\(944\) 0 0
\(945\) 1.43273e13 0.584414
\(946\) 0 0
\(947\) 2.86292e13i 1.15674i 0.815776 + 0.578369i \(0.196310\pi\)
−0.815776 + 0.578369i \(0.803690\pi\)
\(948\) 0 0
\(949\) 3.14541e12 + 2.60951e12i 0.125887 + 0.104438i
\(950\) 0 0
\(951\) 1.37966e13i 0.546967i
\(952\) 0 0
\(953\) −2.64752e13 −1.03973 −0.519865 0.854248i \(-0.674018\pi\)
−0.519865 + 0.854248i \(0.674018\pi\)
\(954\) 0 0
\(955\) 1.80403e13i 0.701825i
\(956\) 0 0
\(957\) 1.52038e13i 0.585934i
\(958\) 0 0
\(959\) 6.45479e13 2.46433
\(960\) 0 0
\(961\) 1.64384e13 0.621732
\(962\) 0 0
\(963\) −8.97610e12 −0.336333
\(964\) 0 0
\(965\) −2.46193e12 −0.0913908
\(966\) 0 0
\(967\) 1.18419e13i 0.435513i −0.976003 0.217756i \(-0.930126\pi\)
0.976003 0.217756i \(-0.0698739\pi\)
\(968\) 0 0
\(969\) 1.15750e13i 0.421759i
\(970\) 0 0
\(971\) −2.88614e13 −1.04191 −0.520956 0.853584i \(-0.674424\pi\)
−0.520956 + 0.853584i \(0.674424\pi\)
\(972\) 0 0
\(973\) 3.82599e13i 1.36847i
\(974\) 0 0
\(975\) −1.40137e13 + 1.68916e13i −0.496629 + 0.598620i
\(976\) 0 0
\(977\) 3.45215e13i 1.21217i 0.795400 + 0.606085i \(0.207261\pi\)
−0.795400 + 0.606085i \(0.792739\pi\)
\(978\) 0 0
\(979\) −1.38327e12 −0.0481265
\(980\) 0 0
\(981\) 2.56730e13i 0.885046i
\(982\) 0 0
\(983\) 3.79621e13i 1.29676i 0.761317 + 0.648380i \(0.224553\pi\)
−0.761317 + 0.648380i \(0.775447\pi\)
\(984\) 0 0
\(985\) 2.72168e13 0.921243
\(986\) 0 0
\(987\) 2.09836e12 0.0703806
\(988\) 0 0
\(989\) −1.37725e13 −0.457750
\(990\) 0 0
\(991\) −2.05074e13 −0.675428 −0.337714 0.941249i \(-0.609654\pi\)
−0.337714 + 0.941249i \(0.609654\pi\)
\(992\) 0 0
\(993\) 4.36213e12i 0.142373i
\(994\) 0 0
\(995\) 1.38866e13i 0.449150i
\(996\) 0 0
\(997\) −5.02628e13 −1.61108 −0.805542 0.592538i \(-0.798126\pi\)
−0.805542 + 0.592538i \(0.798126\pi\)
\(998\) 0 0
\(999\) 1.68548e12i 0.0535400i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 104.10.f.a.25.7 32
4.3 odd 2 208.10.f.d.129.26 32
13.12 even 2 inner 104.10.f.a.25.8 yes 32
52.51 odd 2 208.10.f.d.129.25 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.f.a.25.7 32 1.1 even 1 trivial
104.10.f.a.25.8 yes 32 13.12 even 2 inner
208.10.f.d.129.25 32 52.51 odd 2
208.10.f.d.129.26 32 4.3 odd 2