Properties

Label 104.10.f.a.25.6
Level $104$
Weight $10$
Character 104.25
Analytic conductor $53.564$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [104,10,Mod(25,104)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(104, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("104.25"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 104.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(53.5637269610\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 25.6
Character \(\chi\) \(=\) 104.25
Dual form 104.10.f.a.25.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-182.615 q^{3} -909.303i q^{5} -3898.48i q^{7} +13665.4 q^{9} +42009.9i q^{11} +(-15333.2 + 101830. i) q^{13} +166053. i q^{15} -405213. q^{17} -733733. i q^{19} +711923. i q^{21} -2.38431e6 q^{23} +1.12629e6 q^{25} +1.09891e6 q^{27} -6.21574e6 q^{29} +1.75978e6i q^{31} -7.67165e6i q^{33} -3.54490e6 q^{35} +1.58146e7i q^{37} +(2.80008e6 - 1.85958e7i) q^{39} +1.90152e7i q^{41} +1.39085e7 q^{43} -1.24260e7i q^{45} -1.76381e7i q^{47} +2.51555e7 q^{49} +7.39982e7 q^{51} +1.03876e8 q^{53} +3.81997e7 q^{55} +1.33991e8i q^{57} -1.34985e8i q^{59} -4.27452e7 q^{61} -5.32743e7i q^{63} +(9.25945e7 + 1.39425e7i) q^{65} -1.49940e8i q^{67} +4.35412e8 q^{69} +2.27379e8i q^{71} -1.48065e8i q^{73} -2.05679e8 q^{75} +1.63775e8 q^{77} +8.27879e7 q^{79} -4.69653e8 q^{81} -3.33426e8i q^{83} +3.68461e8i q^{85} +1.13509e9 q^{87} -2.12521e8i q^{89} +(3.96983e8 + 5.97762e7i) q^{91} -3.21362e8i q^{93} -6.67186e8 q^{95} +8.43207e8i q^{97} +5.74081e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 162 q^{3} + 223074 q^{9} + 66270 q^{13} - 487902 q^{17} + 3171556 q^{23} - 13526722 q^{25} - 3694974 q^{27} + 8833508 q^{29} - 8281126 q^{35} - 12056860 q^{39} + 89959038 q^{43} - 172344874 q^{49}+ \cdots + 1741143356 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −182.615 −1.30164 −0.650821 0.759231i \(-0.725575\pi\)
−0.650821 + 0.759231i \(0.725575\pi\)
\(4\) 0 0
\(5\) 909.303i 0.650644i −0.945603 0.325322i \(-0.894527\pi\)
0.945603 0.325322i \(-0.105473\pi\)
\(6\) 0 0
\(7\) 3898.48i 0.613697i −0.951758 0.306849i \(-0.900725\pi\)
0.951758 0.306849i \(-0.0992746\pi\)
\(8\) 0 0
\(9\) 13665.4 0.694274
\(10\) 0 0
\(11\) 42009.9i 0.865136i 0.901601 + 0.432568i \(0.142392\pi\)
−0.901601 + 0.432568i \(0.857608\pi\)
\(12\) 0 0
\(13\) −15333.2 + 101830.i −0.148898 + 0.988853i
\(14\) 0 0
\(15\) 166053.i 0.846906i
\(16\) 0 0
\(17\) −405213. −1.17669 −0.588347 0.808609i \(-0.700221\pi\)
−0.588347 + 0.808609i \(0.700221\pi\)
\(18\) 0 0
\(19\) 733733.i 1.29166i −0.763483 0.645828i \(-0.776512\pi\)
0.763483 0.645828i \(-0.223488\pi\)
\(20\) 0 0
\(21\) 711923.i 0.798815i
\(22\) 0 0
\(23\) −2.38431e6 −1.77659 −0.888296 0.459271i \(-0.848111\pi\)
−0.888296 + 0.459271i \(0.848111\pi\)
\(24\) 0 0
\(25\) 1.12629e6 0.576662
\(26\) 0 0
\(27\) 1.09891e6 0.397946
\(28\) 0 0
\(29\) −6.21574e6 −1.63193 −0.815966 0.578100i \(-0.803794\pi\)
−0.815966 + 0.578100i \(0.803794\pi\)
\(30\) 0 0
\(31\) 1.75978e6i 0.342239i 0.985250 + 0.171120i \(0.0547385\pi\)
−0.985250 + 0.171120i \(0.945262\pi\)
\(32\) 0 0
\(33\) 7.67165e6i 1.12610i
\(34\) 0 0
\(35\) −3.54490e6 −0.399299
\(36\) 0 0
\(37\) 1.58146e7i 1.38724i 0.720342 + 0.693619i \(0.243985\pi\)
−0.720342 + 0.693619i \(0.756015\pi\)
\(38\) 0 0
\(39\) 2.80008e6 1.85958e7i 0.193811 1.28713i
\(40\) 0 0
\(41\) 1.90152e7i 1.05093i 0.850815 + 0.525465i \(0.176109\pi\)
−0.850815 + 0.525465i \(0.823891\pi\)
\(42\) 0 0
\(43\) 1.39085e7 0.620402 0.310201 0.950671i \(-0.399604\pi\)
0.310201 + 0.950671i \(0.399604\pi\)
\(44\) 0 0
\(45\) 1.24260e7i 0.451725i
\(46\) 0 0
\(47\) 1.76381e7i 0.527244i −0.964626 0.263622i \(-0.915083\pi\)
0.964626 0.263622i \(-0.0849172\pi\)
\(48\) 0 0
\(49\) 2.51555e7 0.623376
\(50\) 0 0
\(51\) 7.39982e7 1.53163
\(52\) 0 0
\(53\) 1.03876e8 1.80832 0.904160 0.427194i \(-0.140498\pi\)
0.904160 + 0.427194i \(0.140498\pi\)
\(54\) 0 0
\(55\) 3.81997e7 0.562896
\(56\) 0 0
\(57\) 1.33991e8i 1.68127i
\(58\) 0 0
\(59\) 1.34985e8i 1.45027i −0.688604 0.725137i \(-0.741776\pi\)
0.688604 0.725137i \(-0.258224\pi\)
\(60\) 0 0
\(61\) −4.27452e7 −0.395278 −0.197639 0.980275i \(-0.563327\pi\)
−0.197639 + 0.980275i \(0.563327\pi\)
\(62\) 0 0
\(63\) 5.32743e7i 0.426074i
\(64\) 0 0
\(65\) 9.25945e7 + 1.39425e7i 0.643391 + 0.0968794i
\(66\) 0 0
\(67\) 1.49940e8i 0.909034i −0.890738 0.454517i \(-0.849812\pi\)
0.890738 0.454517i \(-0.150188\pi\)
\(68\) 0 0
\(69\) 4.35412e8 2.31249
\(70\) 0 0
\(71\) 2.27379e8i 1.06191i 0.847401 + 0.530954i \(0.178166\pi\)
−0.847401 + 0.530954i \(0.821834\pi\)
\(72\) 0 0
\(73\) 1.48065e8i 0.610237i −0.952314 0.305118i \(-0.901304\pi\)
0.952314 0.305118i \(-0.0986961\pi\)
\(74\) 0 0
\(75\) −2.05679e8 −0.750608
\(76\) 0 0
\(77\) 1.63775e8 0.530932
\(78\) 0 0
\(79\) 8.27879e7 0.239136 0.119568 0.992826i \(-0.461849\pi\)
0.119568 + 0.992826i \(0.461849\pi\)
\(80\) 0 0
\(81\) −4.69653e8 −1.21226
\(82\) 0 0
\(83\) 3.33426e8i 0.771167i −0.922673 0.385583i \(-0.874000\pi\)
0.922673 0.385583i \(-0.126000\pi\)
\(84\) 0 0
\(85\) 3.68461e8i 0.765609i
\(86\) 0 0
\(87\) 1.13509e9 2.12419
\(88\) 0 0
\(89\) 2.12521e8i 0.359043i −0.983754 0.179522i \(-0.942545\pi\)
0.983754 0.179522i \(-0.0574550\pi\)
\(90\) 0 0
\(91\) 3.96983e8 + 5.97762e7i 0.606856 + 0.0913781i
\(92\) 0 0
\(93\) 3.21362e8i 0.445473i
\(94\) 0 0
\(95\) −6.67186e8 −0.840409
\(96\) 0 0
\(97\) 8.43207e8i 0.967078i 0.875323 + 0.483539i \(0.160649\pi\)
−0.875323 + 0.483539i \(0.839351\pi\)
\(98\) 0 0
\(99\) 5.74081e8i 0.600641i
\(100\) 0 0
\(101\) 4.44271e8 0.424817 0.212408 0.977181i \(-0.431869\pi\)
0.212408 + 0.977181i \(0.431869\pi\)
\(102\) 0 0
\(103\) 1.26335e9 1.10600 0.553001 0.833180i \(-0.313483\pi\)
0.553001 + 0.833180i \(0.313483\pi\)
\(104\) 0 0
\(105\) 6.47353e8 0.519744
\(106\) 0 0
\(107\) 6.81300e8 0.502472 0.251236 0.967926i \(-0.419163\pi\)
0.251236 + 0.967926i \(0.419163\pi\)
\(108\) 0 0
\(109\) 1.62190e9i 1.10054i −0.834987 0.550270i \(-0.814525\pi\)
0.834987 0.550270i \(-0.185475\pi\)
\(110\) 0 0
\(111\) 2.88799e9i 1.80569i
\(112\) 0 0
\(113\) 3.00696e9 1.73490 0.867449 0.497525i \(-0.165758\pi\)
0.867449 + 0.497525i \(0.165758\pi\)
\(114\) 0 0
\(115\) 2.16806e9i 1.15593i
\(116\) 0 0
\(117\) −2.09534e8 + 1.39155e9i −0.103376 + 0.686534i
\(118\) 0 0
\(119\) 1.57972e9i 0.722134i
\(120\) 0 0
\(121\) 5.93118e8 0.251540
\(122\) 0 0
\(123\) 3.47247e9i 1.36793i
\(124\) 0 0
\(125\) 2.80012e9i 1.02585i
\(126\) 0 0
\(127\) 3.02027e9 1.03022 0.515109 0.857125i \(-0.327752\pi\)
0.515109 + 0.857125i \(0.327752\pi\)
\(128\) 0 0
\(129\) −2.53991e9 −0.807541
\(130\) 0 0
\(131\) −3.41318e9 −1.01260 −0.506301 0.862357i \(-0.668987\pi\)
−0.506301 + 0.862357i \(0.668987\pi\)
\(132\) 0 0
\(133\) −2.86045e9 −0.792686
\(134\) 0 0
\(135\) 9.99240e8i 0.258921i
\(136\) 0 0
\(137\) 5.82012e9i 1.41153i 0.708448 + 0.705763i \(0.249396\pi\)
−0.708448 + 0.705763i \(0.750604\pi\)
\(138\) 0 0
\(139\) −4.69511e9 −1.06679 −0.533395 0.845866i \(-0.679084\pi\)
−0.533395 + 0.845866i \(0.679084\pi\)
\(140\) 0 0
\(141\) 3.22099e9i 0.686284i
\(142\) 0 0
\(143\) −4.27787e9 6.44146e8i −0.855492 0.128817i
\(144\) 0 0
\(145\) 5.65199e9i 1.06181i
\(146\) 0 0
\(147\) −4.59377e9 −0.811412
\(148\) 0 0
\(149\) 6.81087e9i 1.13205i 0.824389 + 0.566024i \(0.191519\pi\)
−0.824389 + 0.566024i \(0.808481\pi\)
\(150\) 0 0
\(151\) 7.84276e9i 1.22764i −0.789444 0.613822i \(-0.789631\pi\)
0.789444 0.613822i \(-0.210369\pi\)
\(152\) 0 0
\(153\) −5.53740e9 −0.816948
\(154\) 0 0
\(155\) 1.60017e9 0.222676
\(156\) 0 0
\(157\) 3.38139e9 0.444168 0.222084 0.975028i \(-0.428714\pi\)
0.222084 + 0.975028i \(0.428714\pi\)
\(158\) 0 0
\(159\) −1.89694e10 −2.35379
\(160\) 0 0
\(161\) 9.29520e9i 1.09029i
\(162\) 0 0
\(163\) 9.70092e9i 1.07639i −0.842821 0.538194i \(-0.819107\pi\)
0.842821 0.538194i \(-0.180893\pi\)
\(164\) 0 0
\(165\) −6.97585e9 −0.732689
\(166\) 0 0
\(167\) 6.26957e9i 0.623754i −0.950122 0.311877i \(-0.899042\pi\)
0.950122 0.311877i \(-0.100958\pi\)
\(168\) 0 0
\(169\) −1.01343e10 3.12277e9i −0.955659 0.294476i
\(170\) 0 0
\(171\) 1.00268e10i 0.896763i
\(172\) 0 0
\(173\) −7.80512e9 −0.662479 −0.331239 0.943547i \(-0.607467\pi\)
−0.331239 + 0.943547i \(0.607467\pi\)
\(174\) 0 0
\(175\) 4.39083e9i 0.353896i
\(176\) 0 0
\(177\) 2.46503e10i 1.88774i
\(178\) 0 0
\(179\) 4.17544e9 0.303993 0.151997 0.988381i \(-0.451430\pi\)
0.151997 + 0.988381i \(0.451430\pi\)
\(180\) 0 0
\(181\) −4.14338e9 −0.286947 −0.143473 0.989654i \(-0.545827\pi\)
−0.143473 + 0.989654i \(0.545827\pi\)
\(182\) 0 0
\(183\) 7.80593e9 0.514511
\(184\) 0 0
\(185\) 1.43803e10 0.902598
\(186\) 0 0
\(187\) 1.70230e10i 1.01800i
\(188\) 0 0
\(189\) 4.28407e9i 0.244219i
\(190\) 0 0
\(191\) 1.32883e10 0.722468 0.361234 0.932475i \(-0.382356\pi\)
0.361234 + 0.932475i \(0.382356\pi\)
\(192\) 0 0
\(193\) 1.50789e10i 0.782281i 0.920331 + 0.391141i \(0.127919\pi\)
−0.920331 + 0.391141i \(0.872081\pi\)
\(194\) 0 0
\(195\) −1.69092e10 2.54612e9i −0.837465 0.126102i
\(196\) 0 0
\(197\) 5.37906e9i 0.254453i −0.991874 0.127227i \(-0.959392\pi\)
0.991874 0.127227i \(-0.0406075\pi\)
\(198\) 0 0
\(199\) 3.42114e10 1.54644 0.773218 0.634140i \(-0.218646\pi\)
0.773218 + 0.634140i \(0.218646\pi\)
\(200\) 0 0
\(201\) 2.73813e10i 1.18324i
\(202\) 0 0
\(203\) 2.42319e10i 1.00151i
\(204\) 0 0
\(205\) 1.72906e10 0.683781
\(206\) 0 0
\(207\) −3.25826e10 −1.23344
\(208\) 0 0
\(209\) 3.08240e10 1.11746
\(210\) 0 0
\(211\) 2.73218e9 0.0948938 0.0474469 0.998874i \(-0.484892\pi\)
0.0474469 + 0.998874i \(0.484892\pi\)
\(212\) 0 0
\(213\) 4.15228e10i 1.38223i
\(214\) 0 0
\(215\) 1.26471e10i 0.403661i
\(216\) 0 0
\(217\) 6.86046e9 0.210031
\(218\) 0 0
\(219\) 2.70389e10i 0.794310i
\(220\) 0 0
\(221\) 6.21321e9 4.12629e10i 0.175207 1.16358i
\(222\) 0 0
\(223\) 1.13075e10i 0.306193i 0.988211 + 0.153097i \(0.0489245\pi\)
−0.988211 + 0.153097i \(0.951075\pi\)
\(224\) 0 0
\(225\) 1.53912e10 0.400361
\(226\) 0 0
\(227\) 5.39032e10i 1.34741i −0.739003 0.673703i \(-0.764703\pi\)
0.739003 0.673703i \(-0.235297\pi\)
\(228\) 0 0
\(229\) 4.10990e10i 0.987579i 0.869581 + 0.493790i \(0.164389\pi\)
−0.869581 + 0.493790i \(0.835611\pi\)
\(230\) 0 0
\(231\) −2.99078e10 −0.691083
\(232\) 0 0
\(233\) −4.26271e10 −0.947510 −0.473755 0.880657i \(-0.657102\pi\)
−0.473755 + 0.880657i \(0.657102\pi\)
\(234\) 0 0
\(235\) −1.60384e10 −0.343048
\(236\) 0 0
\(237\) −1.51183e10 −0.311270
\(238\) 0 0
\(239\) 5.25503e10i 1.04180i 0.853617 + 0.520901i \(0.174404\pi\)
−0.853617 + 0.520901i \(0.825596\pi\)
\(240\) 0 0
\(241\) 9.43574e9i 0.180177i −0.995934 0.0900885i \(-0.971285\pi\)
0.995934 0.0900885i \(-0.0287150\pi\)
\(242\) 0 0
\(243\) 6.41362e10 1.17998
\(244\) 0 0
\(245\) 2.28739e10i 0.405596i
\(246\) 0 0
\(247\) 7.47162e10 + 1.12505e10i 1.27726 + 0.192325i
\(248\) 0 0
\(249\) 6.08888e10i 1.00378i
\(250\) 0 0
\(251\) 1.83370e10 0.291606 0.145803 0.989314i \(-0.453423\pi\)
0.145803 + 0.989314i \(0.453423\pi\)
\(252\) 0 0
\(253\) 1.00165e11i 1.53699i
\(254\) 0 0
\(255\) 6.72867e10i 0.996549i
\(256\) 0 0
\(257\) 1.32113e11 1.88906 0.944531 0.328423i \(-0.106517\pi\)
0.944531 + 0.328423i \(0.106517\pi\)
\(258\) 0 0
\(259\) 6.16530e10 0.851344
\(260\) 0 0
\(261\) −8.49405e10 −1.13301
\(262\) 0 0
\(263\) −4.37038e10 −0.563272 −0.281636 0.959521i \(-0.590877\pi\)
−0.281636 + 0.959521i \(0.590877\pi\)
\(264\) 0 0
\(265\) 9.44551e10i 1.17657i
\(266\) 0 0
\(267\) 3.88096e10i 0.467346i
\(268\) 0 0
\(269\) 2.52591e10 0.294125 0.147062 0.989127i \(-0.453018\pi\)
0.147062 + 0.989127i \(0.453018\pi\)
\(270\) 0 0
\(271\) 1.47126e11i 1.65702i 0.559975 + 0.828509i \(0.310811\pi\)
−0.559975 + 0.828509i \(0.689189\pi\)
\(272\) 0 0
\(273\) −7.24952e10 1.09161e10i −0.789910 0.118942i
\(274\) 0 0
\(275\) 4.73154e10i 0.498891i
\(276\) 0 0
\(277\) 1.40026e11 1.42906 0.714528 0.699607i \(-0.246641\pi\)
0.714528 + 0.699607i \(0.246641\pi\)
\(278\) 0 0
\(279\) 2.40480e10i 0.237608i
\(280\) 0 0
\(281\) 1.33842e11i 1.28061i 0.768122 + 0.640303i \(0.221191\pi\)
−0.768122 + 0.640303i \(0.778809\pi\)
\(282\) 0 0
\(283\) 1.06836e11 0.990101 0.495050 0.868864i \(-0.335150\pi\)
0.495050 + 0.868864i \(0.335150\pi\)
\(284\) 0 0
\(285\) 1.21838e11 1.09391
\(286\) 0 0
\(287\) 7.41304e10 0.644953
\(288\) 0 0
\(289\) 4.56098e10 0.384608
\(290\) 0 0
\(291\) 1.53983e11i 1.25879i
\(292\) 0 0
\(293\) 5.82348e10i 0.461614i −0.973000 0.230807i \(-0.925863\pi\)
0.973000 0.230807i \(-0.0741365\pi\)
\(294\) 0 0
\(295\) −1.22742e11 −0.943613
\(296\) 0 0
\(297\) 4.61650e10i 0.344278i
\(298\) 0 0
\(299\) 3.65591e10 2.42795e11i 0.264530 1.75679i
\(300\) 0 0
\(301\) 5.42221e10i 0.380739i
\(302\) 0 0
\(303\) −8.11307e10 −0.552959
\(304\) 0 0
\(305\) 3.88683e10i 0.257185i
\(306\) 0 0
\(307\) 1.46932e11i 0.944049i 0.881585 + 0.472025i \(0.156477\pi\)
−0.881585 + 0.472025i \(0.843523\pi\)
\(308\) 0 0
\(309\) −2.30707e11 −1.43962
\(310\) 0 0
\(311\) 9.32542e10 0.565258 0.282629 0.959229i \(-0.408793\pi\)
0.282629 + 0.959229i \(0.408793\pi\)
\(312\) 0 0
\(313\) −5.39361e10 −0.317636 −0.158818 0.987308i \(-0.550768\pi\)
−0.158818 + 0.987308i \(0.550768\pi\)
\(314\) 0 0
\(315\) −4.84424e10 −0.277223
\(316\) 0 0
\(317\) 2.82868e11i 1.57332i −0.617387 0.786660i \(-0.711809\pi\)
0.617387 0.786660i \(-0.288191\pi\)
\(318\) 0 0
\(319\) 2.61122e11i 1.41184i
\(320\) 0 0
\(321\) −1.24416e11 −0.654038
\(322\) 0 0
\(323\) 2.97318e11i 1.51988i
\(324\) 0 0
\(325\) −1.72697e10 + 1.14691e11i −0.0858636 + 0.570234i
\(326\) 0 0
\(327\) 2.96185e11i 1.43251i
\(328\) 0 0
\(329\) −6.87619e10 −0.323568
\(330\) 0 0
\(331\) 2.99064e11i 1.36943i 0.728813 + 0.684713i \(0.240072\pi\)
−0.728813 + 0.684713i \(0.759928\pi\)
\(332\) 0 0
\(333\) 2.16113e11i 0.963123i
\(334\) 0 0
\(335\) −1.36341e11 −0.591458
\(336\) 0 0
\(337\) −3.37725e11 −1.42636 −0.713179 0.700982i \(-0.752745\pi\)
−0.713179 + 0.700982i \(0.752745\pi\)
\(338\) 0 0
\(339\) −5.49117e11 −2.25822
\(340\) 0 0
\(341\) −7.39280e10 −0.296083
\(342\) 0 0
\(343\) 2.55386e11i 0.996261i
\(344\) 0 0
\(345\) 3.95921e11i 1.50461i
\(346\) 0 0
\(347\) −3.50993e11 −1.29962 −0.649809 0.760097i \(-0.725151\pi\)
−0.649809 + 0.760097i \(0.725151\pi\)
\(348\) 0 0
\(349\) 2.24383e11i 0.809610i 0.914403 + 0.404805i \(0.132661\pi\)
−0.914403 + 0.404805i \(0.867339\pi\)
\(350\) 0 0
\(351\) −1.68498e10 + 1.11902e11i −0.0592533 + 0.393510i
\(352\) 0 0
\(353\) 3.14374e11i 1.07761i −0.842431 0.538804i \(-0.818877\pi\)
0.842431 0.538804i \(-0.181123\pi\)
\(354\) 0 0
\(355\) 2.06756e11 0.690925
\(356\) 0 0
\(357\) 2.88480e11i 0.939960i
\(358\) 0 0
\(359\) 4.91921e11i 1.56304i 0.623880 + 0.781520i \(0.285555\pi\)
−0.623880 + 0.781520i \(0.714445\pi\)
\(360\) 0 0
\(361\) −2.15677e11 −0.668376
\(362\) 0 0
\(363\) −1.08313e11 −0.327415
\(364\) 0 0
\(365\) −1.34636e11 −0.397047
\(366\) 0 0
\(367\) −1.01245e11 −0.291324 −0.145662 0.989334i \(-0.546531\pi\)
−0.145662 + 0.989334i \(0.546531\pi\)
\(368\) 0 0
\(369\) 2.59850e11i 0.729633i
\(370\) 0 0
\(371\) 4.04960e11i 1.10976i
\(372\) 0 0
\(373\) 3.96421e11 1.06039 0.530197 0.847874i \(-0.322118\pi\)
0.530197 + 0.847874i \(0.322118\pi\)
\(374\) 0 0
\(375\) 5.11346e11i 1.33529i
\(376\) 0 0
\(377\) 9.53072e10 6.32950e11i 0.242991 1.61374i
\(378\) 0 0
\(379\) 2.72622e11i 0.678711i 0.940658 + 0.339356i \(0.110209\pi\)
−0.940658 + 0.339356i \(0.889791\pi\)
\(380\) 0 0
\(381\) −5.51548e11 −1.34098
\(382\) 0 0
\(383\) 3.60816e11i 0.856823i 0.903584 + 0.428411i \(0.140927\pi\)
−0.903584 + 0.428411i \(0.859073\pi\)
\(384\) 0 0
\(385\) 1.48921e11i 0.345448i
\(386\) 0 0
\(387\) 1.90065e11 0.430729
\(388\) 0 0
\(389\) 5.71139e10 0.126464 0.0632322 0.997999i \(-0.479859\pi\)
0.0632322 + 0.997999i \(0.479859\pi\)
\(390\) 0 0
\(391\) 9.66155e11 2.09051
\(392\) 0 0
\(393\) 6.23300e11 1.31805
\(394\) 0 0
\(395\) 7.52793e10i 0.155592i
\(396\) 0 0
\(397\) 2.68622e11i 0.542730i 0.962476 + 0.271365i \(0.0874751\pi\)
−0.962476 + 0.271365i \(0.912525\pi\)
\(398\) 0 0
\(399\) 5.22361e11 1.03179
\(400\) 0 0
\(401\) 1.03947e11i 0.200754i 0.994949 + 0.100377i \(0.0320049\pi\)
−0.994949 + 0.100377i \(0.967995\pi\)
\(402\) 0 0
\(403\) −1.79198e11 2.69830e10i −0.338424 0.0509586i
\(404\) 0 0
\(405\) 4.27057e11i 0.788748i
\(406\) 0 0
\(407\) −6.64370e11 −1.20015
\(408\) 0 0
\(409\) 4.50509e11i 0.796064i −0.917371 0.398032i \(-0.869693\pi\)
0.917371 0.398032i \(-0.130307\pi\)
\(410\) 0 0
\(411\) 1.06284e12i 1.83730i
\(412\) 0 0
\(413\) −5.26235e11 −0.890030
\(414\) 0 0
\(415\) −3.03185e11 −0.501755
\(416\) 0 0
\(417\) 8.57399e11 1.38858
\(418\) 0 0
\(419\) 7.80469e11 1.23706 0.618532 0.785759i \(-0.287728\pi\)
0.618532 + 0.785759i \(0.287728\pi\)
\(420\) 0 0
\(421\) 1.18044e12i 1.83137i −0.401897 0.915685i \(-0.631649\pi\)
0.401897 0.915685i \(-0.368351\pi\)
\(422\) 0 0
\(423\) 2.41032e11i 0.366052i
\(424\) 0 0
\(425\) −4.56389e11 −0.678555
\(426\) 0 0
\(427\) 1.66641e11i 0.242581i
\(428\) 0 0
\(429\) 7.81206e11 + 1.17631e11i 1.11354 + 0.167673i
\(430\) 0 0
\(431\) 1.23904e12i 1.72957i 0.502138 + 0.864787i \(0.332547\pi\)
−0.502138 + 0.864787i \(0.667453\pi\)
\(432\) 0 0
\(433\) 4.05366e11 0.554181 0.277090 0.960844i \(-0.410630\pi\)
0.277090 + 0.960844i \(0.410630\pi\)
\(434\) 0 0
\(435\) 1.03214e12i 1.38209i
\(436\) 0 0
\(437\) 1.74945e12i 2.29475i
\(438\) 0 0
\(439\) 1.10179e12 1.41583 0.707913 0.706300i \(-0.249637\pi\)
0.707913 + 0.706300i \(0.249637\pi\)
\(440\) 0 0
\(441\) 3.43759e11 0.432793
\(442\) 0 0
\(443\) 3.79643e11 0.468338 0.234169 0.972196i \(-0.424763\pi\)
0.234169 + 0.972196i \(0.424763\pi\)
\(444\) 0 0
\(445\) −1.93246e11 −0.233609
\(446\) 0 0
\(447\) 1.24377e12i 1.47352i
\(448\) 0 0
\(449\) 4.92061e11i 0.571361i −0.958325 0.285681i \(-0.907780\pi\)
0.958325 0.285681i \(-0.0922197\pi\)
\(450\) 0 0
\(451\) −7.98826e11 −0.909197
\(452\) 0 0
\(453\) 1.43221e12i 1.59796i
\(454\) 0 0
\(455\) 5.43547e10 3.60978e11i 0.0594546 0.394847i
\(456\) 0 0
\(457\) 2.32051e10i 0.0248863i 0.999923 + 0.0124432i \(0.00396089\pi\)
−0.999923 + 0.0124432i \(0.996039\pi\)
\(458\) 0 0
\(459\) −4.45292e11 −0.468261
\(460\) 0 0
\(461\) 6.45950e11i 0.666109i 0.942908 + 0.333054i \(0.108079\pi\)
−0.942908 + 0.333054i \(0.891921\pi\)
\(462\) 0 0
\(463\) 1.11111e12i 1.12368i 0.827244 + 0.561842i \(0.189907\pi\)
−0.827244 + 0.561842i \(0.810093\pi\)
\(464\) 0 0
\(465\) −2.92216e11 −0.289845
\(466\) 0 0
\(467\) 5.61698e11 0.546483 0.273242 0.961945i \(-0.411904\pi\)
0.273242 + 0.961945i \(0.411904\pi\)
\(468\) 0 0
\(469\) −5.84537e11 −0.557872
\(470\) 0 0
\(471\) −6.17494e11 −0.578147
\(472\) 0 0
\(473\) 5.84295e11i 0.536732i
\(474\) 0 0
\(475\) 8.26399e11i 0.744849i
\(476\) 0 0
\(477\) 1.41951e12 1.25547
\(478\) 0 0
\(479\) 1.29785e12i 1.12646i −0.826301 0.563229i \(-0.809559\pi\)
0.826301 0.563229i \(-0.190441\pi\)
\(480\) 0 0
\(481\) −1.61041e12 2.42489e11i −1.37177 0.206556i
\(482\) 0 0
\(483\) 1.69745e12i 1.41917i
\(484\) 0 0
\(485\) 7.66730e11 0.629223
\(486\) 0 0
\(487\) 1.87290e11i 0.150881i −0.997150 0.0754403i \(-0.975964\pi\)
0.997150 0.0754403i \(-0.0240362\pi\)
\(488\) 0 0
\(489\) 1.77154e12i 1.40107i
\(490\) 0 0
\(491\) −9.87933e11 −0.767115 −0.383558 0.923517i \(-0.625301\pi\)
−0.383558 + 0.923517i \(0.625301\pi\)
\(492\) 0 0
\(493\) 2.51870e12 1.92028
\(494\) 0 0
\(495\) 5.22014e11 0.390804
\(496\) 0 0
\(497\) 8.86431e11 0.651690
\(498\) 0 0
\(499\) 1.15974e12i 0.837356i −0.908135 0.418678i \(-0.862494\pi\)
0.908135 0.418678i \(-0.137506\pi\)
\(500\) 0 0
\(501\) 1.14492e12i 0.811905i
\(502\) 0 0
\(503\) −1.33699e12 −0.931266 −0.465633 0.884978i \(-0.654173\pi\)
−0.465633 + 0.884978i \(0.654173\pi\)
\(504\) 0 0
\(505\) 4.03977e11i 0.276404i
\(506\) 0 0
\(507\) 1.85068e12 + 5.70265e11i 1.24393 + 0.383302i
\(508\) 0 0
\(509\) 9.19496e11i 0.607183i 0.952802 + 0.303592i \(0.0981859\pi\)
−0.952802 + 0.303592i \(0.901814\pi\)
\(510\) 0 0
\(511\) −5.77227e11 −0.374501
\(512\) 0 0
\(513\) 8.06306e11i 0.514010i
\(514\) 0 0
\(515\) 1.14877e12i 0.719614i
\(516\) 0 0
\(517\) 7.40975e11 0.456138
\(518\) 0 0
\(519\) 1.42533e12 0.862311
\(520\) 0 0
\(521\) −2.46945e12 −1.46835 −0.734176 0.678959i \(-0.762432\pi\)
−0.734176 + 0.678959i \(0.762432\pi\)
\(522\) 0 0
\(523\) −6.27344e11 −0.366647 −0.183324 0.983053i \(-0.558686\pi\)
−0.183324 + 0.983053i \(0.558686\pi\)
\(524\) 0 0
\(525\) 8.01834e11i 0.460646i
\(526\) 0 0
\(527\) 7.13085e11i 0.402711i
\(528\) 0 0
\(529\) 3.88379e12 2.15628
\(530\) 0 0
\(531\) 1.84462e12i 1.00689i
\(532\) 0 0
\(533\) −1.93632e12 2.91564e11i −1.03921 0.156481i
\(534\) 0 0
\(535\) 6.19508e11i 0.326930i
\(536\) 0 0
\(537\) −7.62500e11 −0.395690
\(538\) 0 0
\(539\) 1.05678e12i 0.539304i
\(540\) 0 0
\(541\) 2.82649e11i 0.141860i −0.997481 0.0709300i \(-0.977403\pi\)
0.997481 0.0709300i \(-0.0225967\pi\)
\(542\) 0 0
\(543\) 7.56645e11 0.373502
\(544\) 0 0
\(545\) −1.47480e12 −0.716060
\(546\) 0 0
\(547\) 2.22390e12 1.06212 0.531059 0.847335i \(-0.321794\pi\)
0.531059 + 0.847335i \(0.321794\pi\)
\(548\) 0 0
\(549\) −5.84130e11 −0.274431
\(550\) 0 0
\(551\) 4.56070e12i 2.10789i
\(552\) 0 0
\(553\) 3.22747e11i 0.146757i
\(554\) 0 0
\(555\) −2.62606e12 −1.17486
\(556\) 0 0
\(557\) 2.80541e12i 1.23495i −0.786592 0.617473i \(-0.788156\pi\)
0.786592 0.617473i \(-0.211844\pi\)
\(558\) 0 0
\(559\) −2.13262e11 + 1.41631e12i −0.0923763 + 0.613486i
\(560\) 0 0
\(561\) 3.10865e12i 1.32507i
\(562\) 0 0
\(563\) 3.09484e11 0.129823 0.0649113 0.997891i \(-0.479324\pi\)
0.0649113 + 0.997891i \(0.479324\pi\)
\(564\) 0 0
\(565\) 2.73423e12i 1.12880i
\(566\) 0 0
\(567\) 1.83094e12i 0.743959i
\(568\) 0 0
\(569\) −3.28092e12 −1.31217 −0.656085 0.754687i \(-0.727789\pi\)
−0.656085 + 0.754687i \(0.727789\pi\)
\(570\) 0 0
\(571\) −3.57422e12 −1.40708 −0.703541 0.710655i \(-0.748399\pi\)
−0.703541 + 0.710655i \(0.748399\pi\)
\(572\) 0 0
\(573\) −2.42664e12 −0.940395
\(574\) 0 0
\(575\) −2.68543e12 −1.02449
\(576\) 0 0
\(577\) 4.67081e12i 1.75429i 0.480225 + 0.877145i \(0.340555\pi\)
−0.480225 + 0.877145i \(0.659445\pi\)
\(578\) 0 0
\(579\) 2.75365e12i 1.01825i
\(580\) 0 0
\(581\) −1.29986e12 −0.473263
\(582\) 0 0
\(583\) 4.36383e12i 1.56444i
\(584\) 0 0
\(585\) 1.26534e12 + 1.90530e11i 0.446690 + 0.0672608i
\(586\) 0 0
\(587\) 1.09141e12i 0.379417i −0.981840 0.189708i \(-0.939246\pi\)
0.981840 0.189708i \(-0.0607543\pi\)
\(588\) 0 0
\(589\) 1.29121e12 0.442056
\(590\) 0 0
\(591\) 9.82298e11i 0.331207i
\(592\) 0 0
\(593\) 5.77157e12i 1.91667i −0.285641 0.958337i \(-0.592207\pi\)
0.285641 0.958337i \(-0.407793\pi\)
\(594\) 0 0
\(595\) 1.43644e12 0.469852
\(596\) 0 0
\(597\) −6.24753e12 −2.01291
\(598\) 0 0
\(599\) −3.20466e12 −1.01709 −0.508547 0.861034i \(-0.669817\pi\)
−0.508547 + 0.861034i \(0.669817\pi\)
\(600\) 0 0
\(601\) −6.63025e11 −0.207298 −0.103649 0.994614i \(-0.533052\pi\)
−0.103649 + 0.994614i \(0.533052\pi\)
\(602\) 0 0
\(603\) 2.04898e12i 0.631118i
\(604\) 0 0
\(605\) 5.39324e11i 0.163663i
\(606\) 0 0
\(607\) 1.71239e12 0.511980 0.255990 0.966679i \(-0.417599\pi\)
0.255990 + 0.966679i \(0.417599\pi\)
\(608\) 0 0
\(609\) 4.42513e12i 1.30361i
\(610\) 0 0
\(611\) 1.79609e12 + 2.70449e11i 0.521367 + 0.0785054i
\(612\) 0 0
\(613\) 1.44500e12i 0.413328i 0.978412 + 0.206664i \(0.0662608\pi\)
−0.978412 + 0.206664i \(0.933739\pi\)
\(614\) 0 0
\(615\) −3.15753e12 −0.890039
\(616\) 0 0
\(617\) 4.63176e12i 1.28666i 0.765590 + 0.643329i \(0.222447\pi\)
−0.765590 + 0.643329i \(0.777553\pi\)
\(618\) 0 0
\(619\) 3.11245e11i 0.0852108i −0.999092 0.0426054i \(-0.986434\pi\)
0.999092 0.0426054i \(-0.0135658\pi\)
\(620\) 0 0
\(621\) −2.62014e12 −0.706989
\(622\) 0 0
\(623\) −8.28509e11 −0.220344
\(624\) 0 0
\(625\) −3.46369e11 −0.0907985
\(626\) 0 0
\(627\) −5.62894e12 −1.45453
\(628\) 0 0
\(629\) 6.40829e12i 1.63235i
\(630\) 0 0
\(631\) 4.27561e12i 1.07366i 0.843691 + 0.536829i \(0.180378\pi\)
−0.843691 + 0.536829i \(0.819622\pi\)
\(632\) 0 0
\(633\) −4.98937e11 −0.123518
\(634\) 0 0
\(635\) 2.74634e12i 0.670305i
\(636\) 0 0
\(637\) −3.85714e11 + 2.56158e12i −0.0928191 + 0.616427i
\(638\) 0 0
\(639\) 3.10722e12i 0.737255i
\(640\) 0 0
\(641\) 2.34998e12 0.549798 0.274899 0.961473i \(-0.411356\pi\)
0.274899 + 0.961473i \(0.411356\pi\)
\(642\) 0 0
\(643\) 3.34793e12i 0.772372i −0.922421 0.386186i \(-0.873792\pi\)
0.922421 0.386186i \(-0.126208\pi\)
\(644\) 0 0
\(645\) 2.30955e12i 0.525422i
\(646\) 0 0
\(647\) 6.99648e12 1.56968 0.784838 0.619701i \(-0.212746\pi\)
0.784838 + 0.619701i \(0.212746\pi\)
\(648\) 0 0
\(649\) 5.67069e12 1.25468
\(650\) 0 0
\(651\) −1.25282e12 −0.273386
\(652\) 0 0
\(653\) 7.55308e12 1.62560 0.812802 0.582541i \(-0.197941\pi\)
0.812802 + 0.582541i \(0.197941\pi\)
\(654\) 0 0
\(655\) 3.10362e12i 0.658843i
\(656\) 0 0
\(657\) 2.02336e12i 0.423672i
\(658\) 0 0
\(659\) −8.09522e12 −1.67203 −0.836015 0.548706i \(-0.815121\pi\)
−0.836015 + 0.548706i \(0.815121\pi\)
\(660\) 0 0
\(661\) 9.20416e12i 1.87533i −0.347540 0.937665i \(-0.612983\pi\)
0.347540 0.937665i \(-0.387017\pi\)
\(662\) 0 0
\(663\) −1.13463e12 + 7.53525e12i −0.228057 + 1.51456i
\(664\) 0 0
\(665\) 2.60101e12i 0.515757i
\(666\) 0 0
\(667\) 1.48203e13 2.89928
\(668\) 0 0
\(669\) 2.06493e12i 0.398554i
\(670\) 0 0
\(671\) 1.79572e12i 0.341969i
\(672\) 0 0
\(673\) 1.55727e12 0.292616 0.146308 0.989239i \(-0.453261\pi\)
0.146308 + 0.989239i \(0.453261\pi\)
\(674\) 0 0
\(675\) 1.23769e12 0.229481
\(676\) 0 0
\(677\) 5.92542e12 1.08410 0.542051 0.840346i \(-0.317648\pi\)
0.542051 + 0.840346i \(0.317648\pi\)
\(678\) 0 0
\(679\) 3.28723e12 0.593493
\(680\) 0 0
\(681\) 9.84356e12i 1.75384i
\(682\) 0 0
\(683\) 6.94217e11i 0.122068i −0.998136 0.0610340i \(-0.980560\pi\)
0.998136 0.0610340i \(-0.0194398\pi\)
\(684\) 0 0
\(685\) 5.29225e12 0.918402
\(686\) 0 0
\(687\) 7.50532e12i 1.28548i
\(688\) 0 0
\(689\) −1.59276e12 + 1.05778e13i −0.269255 + 1.78816i
\(690\) 0 0
\(691\) 2.58641e12i 0.431565i −0.976441 0.215783i \(-0.930770\pi\)
0.976441 0.215783i \(-0.0692302\pi\)
\(692\) 0 0
\(693\) 2.23805e12 0.368612
\(694\) 0 0
\(695\) 4.26928e12i 0.694101i
\(696\) 0 0
\(697\) 7.70521e12i 1.23662i
\(698\) 0 0
\(699\) 7.78436e12 1.23332
\(700\) 0 0
\(701\) −7.12448e12 −1.11435 −0.557176 0.830395i \(-0.688115\pi\)
−0.557176 + 0.830395i \(0.688115\pi\)
\(702\) 0 0
\(703\) 1.16037e13 1.79183
\(704\) 0 0
\(705\) 2.92886e12 0.446526
\(706\) 0 0
\(707\) 1.73198e12i 0.260709i
\(708\) 0 0
\(709\) 6.87275e12i 1.02146i −0.859740 0.510731i \(-0.829375\pi\)
0.859740 0.510731i \(-0.170625\pi\)
\(710\) 0 0
\(711\) 1.13133e12 0.166026
\(712\) 0 0
\(713\) 4.19586e12i 0.608020i
\(714\) 0 0
\(715\) −5.85724e11 + 3.88988e12i −0.0838138 + 0.556621i
\(716\) 0 0
\(717\) 9.59650e12i 1.35605i
\(718\) 0 0
\(719\) −4.97179e12 −0.693797 −0.346899 0.937903i \(-0.612765\pi\)
−0.346899 + 0.937903i \(0.612765\pi\)
\(720\) 0 0
\(721\) 4.92514e12i 0.678751i
\(722\) 0 0
\(723\) 1.72311e12i 0.234526i
\(724\) 0 0
\(725\) −7.00075e12 −0.941073
\(726\) 0 0
\(727\) 7.02097e12 0.932164 0.466082 0.884742i \(-0.345665\pi\)
0.466082 + 0.884742i \(0.345665\pi\)
\(728\) 0 0
\(729\) −2.46806e12 −0.323655
\(730\) 0 0
\(731\) −5.63592e12 −0.730023
\(732\) 0 0
\(733\) 6.18653e12i 0.791551i 0.918347 + 0.395776i \(0.129524\pi\)
−0.918347 + 0.395776i \(0.870476\pi\)
\(734\) 0 0
\(735\) 4.17713e12i 0.527941i
\(736\) 0 0
\(737\) 6.29895e12 0.786438
\(738\) 0 0
\(739\) 1.52545e13i 1.88147i −0.339145 0.940734i \(-0.610138\pi\)
0.339145 0.940734i \(-0.389862\pi\)
\(740\) 0 0
\(741\) −1.36443e13 2.05451e12i −1.66253 0.250338i
\(742\) 0 0
\(743\) 1.06221e13i 1.27868i 0.768924 + 0.639340i \(0.220792\pi\)
−0.768924 + 0.639340i \(0.779208\pi\)
\(744\) 0 0
\(745\) 6.19315e12 0.736560
\(746\) 0 0
\(747\) 4.55640e12i 0.535401i
\(748\) 0 0
\(749\) 2.65604e12i 0.308365i
\(750\) 0 0
\(751\) 5.25076e12 0.602341 0.301171 0.953570i \(-0.402623\pi\)
0.301171 + 0.953570i \(0.402623\pi\)
\(752\) 0 0
\(753\) −3.34862e12 −0.379566
\(754\) 0 0
\(755\) −7.13145e12 −0.798760
\(756\) 0 0
\(757\) 1.47163e13 1.62880 0.814399 0.580306i \(-0.197067\pi\)
0.814399 + 0.580306i \(0.197067\pi\)
\(758\) 0 0
\(759\) 1.82916e13i 2.00062i
\(760\) 0 0
\(761\) 2.54714e12i 0.275310i 0.990480 + 0.137655i \(0.0439566\pi\)
−0.990480 + 0.137655i \(0.956043\pi\)
\(762\) 0 0
\(763\) −6.32297e12 −0.675399
\(764\) 0 0
\(765\) 5.03517e12i 0.531542i
\(766\) 0 0
\(767\) 1.37455e13 + 2.06975e12i 1.43411 + 0.215942i
\(768\) 0 0
\(769\) 8.88511e11i 0.0916209i 0.998950 + 0.0458104i \(0.0145870\pi\)
−0.998950 + 0.0458104i \(0.985413\pi\)
\(770\) 0 0
\(771\) −2.41258e13 −2.45888
\(772\) 0 0
\(773\) 3.41558e12i 0.344078i 0.985090 + 0.172039i \(0.0550355\pi\)
−0.985090 + 0.172039i \(0.944964\pi\)
\(774\) 0 0
\(775\) 1.98202e12i 0.197356i
\(776\) 0 0
\(777\) −1.12588e13 −1.10815
\(778\) 0 0
\(779\) 1.39521e13 1.35744
\(780\) 0 0
\(781\) −9.55215e12 −0.918695
\(782\) 0 0
\(783\) −6.83053e12 −0.649421
\(784\) 0 0
\(785\) 3.07471e12i 0.288995i
\(786\) 0 0
\(787\) 1.32536e13i 1.23153i −0.787929 0.615766i \(-0.788846\pi\)
0.787929 0.615766i \(-0.211154\pi\)
\(788\) 0 0
\(789\) 7.98099e12 0.733179
\(790\) 0 0
\(791\) 1.17226e13i 1.06470i
\(792\) 0 0
\(793\) 6.55420e11 4.35275e12i 0.0588560 0.390872i
\(794\) 0 0
\(795\) 1.72490e13i 1.53148i
\(796\) 0 0
\(797\) 7.27248e12 0.638440 0.319220 0.947681i \(-0.396579\pi\)
0.319220 + 0.947681i \(0.396579\pi\)
\(798\) 0 0
\(799\) 7.14720e12i 0.620405i
\(800\) 0 0
\(801\) 2.90418e12i 0.249274i
\(802\) 0 0
\(803\) 6.22018e12 0.527938
\(804\) 0 0
\(805\) 8.45215e12 0.709391
\(806\) 0 0
\(807\) −4.61269e12 −0.382846
\(808\) 0 0
\(809\) −9.08904e12 −0.746019 −0.373009 0.927828i \(-0.621674\pi\)
−0.373009 + 0.927828i \(0.621674\pi\)
\(810\) 0 0
\(811\) 1.91236e13i 1.55230i 0.630550 + 0.776149i \(0.282829\pi\)
−0.630550 + 0.776149i \(0.717171\pi\)
\(812\) 0 0
\(813\) 2.68675e13i 2.15685i
\(814\) 0 0
\(815\) −8.82107e12 −0.700345
\(816\) 0 0
\(817\) 1.02051e13i 0.801346i
\(818\) 0 0
\(819\) 5.42493e12 + 8.16865e11i 0.421324 + 0.0634414i
\(820\) 0 0
\(821\) 1.65539e13i 1.27162i 0.771846 + 0.635810i \(0.219334\pi\)
−0.771846 + 0.635810i \(0.780666\pi\)
\(822\) 0 0
\(823\) 5.06045e12 0.384494 0.192247 0.981347i \(-0.438422\pi\)
0.192247 + 0.981347i \(0.438422\pi\)
\(824\) 0 0
\(825\) 8.64053e12i 0.649378i
\(826\) 0 0
\(827\) 1.43485e13i 1.06668i 0.845902 + 0.533339i \(0.179063\pi\)
−0.845902 + 0.533339i \(0.820937\pi\)
\(828\) 0 0
\(829\) 5.82329e12 0.428226 0.214113 0.976809i \(-0.431314\pi\)
0.214113 + 0.976809i \(0.431314\pi\)
\(830\) 0 0
\(831\) −2.55709e13 −1.86012
\(832\) 0 0
\(833\) −1.01933e13 −0.733522
\(834\) 0 0
\(835\) −5.70094e12 −0.405842
\(836\) 0 0
\(837\) 1.93383e12i 0.136193i
\(838\) 0 0
\(839\) 7.61697e12i 0.530705i 0.964151 + 0.265353i \(0.0854884\pi\)
−0.964151 + 0.265353i \(0.914512\pi\)
\(840\) 0 0
\(841\) 2.41283e13 1.66320
\(842\) 0 0
\(843\) 2.44417e13i 1.66689i
\(844\) 0 0
\(845\) −2.83954e12 + 9.21513e12i −0.191599 + 0.621794i
\(846\) 0 0
\(847\) 2.31226e12i 0.154369i
\(848\) 0 0
\(849\) −1.95099e13 −1.28876
\(850\) 0 0
\(851\) 3.77070e13i 2.46456i
\(852\) 0 0
\(853\) 2.97056e13i 1.92118i 0.277977 + 0.960588i \(0.410336\pi\)
−0.277977 + 0.960588i \(0.589664\pi\)
\(854\) 0 0
\(855\) −9.11735e12 −0.583474
\(856\) 0 0
\(857\) −3.97244e12 −0.251561 −0.125780 0.992058i \(-0.540144\pi\)
−0.125780 + 0.992058i \(0.540144\pi\)
\(858\) 0 0
\(859\) 3.05640e13 1.91532 0.957658 0.287907i \(-0.0929593\pi\)
0.957658 + 0.287907i \(0.0929593\pi\)
\(860\) 0 0
\(861\) −1.35374e13 −0.839498
\(862\) 0 0
\(863\) 2.20925e13i 1.35580i −0.735154 0.677900i \(-0.762890\pi\)
0.735154 0.677900i \(-0.237110\pi\)
\(864\) 0 0
\(865\) 7.09722e12i 0.431038i
\(866\) 0 0
\(867\) −8.32906e12 −0.500622
\(868\) 0 0
\(869\) 3.47791e12i 0.206885i
\(870\) 0 0
\(871\) 1.52684e13 + 2.29906e12i 0.898901 + 0.135353i
\(872\) 0 0
\(873\) 1.15228e13i 0.671417i
\(874\) 0 0
\(875\) −1.09162e13 −0.629559
\(876\) 0 0
\(877\) 6.40413e12i 0.365563i 0.983154 + 0.182781i \(0.0585101\pi\)
−0.983154 + 0.182781i \(0.941490\pi\)
\(878\) 0 0
\(879\) 1.06346e13i 0.600856i
\(880\) 0 0
\(881\) −1.41451e13 −0.791067 −0.395534 0.918452i \(-0.629440\pi\)
−0.395534 + 0.918452i \(0.629440\pi\)
\(882\) 0 0
\(883\) 1.53312e13 0.848698 0.424349 0.905499i \(-0.360503\pi\)
0.424349 + 0.905499i \(0.360503\pi\)
\(884\) 0 0
\(885\) 2.24146e13 1.22825
\(886\) 0 0
\(887\) −1.08759e13 −0.589941 −0.294971 0.955506i \(-0.595310\pi\)
−0.294971 + 0.955506i \(0.595310\pi\)
\(888\) 0 0
\(889\) 1.17745e13i 0.632242i
\(890\) 0 0
\(891\) 1.97301e13i 1.04877i
\(892\) 0 0
\(893\) −1.29417e13 −0.681018
\(894\) 0 0
\(895\) 3.79674e12i 0.197791i
\(896\) 0 0
\(897\) −6.67626e12 + 4.43381e13i −0.344324 + 2.28671i
\(898\) 0 0
\(899\) 1.09383e13i 0.558511i
\(900\) 0 0
\(901\) −4.20921e13 −2.12784
\(902\) 0 0
\(903\) 9.90179e12i 0.495586i
\(904\) 0 0
\(905\) 3.76759e12i 0.186700i
\(906\) 0 0
\(907\) −3.66893e13 −1.80014 −0.900070 0.435745i \(-0.856485\pi\)
−0.900070 + 0.435745i \(0.856485\pi\)
\(908\) 0 0
\(909\) 6.07113e12 0.294939
\(910\) 0 0
\(911\) −1.61827e13 −0.778427 −0.389213 0.921148i \(-0.627253\pi\)
−0.389213 + 0.921148i \(0.627253\pi\)
\(912\) 0 0
\(913\) 1.40072e13 0.667164
\(914\) 0 0
\(915\) 7.09795e12i 0.334764i
\(916\) 0 0
\(917\) 1.33062e13i 0.621431i
\(918\) 0 0
\(919\) −1.63706e13 −0.757086 −0.378543 0.925584i \(-0.623575\pi\)
−0.378543 + 0.925584i \(0.623575\pi\)
\(920\) 0 0
\(921\) 2.68321e13i 1.22881i
\(922\) 0 0
\(923\) −2.31540e13 3.48644e12i −1.05007 0.158116i
\(924\) 0 0
\(925\) 1.78119e13i 0.799968i
\(926\) 0 0
\(927\) 1.72642e13 0.767868
\(928\) 0 0
\(929\) 7.05525e12i 0.310772i 0.987854 + 0.155386i \(0.0496621\pi\)
−0.987854 + 0.155386i \(0.950338\pi\)
\(930\) 0 0
\(931\) 1.84574e13i 0.805187i
\(932\) 0 0
\(933\) −1.70297e13 −0.735764
\(934\) 0 0
\(935\) −1.54790e13 −0.662356
\(936\) 0 0
\(937\) −1.25797e13 −0.533142 −0.266571 0.963815i \(-0.585891\pi\)
−0.266571 + 0.963815i \(0.585891\pi\)
\(938\) 0 0
\(939\) 9.84956e12 0.413449
\(940\) 0 0
\(941\) 3.28389e13i 1.36532i 0.730735 + 0.682661i \(0.239178\pi\)
−0.730735 + 0.682661i \(0.760822\pi\)
\(942\) 0 0
\(943\) 4.53382e13i 1.86707i
\(944\) 0 0
\(945\) −3.89552e12 −0.158899
\(946\) 0 0
\(947\) 1.93983e12i 0.0783769i −0.999232 0.0391885i \(-0.987523\pi\)
0.999232 0.0391885i \(-0.0124773\pi\)
\(948\) 0 0
\(949\) 1.50775e13 + 2.27030e12i 0.603434 + 0.0908628i
\(950\) 0 0
\(951\) 5.16560e13i 2.04790i
\(952\) 0 0
\(953\) 3.50673e13 1.37716 0.688579 0.725161i \(-0.258235\pi\)
0.688579 + 0.725161i \(0.258235\pi\)
\(954\) 0 0
\(955\) 1.20831e13i 0.470069i
\(956\) 0 0
\(957\) 4.76850e13i 1.83771i
\(958\) 0 0
\(959\) 2.26896e13 0.866250
\(960\) 0 0
\(961\) 2.33428e13 0.882872
\(962\) 0 0
\(963\) 9.31023e12 0.348853
\(964\) 0 0
\(965\) 1.37113e13 0.508987
\(966\) 0 0
\(967\) 2.44116e13i 0.897794i −0.893584 0.448897i \(-0.851817\pi\)
0.893584 0.448897i \(-0.148183\pi\)
\(968\) 0 0
\(969\) 5.42949e13i 1.97835i
\(970\) 0 0
\(971\) −1.36946e13 −0.494384 −0.247192 0.968967i \(-0.579508\pi\)
−0.247192 + 0.968967i \(0.579508\pi\)
\(972\) 0 0
\(973\) 1.83038e13i 0.654686i
\(974\) 0 0
\(975\) 3.15371e12 2.09443e13i 0.111764 0.742241i
\(976\) 0 0
\(977\) 1.49319e13i 0.524313i 0.965025 + 0.262157i \(0.0844337\pi\)
−0.965025 + 0.262157i \(0.915566\pi\)
\(978\) 0 0
\(979\) 8.92797e12 0.310621
\(980\) 0 0
\(981\) 2.21640e13i 0.764077i
\(982\) 0 0
\(983\) 3.51470e13i 1.20060i 0.799776 + 0.600298i \(0.204951\pi\)
−0.799776 + 0.600298i \(0.795049\pi\)
\(984\) 0 0
\(985\) −4.89119e12 −0.165559
\(986\) 0 0
\(987\) 1.25570e13 0.421170
\(988\) 0 0
\(989\) −3.31623e13 −1.10220
\(990\) 0 0
\(991\) 1.96775e13 0.648095 0.324048 0.946041i \(-0.394956\pi\)
0.324048 + 0.946041i \(0.394956\pi\)
\(992\) 0 0
\(993\) 5.46137e13i 1.78250i
\(994\) 0 0
\(995\) 3.11085e13i 1.00618i
\(996\) 0 0
\(997\) 3.67522e13 1.17803 0.589013 0.808123i \(-0.299517\pi\)
0.589013 + 0.808123i \(0.299517\pi\)
\(998\) 0 0
\(999\) 1.73788e13i 0.552046i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 104.10.f.a.25.6 yes 32
4.3 odd 2 208.10.f.d.129.27 32
13.12 even 2 inner 104.10.f.a.25.5 32
52.51 odd 2 208.10.f.d.129.28 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.f.a.25.5 32 13.12 even 2 inner
104.10.f.a.25.6 yes 32 1.1 even 1 trivial
208.10.f.d.129.27 32 4.3 odd 2
208.10.f.d.129.28 32 52.51 odd 2