Properties

Label 104.10.f.a.25.17
Level $104$
Weight $10$
Character 104.25
Analytic conductor $53.564$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [104,10,Mod(25,104)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(104, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("104.25"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 104.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(53.5637269610\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 25.17
Character \(\chi\) \(=\) 104.25
Dual form 104.10.f.a.25.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-12.4770 q^{3} +1341.60i q^{5} -1173.85i q^{7} -19527.3 q^{9} -70941.0i q^{11} +(89435.4 + 51047.1i) q^{13} -16739.1i q^{15} +499392. q^{17} -65647.1i q^{19} +14646.1i q^{21} -1.08432e6 q^{23} +153237. q^{25} +489225. q^{27} -2.16430e6 q^{29} -1.72498e6i q^{31} +885128. i q^{33} +1.57484e6 q^{35} +1.04421e7i q^{37} +(-1.11588e6 - 636912. i) q^{39} +2.64490e7i q^{41} +180930. q^{43} -2.61978e7i q^{45} -6.80472e6i q^{47} +3.89757e7 q^{49} -6.23089e6 q^{51} +2.42430e7 q^{53} +9.51744e7 q^{55} +819076. i q^{57} +1.74914e8i q^{59} -4.64763e7 q^{61} +2.29222e7i q^{63} +(-6.84847e7 + 1.19986e8i) q^{65} +1.58494e8i q^{67} +1.35291e7 q^{69} -3.28213e7i q^{71} +2.15107e8i q^{73} -1.91193e6 q^{75} -8.32744e7 q^{77} +6.10120e8 q^{79} +3.78252e8 q^{81} +2.98207e7i q^{83} +6.69984e8i q^{85} +2.70038e7 q^{87} +2.33514e8i q^{89} +(5.99218e7 - 1.04984e8i) q^{91} +2.15225e7i q^{93} +8.80721e7 q^{95} +1.03780e8i q^{97} +1.38529e9i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 162 q^{3} + 223074 q^{9} + 66270 q^{13} - 487902 q^{17} + 3171556 q^{23} - 13526722 q^{25} - 3694974 q^{27} + 8833508 q^{29} - 8281126 q^{35} - 12056860 q^{39} + 89959038 q^{43} - 172344874 q^{49}+ \cdots + 1741143356 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −12.4770 −0.0889330 −0.0444665 0.999011i \(-0.514159\pi\)
−0.0444665 + 0.999011i \(0.514159\pi\)
\(4\) 0 0
\(5\) 1341.60i 0.959970i 0.877277 + 0.479985i \(0.159358\pi\)
−0.877277 + 0.479985i \(0.840642\pi\)
\(6\) 0 0
\(7\) 1173.85i 0.184788i −0.995723 0.0923938i \(-0.970548\pi\)
0.995723 0.0923938i \(-0.0294519\pi\)
\(8\) 0 0
\(9\) −19527.3 −0.992091
\(10\) 0 0
\(11\) 70941.0i 1.46093i −0.682948 0.730467i \(-0.739303\pi\)
0.682948 0.730467i \(-0.260697\pi\)
\(12\) 0 0
\(13\) 89435.4 + 51047.1i 0.868489 + 0.495708i
\(14\) 0 0
\(15\) 16739.1i 0.0853730i
\(16\) 0 0
\(17\) 499392. 1.45018 0.725089 0.688655i \(-0.241799\pi\)
0.725089 + 0.688655i \(0.241799\pi\)
\(18\) 0 0
\(19\) 65647.1i 0.115565i −0.998329 0.0577823i \(-0.981597\pi\)
0.998329 0.0577823i \(-0.0184029\pi\)
\(20\) 0 0
\(21\) 14646.1i 0.0164337i
\(22\) 0 0
\(23\) −1.08432e6 −0.807949 −0.403975 0.914770i \(-0.632372\pi\)
−0.403975 + 0.914770i \(0.632372\pi\)
\(24\) 0 0
\(25\) 153237. 0.0784573
\(26\) 0 0
\(27\) 489225. 0.177163
\(28\) 0 0
\(29\) −2.16430e6 −0.568232 −0.284116 0.958790i \(-0.591700\pi\)
−0.284116 + 0.958790i \(0.591700\pi\)
\(30\) 0 0
\(31\) 1.72498e6i 0.335472i −0.985832 0.167736i \(-0.946354\pi\)
0.985832 0.167736i \(-0.0536457\pi\)
\(32\) 0 0
\(33\) 885128.i 0.129925i
\(34\) 0 0
\(35\) 1.57484e6 0.177391
\(36\) 0 0
\(37\) 1.04421e7i 0.915967i 0.888961 + 0.457983i \(0.151428\pi\)
−0.888961 + 0.457983i \(0.848572\pi\)
\(38\) 0 0
\(39\) −1.11588e6 636912.i −0.0772374 0.0440848i
\(40\) 0 0
\(41\) 2.64490e7i 1.46178i 0.682496 + 0.730890i \(0.260895\pi\)
−0.682496 + 0.730890i \(0.739105\pi\)
\(42\) 0 0
\(43\) 180930. 0.00807054 0.00403527 0.999992i \(-0.498716\pi\)
0.00403527 + 0.999992i \(0.498716\pi\)
\(44\) 0 0
\(45\) 2.61978e7i 0.952378i
\(46\) 0 0
\(47\) 6.80472e6i 0.203409i −0.994815 0.101705i \(-0.967570\pi\)
0.994815 0.101705i \(-0.0324296\pi\)
\(48\) 0 0
\(49\) 3.89757e7 0.965854
\(50\) 0 0
\(51\) −6.23089e6 −0.128969
\(52\) 0 0
\(53\) 2.42430e7 0.422032 0.211016 0.977483i \(-0.432323\pi\)
0.211016 + 0.977483i \(0.432323\pi\)
\(54\) 0 0
\(55\) 9.51744e7 1.40245
\(56\) 0 0
\(57\) 819076.i 0.0102775i
\(58\) 0 0
\(59\) 1.74914e8i 1.87927i 0.342173 + 0.939637i \(0.388837\pi\)
−0.342173 + 0.939637i \(0.611163\pi\)
\(60\) 0 0
\(61\) −4.64763e7 −0.429781 −0.214890 0.976638i \(-0.568939\pi\)
−0.214890 + 0.976638i \(0.568939\pi\)
\(62\) 0 0
\(63\) 2.29222e7i 0.183326i
\(64\) 0 0
\(65\) −6.84847e7 + 1.19986e8i −0.475865 + 0.833724i
\(66\) 0 0
\(67\) 1.58494e8i 0.960893i 0.877024 + 0.480446i \(0.159525\pi\)
−0.877024 + 0.480446i \(0.840475\pi\)
\(68\) 0 0
\(69\) 1.35291e7 0.0718533
\(70\) 0 0
\(71\) 3.28213e7i 0.153283i −0.997059 0.0766413i \(-0.975580\pi\)
0.997059 0.0766413i \(-0.0244196\pi\)
\(72\) 0 0
\(73\) 2.15107e8i 0.886549i 0.896386 + 0.443274i \(0.146183\pi\)
−0.896386 + 0.443274i \(0.853817\pi\)
\(74\) 0 0
\(75\) −1.91193e6 −0.00697745
\(76\) 0 0
\(77\) −8.32744e7 −0.269962
\(78\) 0 0
\(79\) 6.10120e8 1.76235 0.881177 0.472786i \(-0.156752\pi\)
0.881177 + 0.472786i \(0.156752\pi\)
\(80\) 0 0
\(81\) 3.78252e8 0.976335
\(82\) 0 0
\(83\) 2.98207e7i 0.0689710i 0.999405 + 0.0344855i \(0.0109793\pi\)
−0.999405 + 0.0344855i \(0.989021\pi\)
\(84\) 0 0
\(85\) 6.69984e8i 1.39213i
\(86\) 0 0
\(87\) 2.70038e7 0.0505346
\(88\) 0 0
\(89\) 2.33514e8i 0.394510i 0.980352 + 0.197255i \(0.0632027\pi\)
−0.980352 + 0.197255i \(0.936797\pi\)
\(90\) 0 0
\(91\) 5.99218e7 1.04984e8i 0.0916007 0.160486i
\(92\) 0 0
\(93\) 2.15225e7i 0.0298346i
\(94\) 0 0
\(95\) 8.80721e7 0.110939
\(96\) 0 0
\(97\) 1.03780e8i 0.119026i 0.998228 + 0.0595130i \(0.0189548\pi\)
−0.998228 + 0.0595130i \(0.981045\pi\)
\(98\) 0 0
\(99\) 1.38529e9i 1.44938i
\(100\) 0 0
\(101\) 1.16333e9 1.11239 0.556196 0.831051i \(-0.312260\pi\)
0.556196 + 0.831051i \(0.312260\pi\)
\(102\) 0 0
\(103\) −8.60387e8 −0.753228 −0.376614 0.926370i \(-0.622912\pi\)
−0.376614 + 0.926370i \(0.622912\pi\)
\(104\) 0 0
\(105\) −1.96492e7 −0.0157759
\(106\) 0 0
\(107\) 2.34920e9 1.73258 0.866290 0.499541i \(-0.166498\pi\)
0.866290 + 0.499541i \(0.166498\pi\)
\(108\) 0 0
\(109\) 1.88936e9i 1.28202i 0.767533 + 0.641010i \(0.221484\pi\)
−0.767533 + 0.641010i \(0.778516\pi\)
\(110\) 0 0
\(111\) 1.30286e8i 0.0814597i
\(112\) 0 0
\(113\) −1.14370e9 −0.659871 −0.329936 0.944003i \(-0.607027\pi\)
−0.329936 + 0.944003i \(0.607027\pi\)
\(114\) 0 0
\(115\) 1.45473e9i 0.775607i
\(116\) 0 0
\(117\) −1.74643e9 9.96812e8i −0.861621 0.491787i
\(118\) 0 0
\(119\) 5.86213e8i 0.267975i
\(120\) 0 0
\(121\) −2.67468e9 −1.13433
\(122\) 0 0
\(123\) 3.30003e8i 0.130000i
\(124\) 0 0
\(125\) 2.82589e9i 1.03529i
\(126\) 0 0
\(127\) −1.77859e9 −0.606679 −0.303340 0.952883i \(-0.598102\pi\)
−0.303340 + 0.952883i \(0.598102\pi\)
\(128\) 0 0
\(129\) −2.25746e6 −0.000717738
\(130\) 0 0
\(131\) 5.62697e9 1.66937 0.834687 0.550724i \(-0.185648\pi\)
0.834687 + 0.550724i \(0.185648\pi\)
\(132\) 0 0
\(133\) −7.70602e7 −0.0213549
\(134\) 0 0
\(135\) 6.56344e8i 0.170071i
\(136\) 0 0
\(137\) 1.80239e9i 0.437126i −0.975823 0.218563i \(-0.929863\pi\)
0.975823 0.218563i \(-0.0701369\pi\)
\(138\) 0 0
\(139\) −6.03680e8 −0.137164 −0.0685820 0.997645i \(-0.521847\pi\)
−0.0685820 + 0.997645i \(0.521847\pi\)
\(140\) 0 0
\(141\) 8.49022e7i 0.0180898i
\(142\) 0 0
\(143\) 3.62133e9 6.34464e9i 0.724196 1.26881i
\(144\) 0 0
\(145\) 2.90362e9i 0.545486i
\(146\) 0 0
\(147\) −4.86298e8 −0.0858963
\(148\) 0 0
\(149\) 8.13305e9i 1.35181i −0.736990 0.675904i \(-0.763753\pi\)
0.736990 0.675904i \(-0.236247\pi\)
\(150\) 0 0
\(151\) 6.52751e9i 1.02177i −0.859651 0.510883i \(-0.829319\pi\)
0.859651 0.510883i \(-0.170681\pi\)
\(152\) 0 0
\(153\) −9.75179e9 −1.43871
\(154\) 0 0
\(155\) 2.31423e9 0.322043
\(156\) 0 0
\(157\) −1.29030e10 −1.69490 −0.847449 0.530877i \(-0.821863\pi\)
−0.847449 + 0.530877i \(0.821863\pi\)
\(158\) 0 0
\(159\) −3.02479e8 −0.0375326
\(160\) 0 0
\(161\) 1.27284e9i 0.149299i
\(162\) 0 0
\(163\) 2.70651e9i 0.300307i 0.988663 + 0.150154i \(0.0479768\pi\)
−0.988663 + 0.150154i \(0.952023\pi\)
\(164\) 0 0
\(165\) −1.18749e9 −0.124724
\(166\) 0 0
\(167\) 1.50039e10i 1.49272i −0.665540 0.746362i \(-0.731799\pi\)
0.665540 0.746362i \(-0.268201\pi\)
\(168\) 0 0
\(169\) 5.39290e9 + 9.13083e9i 0.508548 + 0.861034i
\(170\) 0 0
\(171\) 1.28191e9i 0.114651i
\(172\) 0 0
\(173\) −2.05346e10 −1.74292 −0.871461 0.490465i \(-0.836827\pi\)
−0.871461 + 0.490465i \(0.836827\pi\)
\(174\) 0 0
\(175\) 1.79878e8i 0.0144979i
\(176\) 0 0
\(177\) 2.18239e9i 0.167129i
\(178\) 0 0
\(179\) 1.27422e8 0.00927694 0.00463847 0.999989i \(-0.498524\pi\)
0.00463847 + 0.999989i \(0.498524\pi\)
\(180\) 0 0
\(181\) 2.04762e10 1.41806 0.709031 0.705178i \(-0.249133\pi\)
0.709031 + 0.705178i \(0.249133\pi\)
\(182\) 0 0
\(183\) 5.79882e8 0.0382217
\(184\) 0 0
\(185\) −1.40091e10 −0.879301
\(186\) 0 0
\(187\) 3.54274e10i 2.11861i
\(188\) 0 0
\(189\) 5.74279e8i 0.0327375i
\(190\) 0 0
\(191\) 5.61922e9 0.305510 0.152755 0.988264i \(-0.451185\pi\)
0.152755 + 0.988264i \(0.451185\pi\)
\(192\) 0 0
\(193\) 2.62549e10i 1.36208i 0.732246 + 0.681041i \(0.238472\pi\)
−0.732246 + 0.681041i \(0.761528\pi\)
\(194\) 0 0
\(195\) 8.54480e8 1.49707e9i 0.0423201 0.0741456i
\(196\) 0 0
\(197\) 8.27421e9i 0.391407i −0.980663 0.195704i \(-0.937301\pi\)
0.980663 0.195704i \(-0.0626990\pi\)
\(198\) 0 0
\(199\) −3.06455e9 −0.138525 −0.0692625 0.997598i \(-0.522065\pi\)
−0.0692625 + 0.997598i \(0.522065\pi\)
\(200\) 0 0
\(201\) 1.97752e9i 0.0854551i
\(202\) 0 0
\(203\) 2.54057e9i 0.105002i
\(204\) 0 0
\(205\) −3.54839e10 −1.40326
\(206\) 0 0
\(207\) 2.11740e10 0.801559
\(208\) 0 0
\(209\) −4.65708e9 −0.168832
\(210\) 0 0
\(211\) 3.94857e10 1.37141 0.685707 0.727877i \(-0.259493\pi\)
0.685707 + 0.727877i \(0.259493\pi\)
\(212\) 0 0
\(213\) 4.09510e8i 0.0136319i
\(214\) 0 0
\(215\) 2.42736e8i 0.00774748i
\(216\) 0 0
\(217\) −2.02488e9 −0.0619911
\(218\) 0 0
\(219\) 2.68389e9i 0.0788434i
\(220\) 0 0
\(221\) 4.46633e10 + 2.54925e10i 1.25946 + 0.718864i
\(222\) 0 0
\(223\) 4.19352e10i 1.13555i 0.823183 + 0.567776i \(0.192196\pi\)
−0.823183 + 0.567776i \(0.807804\pi\)
\(224\) 0 0
\(225\) −2.99231e9 −0.0778368
\(226\) 0 0
\(227\) 3.55412e10i 0.888415i 0.895924 + 0.444207i \(0.146515\pi\)
−0.895924 + 0.444207i \(0.853485\pi\)
\(228\) 0 0
\(229\) 1.69032e10i 0.406170i −0.979161 0.203085i \(-0.934903\pi\)
0.979161 0.203085i \(-0.0650968\pi\)
\(230\) 0 0
\(231\) 1.03901e9 0.0240086
\(232\) 0 0
\(233\) 1.36761e10 0.303991 0.151996 0.988381i \(-0.451430\pi\)
0.151996 + 0.988381i \(0.451430\pi\)
\(234\) 0 0
\(235\) 9.12921e9 0.195267
\(236\) 0 0
\(237\) −7.61244e9 −0.156731
\(238\) 0 0
\(239\) 7.07265e10i 1.40214i 0.713092 + 0.701071i \(0.247294\pi\)
−0.713092 + 0.701071i \(0.752706\pi\)
\(240\) 0 0
\(241\) 3.43929e10i 0.656739i −0.944549 0.328369i \(-0.893501\pi\)
0.944549 0.328369i \(-0.106499\pi\)
\(242\) 0 0
\(243\) −1.43489e10 −0.263991
\(244\) 0 0
\(245\) 5.22897e10i 0.927191i
\(246\) 0 0
\(247\) 3.35109e9 5.87118e9i 0.0572862 0.100367i
\(248\) 0 0
\(249\) 3.72072e8i 0.00613380i
\(250\) 0 0
\(251\) −8.96466e10 −1.42561 −0.712807 0.701360i \(-0.752576\pi\)
−0.712807 + 0.701360i \(0.752576\pi\)
\(252\) 0 0
\(253\) 7.69231e10i 1.18036i
\(254\) 0 0
\(255\) 8.35936e9i 0.123806i
\(256\) 0 0
\(257\) −1.12810e10 −0.161305 −0.0806525 0.996742i \(-0.525700\pi\)
−0.0806525 + 0.996742i \(0.525700\pi\)
\(258\) 0 0
\(259\) 1.22575e10 0.169259
\(260\) 0 0
\(261\) 4.22629e10 0.563738
\(262\) 0 0
\(263\) 1.23948e11 1.59749 0.798744 0.601671i \(-0.205498\pi\)
0.798744 + 0.601671i \(0.205498\pi\)
\(264\) 0 0
\(265\) 3.25244e10i 0.405138i
\(266\) 0 0
\(267\) 2.91355e9i 0.0350850i
\(268\) 0 0
\(269\) 4.23467e10 0.493099 0.246550 0.969130i \(-0.420703\pi\)
0.246550 + 0.969130i \(0.420703\pi\)
\(270\) 0 0
\(271\) 1.79741e10i 0.202435i 0.994864 + 0.101218i \(0.0322738\pi\)
−0.994864 + 0.101218i \(0.967726\pi\)
\(272\) 0 0
\(273\) −7.47642e8 + 1.30988e9i −0.00814632 + 0.0142725i
\(274\) 0 0
\(275\) 1.08708e10i 0.114621i
\(276\) 0 0
\(277\) 6.61079e10 0.674675 0.337337 0.941384i \(-0.390474\pi\)
0.337337 + 0.941384i \(0.390474\pi\)
\(278\) 0 0
\(279\) 3.36843e10i 0.332819i
\(280\) 0 0
\(281\) 1.99778e10i 0.191148i 0.995422 + 0.0955740i \(0.0304687\pi\)
−0.995422 + 0.0955740i \(0.969531\pi\)
\(282\) 0 0
\(283\) 5.17876e10 0.479940 0.239970 0.970780i \(-0.422862\pi\)
0.239970 + 0.970780i \(0.422862\pi\)
\(284\) 0 0
\(285\) −1.09887e9 −0.00986609
\(286\) 0 0
\(287\) 3.10473e10 0.270119
\(288\) 0 0
\(289\) 1.30804e11 1.10302
\(290\) 0 0
\(291\) 1.29486e9i 0.0105853i
\(292\) 0 0
\(293\) 8.98975e10i 0.712596i −0.934372 0.356298i \(-0.884039\pi\)
0.934372 0.356298i \(-0.115961\pi\)
\(294\) 0 0
\(295\) −2.34664e11 −1.80405
\(296\) 0 0
\(297\) 3.47062e10i 0.258823i
\(298\) 0 0
\(299\) −9.69770e10 5.53516e10i −0.701695 0.400507i
\(300\) 0 0
\(301\) 2.12386e8i 0.00149134i
\(302\) 0 0
\(303\) −1.45149e10 −0.0989284
\(304\) 0 0
\(305\) 6.23525e10i 0.412577i
\(306\) 0 0
\(307\) 1.34965e11i 0.867161i 0.901115 + 0.433580i \(0.142750\pi\)
−0.901115 + 0.433580i \(0.857250\pi\)
\(308\) 0 0
\(309\) 1.07350e10 0.0669868
\(310\) 0 0
\(311\) −2.82687e11 −1.71350 −0.856751 0.515731i \(-0.827520\pi\)
−0.856751 + 0.515731i \(0.827520\pi\)
\(312\) 0 0
\(313\) 5.02489e10 0.295922 0.147961 0.988993i \(-0.452729\pi\)
0.147961 + 0.988993i \(0.452729\pi\)
\(314\) 0 0
\(315\) −3.07524e10 −0.175988
\(316\) 0 0
\(317\) 1.65692e11i 0.921584i −0.887508 0.460792i \(-0.847565\pi\)
0.887508 0.460792i \(-0.152435\pi\)
\(318\) 0 0
\(319\) 1.53537e11i 0.830149i
\(320\) 0 0
\(321\) −2.93109e10 −0.154084
\(322\) 0 0
\(323\) 3.27836e10i 0.167589i
\(324\) 0 0
\(325\) 1.37048e10 + 7.82230e9i 0.0681394 + 0.0388919i
\(326\) 0 0
\(327\) 2.35734e10i 0.114014i
\(328\) 0 0
\(329\) −7.98775e9 −0.0375875
\(330\) 0 0
\(331\) 3.69684e11i 1.69280i −0.532551 0.846398i \(-0.678767\pi\)
0.532551 0.846398i \(-0.321233\pi\)
\(332\) 0 0
\(333\) 2.03906e11i 0.908722i
\(334\) 0 0
\(335\) −2.12635e11 −0.922429
\(336\) 0 0
\(337\) 1.16361e10 0.0491441 0.0245720 0.999698i \(-0.492178\pi\)
0.0245720 + 0.999698i \(0.492178\pi\)
\(338\) 0 0
\(339\) 1.42699e10 0.0586844
\(340\) 0 0
\(341\) −1.22372e11 −0.490103
\(342\) 0 0
\(343\) 9.31210e10i 0.363265i
\(344\) 0 0
\(345\) 1.81506e10i 0.0689771i
\(346\) 0 0
\(347\) 1.75332e11 0.649201 0.324600 0.945851i \(-0.394770\pi\)
0.324600 + 0.945851i \(0.394770\pi\)
\(348\) 0 0
\(349\) 3.30557e11i 1.19270i −0.802723 0.596352i \(-0.796616\pi\)
0.802723 0.596352i \(-0.203384\pi\)
\(350\) 0 0
\(351\) 4.37541e10 + 2.49735e10i 0.153864 + 0.0878209i
\(352\) 0 0
\(353\) 8.89138e10i 0.304778i −0.988321 0.152389i \(-0.951303\pi\)
0.988321 0.152389i \(-0.0486966\pi\)
\(354\) 0 0
\(355\) 4.40330e10 0.147147
\(356\) 0 0
\(357\) 7.31416e9i 0.0238318i
\(358\) 0 0
\(359\) 3.61315e11i 1.14805i 0.818837 + 0.574025i \(0.194619\pi\)
−0.818837 + 0.574025i \(0.805381\pi\)
\(360\) 0 0
\(361\) 3.18378e11 0.986645
\(362\) 0 0
\(363\) 3.33719e10 0.100879
\(364\) 0 0
\(365\) −2.88588e11 −0.851060
\(366\) 0 0
\(367\) −4.62890e11 −1.33193 −0.665963 0.745985i \(-0.731979\pi\)
−0.665963 + 0.745985i \(0.731979\pi\)
\(368\) 0 0
\(369\) 5.16478e11i 1.45022i
\(370\) 0 0
\(371\) 2.84578e10i 0.0779864i
\(372\) 0 0
\(373\) 1.75397e11 0.469171 0.234586 0.972095i \(-0.424627\pi\)
0.234586 + 0.972095i \(0.424627\pi\)
\(374\) 0 0
\(375\) 3.52585e10i 0.0920712i
\(376\) 0 0
\(377\) −1.93565e11 1.10481e11i −0.493504 0.281677i
\(378\) 0 0
\(379\) 3.55221e10i 0.0884345i 0.999022 + 0.0442172i \(0.0140794\pi\)
−0.999022 + 0.0442172i \(0.985921\pi\)
\(380\) 0 0
\(381\) 2.21914e10 0.0539538
\(382\) 0 0
\(383\) 7.85980e11i 1.86645i −0.359289 0.933226i \(-0.616981\pi\)
0.359289 0.933226i \(-0.383019\pi\)
\(384\) 0 0
\(385\) 1.11721e11i 0.259156i
\(386\) 0 0
\(387\) −3.53308e9 −0.00800671
\(388\) 0 0
\(389\) 3.74700e11 0.829679 0.414839 0.909895i \(-0.363838\pi\)
0.414839 + 0.909895i \(0.363838\pi\)
\(390\) 0 0
\(391\) −5.41503e11 −1.17167
\(392\) 0 0
\(393\) −7.02074e10 −0.148462
\(394\) 0 0
\(395\) 8.18536e11i 1.69181i
\(396\) 0 0
\(397\) 8.78858e10i 0.177567i 0.996051 + 0.0887834i \(0.0282979\pi\)
−0.996051 + 0.0887834i \(0.971702\pi\)
\(398\) 0 0
\(399\) 9.61476e8 0.00189916
\(400\) 0 0
\(401\) 2.08722e11i 0.403105i 0.979478 + 0.201553i \(0.0645987\pi\)
−0.979478 + 0.201553i \(0.935401\pi\)
\(402\) 0 0
\(403\) 8.80552e10 1.54274e11i 0.166296 0.291354i
\(404\) 0 0
\(405\) 5.07463e11i 0.937253i
\(406\) 0 0
\(407\) 7.40773e11 1.33817
\(408\) 0 0
\(409\) 9.73857e11i 1.72084i 0.509586 + 0.860420i \(0.329798\pi\)
−0.509586 + 0.860420i \(0.670202\pi\)
\(410\) 0 0
\(411\) 2.24884e10i 0.0388749i
\(412\) 0 0
\(413\) 2.05323e11 0.347267
\(414\) 0 0
\(415\) −4.00075e10 −0.0662101
\(416\) 0 0
\(417\) 7.53209e9 0.0121984
\(418\) 0 0
\(419\) −9.21103e11 −1.45997 −0.729987 0.683461i \(-0.760474\pi\)
−0.729987 + 0.683461i \(0.760474\pi\)
\(420\) 0 0
\(421\) 5.16727e11i 0.801663i 0.916152 + 0.400832i \(0.131279\pi\)
−0.916152 + 0.400832i \(0.868721\pi\)
\(422\) 0 0
\(423\) 1.32878e11i 0.201800i
\(424\) 0 0
\(425\) 7.65253e10 0.113777
\(426\) 0 0
\(427\) 5.45564e10i 0.0794182i
\(428\) 0 0
\(429\) −4.51832e10 + 7.91618e10i −0.0644049 + 0.112839i
\(430\) 0 0
\(431\) 5.07960e11i 0.709057i −0.935045 0.354529i \(-0.884641\pi\)
0.935045 0.354529i \(-0.115359\pi\)
\(432\) 0 0
\(433\) 3.81600e11 0.521691 0.260845 0.965381i \(-0.415999\pi\)
0.260845 + 0.965381i \(0.415999\pi\)
\(434\) 0 0
\(435\) 3.62283e10i 0.0485117i
\(436\) 0 0
\(437\) 7.11828e10i 0.0933703i
\(438\) 0 0
\(439\) 3.17556e11 0.408065 0.204033 0.978964i \(-0.434595\pi\)
0.204033 + 0.978964i \(0.434595\pi\)
\(440\) 0 0
\(441\) −7.61091e11 −0.958215
\(442\) 0 0
\(443\) 1.01864e12 1.25662 0.628311 0.777963i \(-0.283747\pi\)
0.628311 + 0.777963i \(0.283747\pi\)
\(444\) 0 0
\(445\) −3.13282e11 −0.378718
\(446\) 0 0
\(447\) 1.01476e11i 0.120220i
\(448\) 0 0
\(449\) 1.43267e12i 1.66355i −0.555110 0.831777i \(-0.687324\pi\)
0.555110 0.831777i \(-0.312676\pi\)
\(450\) 0 0
\(451\) 1.87632e12 2.13556
\(452\) 0 0
\(453\) 8.14434e10i 0.0908686i
\(454\) 0 0
\(455\) 1.40847e11 + 8.03910e10i 0.154062 + 0.0879339i
\(456\) 0 0
\(457\) 1.08497e12i 1.16358i 0.813339 + 0.581790i \(0.197647\pi\)
−0.813339 + 0.581790i \(0.802353\pi\)
\(458\) 0 0
\(459\) 2.44315e11 0.256917
\(460\) 0 0
\(461\) 7.48131e11i 0.771478i 0.922608 + 0.385739i \(0.126053\pi\)
−0.922608 + 0.385739i \(0.873947\pi\)
\(462\) 0 0
\(463\) 1.29921e12i 1.31390i 0.753933 + 0.656952i \(0.228154\pi\)
−0.753933 + 0.656952i \(0.771846\pi\)
\(464\) 0 0
\(465\) −2.88746e10 −0.0286403
\(466\) 0 0
\(467\) 1.30622e12 1.27084 0.635421 0.772166i \(-0.280827\pi\)
0.635421 + 0.772166i \(0.280827\pi\)
\(468\) 0 0
\(469\) 1.86048e11 0.177561
\(470\) 0 0
\(471\) 1.60991e11 0.150732
\(472\) 0 0
\(473\) 1.28354e10i 0.0117905i
\(474\) 0 0
\(475\) 1.00596e10i 0.00906689i
\(476\) 0 0
\(477\) −4.73402e11 −0.418694
\(478\) 0 0
\(479\) 3.33053e11i 0.289070i 0.989500 + 0.144535i \(0.0461686\pi\)
−0.989500 + 0.144535i \(0.953831\pi\)
\(480\) 0 0
\(481\) −5.33038e11 + 9.33893e11i −0.454052 + 0.795508i
\(482\) 0 0
\(483\) 1.58812e10i 0.0132776i
\(484\) 0 0
\(485\) −1.39231e11 −0.114261
\(486\) 0 0
\(487\) 1.22120e12i 0.983798i 0.870652 + 0.491899i \(0.163697\pi\)
−0.870652 + 0.491899i \(0.836303\pi\)
\(488\) 0 0
\(489\) 3.37690e10i 0.0267072i
\(490\) 0 0
\(491\) 1.26215e12 0.980039 0.490020 0.871711i \(-0.336990\pi\)
0.490020 + 0.871711i \(0.336990\pi\)
\(492\) 0 0
\(493\) −1.08083e12 −0.824038
\(494\) 0 0
\(495\) −1.85850e12 −1.39136
\(496\) 0 0
\(497\) −3.85274e10 −0.0283247
\(498\) 0 0
\(499\) 1.29029e12i 0.931609i −0.884888 0.465804i \(-0.845765\pi\)
0.884888 0.465804i \(-0.154235\pi\)
\(500\) 0 0
\(501\) 1.87203e11i 0.132752i
\(502\) 0 0
\(503\) −1.70917e12 −1.19050 −0.595250 0.803540i \(-0.702947\pi\)
−0.595250 + 0.803540i \(0.702947\pi\)
\(504\) 0 0
\(505\) 1.56073e12i 1.06786i
\(506\) 0 0
\(507\) −6.72869e10 1.13925e11i −0.0452267 0.0765743i
\(508\) 0 0
\(509\) 1.03330e12i 0.682331i −0.940003 0.341166i \(-0.889178\pi\)
0.940003 0.341166i \(-0.110822\pi\)
\(510\) 0 0
\(511\) 2.52505e11 0.163823
\(512\) 0 0
\(513\) 3.21163e10i 0.0204737i
\(514\) 0 0
\(515\) 1.15429e12i 0.723076i
\(516\) 0 0
\(517\) −4.82734e11 −0.297167
\(518\) 0 0
\(519\) 2.56209e11 0.155003
\(520\) 0 0
\(521\) 1.72125e12 1.02347 0.511735 0.859143i \(-0.329003\pi\)
0.511735 + 0.859143i \(0.329003\pi\)
\(522\) 0 0
\(523\) 2.12871e12 1.24411 0.622056 0.782973i \(-0.286298\pi\)
0.622056 + 0.782973i \(0.286298\pi\)
\(524\) 0 0
\(525\) 2.24433e9i 0.00128935i
\(526\) 0 0
\(527\) 8.61441e11i 0.486495i
\(528\) 0 0
\(529\) −6.25393e11 −0.347218
\(530\) 0 0
\(531\) 3.41560e12i 1.86441i
\(532\) 0 0
\(533\) −1.35014e12 + 2.36548e12i −0.724615 + 1.26954i
\(534\) 0 0
\(535\) 3.15169e12i 1.66323i
\(536\) 0 0
\(537\) −1.58983e9 −0.000825026
\(538\) 0 0
\(539\) 2.76497e12i 1.41105i
\(540\) 0 0
\(541\) 2.44843e12i 1.22885i −0.788974 0.614426i \(-0.789388\pi\)
0.788974 0.614426i \(-0.210612\pi\)
\(542\) 0 0
\(543\) −2.55480e11 −0.126112
\(544\) 0 0
\(545\) −2.53476e12 −1.23070
\(546\) 0 0
\(547\) 2.97232e12 1.41956 0.709778 0.704425i \(-0.248795\pi\)
0.709778 + 0.704425i \(0.248795\pi\)
\(548\) 0 0
\(549\) 9.07557e11 0.426382
\(550\) 0 0
\(551\) 1.42080e11i 0.0656675i
\(552\) 0 0
\(553\) 7.16192e11i 0.325661i
\(554\) 0 0
\(555\) 1.74791e11 0.0781989
\(556\) 0 0
\(557\) 5.60623e10i 0.0246787i 0.999924 + 0.0123394i \(0.00392784\pi\)
−0.999924 + 0.0123394i \(0.996072\pi\)
\(558\) 0 0
\(559\) 1.61816e10 + 9.23595e9i 0.00700918 + 0.00400063i
\(560\) 0 0
\(561\) 4.42026e11i 0.188415i
\(562\) 0 0
\(563\) −3.22969e12 −1.35479 −0.677396 0.735619i \(-0.736892\pi\)
−0.677396 + 0.735619i \(0.736892\pi\)
\(564\) 0 0
\(565\) 1.53439e12i 0.633457i
\(566\) 0 0
\(567\) 4.44013e11i 0.180415i
\(568\) 0 0
\(569\) −1.93587e12 −0.774233 −0.387117 0.922031i \(-0.626529\pi\)
−0.387117 + 0.922031i \(0.626529\pi\)
\(570\) 0 0
\(571\) −9.23235e11 −0.363454 −0.181727 0.983349i \(-0.558169\pi\)
−0.181727 + 0.983349i \(0.558169\pi\)
\(572\) 0 0
\(573\) −7.01108e10 −0.0271699
\(574\) 0 0
\(575\) −1.66159e11 −0.0633895
\(576\) 0 0
\(577\) 1.65036e12i 0.619852i −0.950761 0.309926i \(-0.899696\pi\)
0.950761 0.309926i \(-0.100304\pi\)
\(578\) 0 0
\(579\) 3.27582e11i 0.121134i
\(580\) 0 0
\(581\) 3.50052e10 0.0127450
\(582\) 0 0
\(583\) 1.71983e12i 0.616561i
\(584\) 0 0
\(585\) 1.33732e12 2.34302e12i 0.472101 0.827130i
\(586\) 0 0
\(587\) 1.41354e12i 0.491400i −0.969346 0.245700i \(-0.920982\pi\)
0.969346 0.245700i \(-0.0790179\pi\)
\(588\) 0 0
\(589\) −1.13240e11 −0.0387687
\(590\) 0 0
\(591\) 1.03237e11i 0.0348090i
\(592\) 0 0
\(593\) 1.81879e12i 0.604000i 0.953308 + 0.302000i \(0.0976543\pi\)
−0.953308 + 0.302000i \(0.902346\pi\)
\(594\) 0 0
\(595\) 7.86463e11 0.257248
\(596\) 0 0
\(597\) 3.82363e10 0.0123195
\(598\) 0 0
\(599\) −3.27051e12 −1.03799 −0.518996 0.854777i \(-0.673694\pi\)
−0.518996 + 0.854777i \(0.673694\pi\)
\(600\) 0 0
\(601\) 1.60924e12 0.503136 0.251568 0.967840i \(-0.419054\pi\)
0.251568 + 0.967840i \(0.419054\pi\)
\(602\) 0 0
\(603\) 3.09496e12i 0.953293i
\(604\) 0 0
\(605\) 3.58835e12i 1.08892i
\(606\) 0 0
\(607\) −4.27251e12 −1.27742 −0.638711 0.769447i \(-0.720532\pi\)
−0.638711 + 0.769447i \(0.720532\pi\)
\(608\) 0 0
\(609\) 3.16986e10i 0.00933817i
\(610\) 0 0
\(611\) 3.47361e11 6.08583e11i 0.100831 0.176659i
\(612\) 0 0
\(613\) 1.28996e12i 0.368981i 0.982834 + 0.184491i \(0.0590635\pi\)
−0.982834 + 0.184491i \(0.940936\pi\)
\(614\) 0 0
\(615\) 4.42732e11 0.124797
\(616\) 0 0
\(617\) 4.64376e12i 1.28999i −0.764186 0.644996i \(-0.776859\pi\)
0.764186 0.644996i \(-0.223141\pi\)
\(618\) 0 0
\(619\) 4.79393e12i 1.31245i 0.754564 + 0.656226i \(0.227848\pi\)
−0.754564 + 0.656226i \(0.772152\pi\)
\(620\) 0 0
\(621\) −5.30479e11 −0.143138
\(622\) 0 0
\(623\) 2.74112e11 0.0729006
\(624\) 0 0
\(625\) −3.49192e12 −0.915387
\(626\) 0 0
\(627\) 5.81061e10 0.0150147
\(628\) 0 0
\(629\) 5.21470e12i 1.32832i
\(630\) 0 0
\(631\) 1.51419e12i 0.380232i 0.981762 + 0.190116i \(0.0608865\pi\)
−0.981762 + 0.190116i \(0.939114\pi\)
\(632\) 0 0
\(633\) −4.92661e11 −0.121964
\(634\) 0 0
\(635\) 2.38615e12i 0.582394i
\(636\) 0 0
\(637\) 3.48581e12 + 1.98959e12i 0.838834 + 0.478781i
\(638\) 0 0
\(639\) 6.40912e11i 0.152070i
\(640\) 0 0
\(641\) −6.04474e12 −1.41422 −0.707110 0.707104i \(-0.750001\pi\)
−0.707110 + 0.707104i \(0.750001\pi\)
\(642\) 0 0
\(643\) 3.84554e12i 0.887171i 0.896232 + 0.443586i \(0.146294\pi\)
−0.896232 + 0.443586i \(0.853706\pi\)
\(644\) 0 0
\(645\) 3.02860e9i 0.000689007i
\(646\) 0 0
\(647\) −6.90687e12 −1.54957 −0.774787 0.632223i \(-0.782143\pi\)
−0.774787 + 0.632223i \(0.782143\pi\)
\(648\) 0 0
\(649\) 1.24086e13 2.74549
\(650\) 0 0
\(651\) 2.52643e10 0.00551306
\(652\) 0 0
\(653\) −2.16289e10 −0.00465506 −0.00232753 0.999997i \(-0.500741\pi\)
−0.00232753 + 0.999997i \(0.500741\pi\)
\(654\) 0 0
\(655\) 7.54914e12i 1.60255i
\(656\) 0 0
\(657\) 4.20047e12i 0.879537i
\(658\) 0 0
\(659\) 7.02993e12 1.45200 0.726000 0.687694i \(-0.241377\pi\)
0.726000 + 0.687694i \(0.241377\pi\)
\(660\) 0 0
\(661\) 8.46497e12i 1.72472i −0.506294 0.862361i \(-0.668985\pi\)
0.506294 0.862361i \(-0.331015\pi\)
\(662\) 0 0
\(663\) −5.57262e11 3.18069e11i −0.112008 0.0639308i
\(664\) 0 0
\(665\) 1.03384e11i 0.0205001i
\(666\) 0 0
\(667\) 2.34680e12 0.459103
\(668\) 0 0
\(669\) 5.23224e11i 0.100988i
\(670\) 0 0
\(671\) 3.29708e12i 0.627881i
\(672\) 0 0
\(673\) 1.79580e12 0.337434 0.168717 0.985665i \(-0.446038\pi\)
0.168717 + 0.985665i \(0.446038\pi\)
\(674\) 0 0
\(675\) 7.49674e10 0.0138997
\(676\) 0 0
\(677\) 2.81797e12 0.515570 0.257785 0.966202i \(-0.417007\pi\)
0.257785 + 0.966202i \(0.417007\pi\)
\(678\) 0 0
\(679\) 1.21823e11 0.0219945
\(680\) 0 0
\(681\) 4.43446e11i 0.0790094i
\(682\) 0 0
\(683\) 5.44241e12i 0.956969i −0.878096 0.478485i \(-0.841186\pi\)
0.878096 0.478485i \(-0.158814\pi\)
\(684\) 0 0
\(685\) 2.41809e12 0.419628
\(686\) 0 0
\(687\) 2.10900e11i 0.0361220i
\(688\) 0 0
\(689\) 2.16819e12 + 1.23754e12i 0.366531 + 0.209205i
\(690\) 0 0
\(691\) 7.31934e12i 1.22129i 0.791903 + 0.610647i \(0.209091\pi\)
−0.791903 + 0.610647i \(0.790909\pi\)
\(692\) 0 0
\(693\) 1.62613e12 0.267827
\(694\) 0 0
\(695\) 8.09897e11i 0.131673i
\(696\) 0 0
\(697\) 1.32084e13i 2.11984i
\(698\) 0 0
\(699\) −1.70636e11 −0.0270349
\(700\) 0 0
\(701\) 3.97007e12 0.620966 0.310483 0.950579i \(-0.399509\pi\)
0.310483 + 0.950579i \(0.399509\pi\)
\(702\) 0 0
\(703\) 6.85493e11 0.105853
\(704\) 0 0
\(705\) −1.13905e11 −0.0173656
\(706\) 0 0
\(707\) 1.36558e12i 0.205556i
\(708\) 0 0
\(709\) 7.25576e12i 1.07839i 0.842182 + 0.539194i \(0.181271\pi\)
−0.842182 + 0.539194i \(0.818729\pi\)
\(710\) 0 0
\(711\) −1.19140e13 −1.74842
\(712\) 0 0
\(713\) 1.87044e12i 0.271045i
\(714\) 0 0
\(715\) 8.51197e12 + 4.85837e12i 1.21802 + 0.695206i
\(716\) 0 0
\(717\) 8.82452e11i 0.124697i
\(718\) 0 0
\(719\) −5.81879e12 −0.811994 −0.405997 0.913874i \(-0.633076\pi\)
−0.405997 + 0.913874i \(0.633076\pi\)
\(720\) 0 0
\(721\) 1.00997e12i 0.139187i
\(722\) 0 0
\(723\) 4.29119e11i 0.0584057i
\(724\) 0 0
\(725\) −3.31650e11 −0.0445820
\(726\) 0 0
\(727\) −6.90571e12 −0.916860 −0.458430 0.888730i \(-0.651588\pi\)
−0.458430 + 0.888730i \(0.651588\pi\)
\(728\) 0 0
\(729\) −7.26611e12 −0.952858
\(730\) 0 0
\(731\) 9.03550e10 0.0117037
\(732\) 0 0
\(733\) 8.14525e12i 1.04217i 0.853506 + 0.521083i \(0.174472\pi\)
−0.853506 + 0.521083i \(0.825528\pi\)
\(734\) 0 0
\(735\) 6.52417e11i 0.0824578i
\(736\) 0 0
\(737\) 1.12437e13 1.40380
\(738\) 0 0
\(739\) 7.08797e11i 0.0874223i 0.999044 + 0.0437111i \(0.0139181\pi\)
−0.999044 + 0.0437111i \(0.986082\pi\)
\(740\) 0 0
\(741\) −4.18114e10 + 7.32545e10i −0.00509464 + 0.00892590i
\(742\) 0 0
\(743\) 7.10966e12i 0.855852i 0.903814 + 0.427926i \(0.140756\pi\)
−0.903814 + 0.427926i \(0.859244\pi\)
\(744\) 0 0
\(745\) 1.09113e13 1.29770
\(746\) 0 0
\(747\) 5.82319e11i 0.0684255i
\(748\) 0 0
\(749\) 2.75762e12i 0.320160i
\(750\) 0 0
\(751\) −3.11883e12 −0.357777 −0.178889 0.983869i \(-0.557250\pi\)
−0.178889 + 0.983869i \(0.557250\pi\)
\(752\) 0 0
\(753\) 1.11852e12 0.126784
\(754\) 0 0
\(755\) 8.75730e12 0.980864
\(756\) 0 0
\(757\) 4.43974e12 0.491389 0.245695 0.969347i \(-0.420984\pi\)
0.245695 + 0.969347i \(0.420984\pi\)
\(758\) 0 0
\(759\) 9.59766e11i 0.104973i
\(760\) 0 0
\(761\) 6.04789e12i 0.653692i −0.945078 0.326846i \(-0.894014\pi\)
0.945078 0.326846i \(-0.105986\pi\)
\(762\) 0 0
\(763\) 2.21783e12 0.236901
\(764\) 0 0
\(765\) 1.30830e13i 1.38112i
\(766\) 0 0
\(767\) −8.92883e12 + 1.56435e13i −0.931570 + 1.63213i
\(768\) 0 0
\(769\) 1.90950e13i 1.96903i 0.175302 + 0.984515i \(0.443910\pi\)
−0.175302 + 0.984515i \(0.556090\pi\)
\(770\) 0 0
\(771\) 1.40752e11 0.0143453
\(772\) 0 0
\(773\) 9.52318e12i 0.959344i −0.877448 0.479672i \(-0.840756\pi\)
0.877448 0.479672i \(-0.159244\pi\)
\(774\) 0 0
\(775\) 2.64331e11i 0.0263203i
\(776\) 0 0
\(777\) −1.52936e11 −0.0150527
\(778\) 0 0
\(779\) 1.73630e12 0.168930
\(780\) 0 0
\(781\) −2.32838e12 −0.223936
\(782\) 0 0
\(783\) −1.05883e12 −0.100669
\(784\) 0 0
\(785\) 1.73107e13i 1.62705i
\(786\) 0 0
\(787\) 1.36839e13i 1.27152i −0.771888 0.635758i \(-0.780687\pi\)
0.771888 0.635758i \(-0.219313\pi\)
\(788\) 0 0
\(789\) −1.54649e12 −0.142069
\(790\) 0 0
\(791\) 1.34254e12i 0.121936i
\(792\) 0 0
\(793\) −4.15663e12 2.37248e12i −0.373260 0.213046i
\(794\) 0 0
\(795\) 4.05806e11i 0.0360302i
\(796\) 0 0
\(797\) −9.97822e12 −0.875972 −0.437986 0.898982i \(-0.644308\pi\)
−0.437986 + 0.898982i \(0.644308\pi\)
\(798\) 0 0
\(799\) 3.39822e12i 0.294979i
\(800\) 0 0
\(801\) 4.55991e12i 0.391390i
\(802\) 0 0
\(803\) 1.52599e13 1.29519
\(804\) 0 0
\(805\) −1.70764e12 −0.143323
\(806\) 0 0
\(807\) −5.28358e11 −0.0438528
\(808\) 0 0
\(809\) −1.63375e13 −1.34096 −0.670480 0.741927i \(-0.733912\pi\)
−0.670480 + 0.741927i \(0.733912\pi\)
\(810\) 0 0
\(811\) 6.10157e12i 0.495276i 0.968853 + 0.247638i \(0.0796544\pi\)
−0.968853 + 0.247638i \(0.920346\pi\)
\(812\) 0 0
\(813\) 2.24262e11i 0.0180032i
\(814\) 0 0
\(815\) −3.63105e12 −0.288286
\(816\) 0 0
\(817\) 1.18775e10i 0.000932669i
\(818\) 0 0
\(819\) −1.17011e12 + 2.05006e12i −0.0908762 + 0.159217i
\(820\) 0 0
\(821\) 1.47439e13i 1.13258i 0.824206 + 0.566290i \(0.191622\pi\)
−0.824206 + 0.566290i \(0.808378\pi\)
\(822\) 0 0
\(823\) 5.38198e12 0.408924 0.204462 0.978875i \(-0.434456\pi\)
0.204462 + 0.978875i \(0.434456\pi\)
\(824\) 0 0
\(825\) 1.35634e11i 0.0101936i
\(826\) 0 0
\(827\) 1.53477e13i 1.14095i −0.821313 0.570477i \(-0.806758\pi\)
0.821313 0.570477i \(-0.193242\pi\)
\(828\) 0 0
\(829\) 4.78439e12 0.351829 0.175914 0.984405i \(-0.443712\pi\)
0.175914 + 0.984405i \(0.443712\pi\)
\(830\) 0 0
\(831\) −8.24825e11 −0.0600008
\(832\) 0 0
\(833\) 1.94641e13 1.40066
\(834\) 0 0
\(835\) 2.01292e13 1.43297
\(836\) 0 0
\(837\) 8.43905e11i 0.0594332i
\(838\) 0 0
\(839\) 2.46071e13i 1.71448i −0.514918 0.857239i \(-0.672178\pi\)
0.514918 0.857239i \(-0.327822\pi\)
\(840\) 0 0
\(841\) −9.82297e12 −0.677112
\(842\) 0 0
\(843\) 2.49263e11i 0.0169994i
\(844\) 0 0
\(845\) −1.22499e13 + 7.23510e12i −0.826567 + 0.488191i
\(846\) 0 0
\(847\) 3.13969e12i 0.209609i
\(848\) 0 0
\(849\) −6.46151e11 −0.0426825
\(850\) 0 0
\(851\) 1.13226e13i 0.740055i
\(852\) 0 0
\(853\) 1.86042e13i 1.20321i 0.798794 + 0.601605i \(0.205472\pi\)
−0.798794 + 0.601605i \(0.794528\pi\)
\(854\) 0 0
\(855\) −1.71981e12 −0.110061
\(856\) 0 0
\(857\) −3.04247e13 −1.92669 −0.963347 0.268257i \(-0.913552\pi\)
−0.963347 + 0.268257i \(0.913552\pi\)
\(858\) 0 0
\(859\) −1.92904e13 −1.20885 −0.604425 0.796662i \(-0.706597\pi\)
−0.604425 + 0.796662i \(0.706597\pi\)
\(860\) 0 0
\(861\) −3.87375e11 −0.0240225
\(862\) 0 0
\(863\) 1.15531e13i 0.709007i −0.935055 0.354504i \(-0.884650\pi\)
0.935055 0.354504i \(-0.115350\pi\)
\(864\) 0 0
\(865\) 2.75491e13i 1.67315i
\(866\) 0 0
\(867\) −1.63204e12 −0.0980946
\(868\) 0 0
\(869\) 4.32825e13i 2.57468i
\(870\) 0 0
\(871\) −8.09063e12 + 1.41749e13i −0.476322 + 0.834525i
\(872\) 0 0
\(873\) 2.02655e12i 0.118085i
\(874\) 0 0
\(875\) 3.31719e12 0.191308
\(876\) 0 0
\(877\) 1.69329e13i 0.966569i 0.875463 + 0.483285i \(0.160556\pi\)
−0.875463 + 0.483285i \(0.839444\pi\)
\(878\) 0 0
\(879\) 1.12165e12i 0.0633733i
\(880\) 0 0
\(881\) −1.39025e13 −0.777503 −0.388752 0.921343i \(-0.627094\pi\)
−0.388752 + 0.921343i \(0.627094\pi\)
\(882\) 0 0
\(883\) −2.22403e13 −1.23117 −0.615584 0.788071i \(-0.711080\pi\)
−0.615584 + 0.788071i \(0.711080\pi\)
\(884\) 0 0
\(885\) 2.92789e12 0.160439
\(886\) 0 0
\(887\) −1.95373e13 −1.05976 −0.529881 0.848072i \(-0.677764\pi\)
−0.529881 + 0.848072i \(0.677764\pi\)
\(888\) 0 0
\(889\) 2.08781e12i 0.112107i
\(890\) 0 0
\(891\) 2.68336e13i 1.42636i
\(892\) 0 0
\(893\) −4.46711e11 −0.0235069
\(894\) 0 0
\(895\) 1.70949e11i 0.00890558i
\(896\) 0 0
\(897\) 1.20998e12 + 6.90619e11i 0.0624039 + 0.0356182i
\(898\) 0 0
\(899\) 3.73337e12i 0.190626i
\(900\) 0 0
\(901\) 1.21068e13 0.612022
\(902\) 0 0
\(903\) 2.64992e9i 0.000132629i
\(904\) 0 0
\(905\) 2.74708e13i 1.36130i
\(906\) 0 0
\(907\) 2.79807e13 1.37286 0.686429 0.727197i \(-0.259177\pi\)
0.686429 + 0.727197i \(0.259177\pi\)
\(908\) 0 0
\(909\) −2.27168e13 −1.10359
\(910\) 0 0
\(911\) 2.56689e13 1.23474 0.617369 0.786674i \(-0.288199\pi\)
0.617369 + 0.786674i \(0.288199\pi\)
\(912\) 0 0
\(913\) 2.11551e12 0.100762
\(914\) 0 0
\(915\) 7.77970e11i 0.0366917i
\(916\) 0 0
\(917\) 6.60524e12i 0.308480i
\(918\) 0 0
\(919\) 1.28985e13 0.596514 0.298257 0.954486i \(-0.403595\pi\)
0.298257 + 0.954486i \(0.403595\pi\)
\(920\) 0 0
\(921\) 1.68396e12i 0.0771192i
\(922\) 0 0
\(923\) 1.67543e12 2.93539e12i 0.0759834 0.133124i
\(924\) 0 0
\(925\) 1.60011e12i 0.0718643i
\(926\) 0 0
\(927\) 1.68011e13 0.747271
\(928\) 0 0
\(929\) 1.41528e13i 0.623408i −0.950179 0.311704i \(-0.899100\pi\)
0.950179 0.311704i \(-0.100900\pi\)
\(930\) 0 0
\(931\) 2.55864e12i 0.111618i
\(932\) 0 0
\(933\) 3.52708e12 0.152387
\(934\) 0 0
\(935\) 4.75293e13 2.03381
\(936\) 0 0
\(937\) −4.26783e12 −0.180875 −0.0904375 0.995902i \(-0.528827\pi\)
−0.0904375 + 0.995902i \(0.528827\pi\)
\(938\) 0 0
\(939\) −6.26953e11 −0.0263172
\(940\) 0 0
\(941\) 3.48965e13i 1.45087i 0.688291 + 0.725435i \(0.258361\pi\)
−0.688291 + 0.725435i \(0.741639\pi\)
\(942\) 0 0
\(943\) 2.86793e13i 1.18104i
\(944\) 0 0
\(945\) 7.70453e11 0.0314270
\(946\) 0 0
\(947\) 4.60914e13i 1.86228i −0.364660 0.931141i \(-0.618815\pi\)
0.364660 0.931141i \(-0.381185\pi\)
\(948\) 0 0
\(949\) −1.09806e13 + 1.92382e13i −0.439469 + 0.769958i
\(950\) 0 0
\(951\) 2.06733e12i 0.0819593i
\(952\) 0 0
\(953\) −1.17601e13 −0.461843 −0.230921 0.972972i \(-0.574174\pi\)
−0.230921 + 0.972972i \(0.574174\pi\)
\(954\) 0 0
\(955\) 7.53874e12i 0.293281i
\(956\) 0 0
\(957\) 1.91568e12i 0.0738277i
\(958\) 0 0
\(959\) −2.11574e12 −0.0807755
\(960\) 0 0
\(961\) 2.34641e13 0.887458
\(962\) 0 0
\(963\) −4.58736e13 −1.71888
\(964\) 0 0
\(965\) −3.52236e13 −1.30756
\(966\) 0 0
\(967\) 1.76861e13i 0.650448i 0.945637 + 0.325224i \(0.105440\pi\)
−0.945637 + 0.325224i \(0.894560\pi\)
\(968\) 0 0
\(969\) 4.09040e11i 0.0149042i
\(970\) 0 0
\(971\) 1.73464e13 0.626215 0.313107 0.949718i \(-0.398630\pi\)
0.313107 + 0.949718i \(0.398630\pi\)
\(972\) 0 0
\(973\) 7.08633e11i 0.0253462i
\(974\) 0 0
\(975\) −1.70994e11 9.75984e10i −0.00605984 0.00345877i
\(976\) 0 0
\(977\) 4.87286e13i 1.71103i 0.517776 + 0.855516i \(0.326760\pi\)
−0.517776 + 0.855516i \(0.673240\pi\)
\(978\) 0 0
\(979\) 1.65657e13 0.576353
\(980\) 0 0
\(981\) 3.68941e13i 1.27188i
\(982\) 0 0
\(983\) 4.46964e13i 1.52680i 0.645926 + 0.763400i \(0.276471\pi\)
−0.645926 + 0.763400i \(0.723529\pi\)
\(984\) 0 0
\(985\) 1.11007e13 0.375739
\(986\) 0 0
\(987\) 9.96628e10 0.00334277
\(988\) 0 0
\(989\) −1.96187e11 −0.00652059
\(990\) 0 0
\(991\) −2.74484e13 −0.904037 −0.452019 0.892009i \(-0.649296\pi\)
−0.452019 + 0.892009i \(0.649296\pi\)
\(992\) 0 0
\(993\) 4.61253e12i 0.150545i
\(994\) 0 0
\(995\) 4.11140e12i 0.132980i
\(996\) 0 0
\(997\) 5.96082e12 0.191064 0.0955318 0.995426i \(-0.469545\pi\)
0.0955318 + 0.995426i \(0.469545\pi\)
\(998\) 0 0
\(999\) 5.10854e12i 0.162275i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 104.10.f.a.25.17 32
4.3 odd 2 208.10.f.d.129.16 32
13.12 even 2 inner 104.10.f.a.25.18 yes 32
52.51 odd 2 208.10.f.d.129.15 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.f.a.25.17 32 1.1 even 1 trivial
104.10.f.a.25.18 yes 32 13.12 even 2 inner
208.10.f.d.129.15 32 52.51 odd 2
208.10.f.d.129.16 32 4.3 odd 2