Properties

Label 104.10.f.a.25.16
Level $104$
Weight $10$
Character 104.25
Analytic conductor $53.564$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [104,10,Mod(25,104)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(104, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("104.25"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 104.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(53.5637269610\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 25.16
Character \(\chi\) \(=\) 104.25
Dual form 104.10.f.a.25.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-33.7913 q^{3} -2480.68i q^{5} +3601.42i q^{7} -18541.1 q^{9} +12056.4i q^{11} +(8433.48 + 102632. i) q^{13} +83825.4i q^{15} -8068.71 q^{17} +851829. i q^{19} -121697. i q^{21} +1.55232e6 q^{23} -4.20066e6 q^{25} +1.29164e6 q^{27} -729125. q^{29} -7.56456e6i q^{31} -407403. i q^{33} +8.93399e6 q^{35} -1.66123e7i q^{37} +(-284978. - 3.46807e6i) q^{39} +1.25789e7i q^{41} +1.11091e7 q^{43} +4.59947e7i q^{45} +3.07308e7i q^{47} +2.73834e7 q^{49} +272652. q^{51} -1.42693e7 q^{53} +2.99082e7 q^{55} -2.87844e7i q^{57} +6.69658e7i q^{59} +1.93936e8 q^{61} -6.67745e7i q^{63} +(2.54598e8 - 2.09208e7i) q^{65} -1.24743e8i q^{67} -5.24549e7 q^{69} -3.04874e8i q^{71} +1.02678e8i q^{73} +1.41946e8 q^{75} -4.34203e7 q^{77} +3.87253e8 q^{79} +3.21299e8 q^{81} +5.61698e8i q^{83} +2.00159e7i q^{85} +2.46381e7 q^{87} +9.09198e8i q^{89} +(-3.69622e8 + 3.03725e7i) q^{91} +2.55616e8i q^{93} +2.11312e9 q^{95} -6.23976e8i q^{97} -2.23540e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 162 q^{3} + 223074 q^{9} + 66270 q^{13} - 487902 q^{17} + 3171556 q^{23} - 13526722 q^{25} - 3694974 q^{27} + 8833508 q^{29} - 8281126 q^{35} - 12056860 q^{39} + 89959038 q^{43} - 172344874 q^{49}+ \cdots + 1741143356 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −33.7913 −0.240857 −0.120428 0.992722i \(-0.538427\pi\)
−0.120428 + 0.992722i \(0.538427\pi\)
\(4\) 0 0
\(5\) 2480.68i 1.77503i −0.460777 0.887516i \(-0.652429\pi\)
0.460777 0.887516i \(-0.347571\pi\)
\(6\) 0 0
\(7\) 3601.42i 0.566935i 0.958982 + 0.283467i \(0.0914847\pi\)
−0.958982 + 0.283467i \(0.908515\pi\)
\(8\) 0 0
\(9\) −18541.1 −0.941988
\(10\) 0 0
\(11\) 12056.4i 0.248286i 0.992264 + 0.124143i \(0.0396181\pi\)
−0.992264 + 0.124143i \(0.960382\pi\)
\(12\) 0 0
\(13\) 8433.48 + 102632.i 0.0818958 + 0.996641i
\(14\) 0 0
\(15\) 83825.4i 0.427529i
\(16\) 0 0
\(17\) −8068.71 −0.0234306 −0.0117153 0.999931i \(-0.503729\pi\)
−0.0117153 + 0.999931i \(0.503729\pi\)
\(18\) 0 0
\(19\) 851829.i 1.49955i 0.661692 + 0.749776i \(0.269839\pi\)
−0.661692 + 0.749776i \(0.730161\pi\)
\(20\) 0 0
\(21\) 121697.i 0.136550i
\(22\) 0 0
\(23\) 1.55232e6 1.15666 0.578331 0.815802i \(-0.303704\pi\)
0.578331 + 0.815802i \(0.303704\pi\)
\(24\) 0 0
\(25\) −4.20066e6 −2.15074
\(26\) 0 0
\(27\) 1.29164e6 0.467741
\(28\) 0 0
\(29\) −729125. −0.191430 −0.0957152 0.995409i \(-0.530514\pi\)
−0.0957152 + 0.995409i \(0.530514\pi\)
\(30\) 0 0
\(31\) 7.56456e6i 1.47115i −0.677444 0.735574i \(-0.736913\pi\)
0.677444 0.735574i \(-0.263087\pi\)
\(32\) 0 0
\(33\) 407403.i 0.0598013i
\(34\) 0 0
\(35\) 8.93399e6 1.00633
\(36\) 0 0
\(37\) 1.66123e7i 1.45721i −0.684935 0.728604i \(-0.740169\pi\)
0.684935 0.728604i \(-0.259831\pi\)
\(38\) 0 0
\(39\) −284978. 3.46807e6i −0.0197252 0.240048i
\(40\) 0 0
\(41\) 1.25789e7i 0.695208i 0.937641 + 0.347604i \(0.113005\pi\)
−0.937641 + 0.347604i \(0.886995\pi\)
\(42\) 0 0
\(43\) 1.11091e7 0.495529 0.247765 0.968820i \(-0.420304\pi\)
0.247765 + 0.968820i \(0.420304\pi\)
\(44\) 0 0
\(45\) 4.59947e7i 1.67206i
\(46\) 0 0
\(47\) 3.07308e7i 0.918615i 0.888277 + 0.459307i \(0.151902\pi\)
−0.888277 + 0.459307i \(0.848098\pi\)
\(48\) 0 0
\(49\) 2.73834e7 0.678585
\(50\) 0 0
\(51\) 272652. 0.00564343
\(52\) 0 0
\(53\) −1.42693e7 −0.248405 −0.124203 0.992257i \(-0.539637\pi\)
−0.124203 + 0.992257i \(0.539637\pi\)
\(54\) 0 0
\(55\) 2.99082e7 0.440715
\(56\) 0 0
\(57\) 2.87844e7i 0.361177i
\(58\) 0 0
\(59\) 6.69658e7i 0.719481i 0.933052 + 0.359740i \(0.117135\pi\)
−0.933052 + 0.359740i \(0.882865\pi\)
\(60\) 0 0
\(61\) 1.93936e8 1.79339 0.896696 0.442648i \(-0.145961\pi\)
0.896696 + 0.442648i \(0.145961\pi\)
\(62\) 0 0
\(63\) 6.67745e7i 0.534046i
\(64\) 0 0
\(65\) 2.54598e8 2.09208e7i 1.76907 0.145368i
\(66\) 0 0
\(67\) 1.24743e8i 0.756273i −0.925750 0.378136i \(-0.876565\pi\)
0.925750 0.378136i \(-0.123435\pi\)
\(68\) 0 0
\(69\) −5.24549e7 −0.278590
\(70\) 0 0
\(71\) 3.04874e8i 1.42383i −0.702265 0.711915i \(-0.747828\pi\)
0.702265 0.711915i \(-0.252172\pi\)
\(72\) 0 0
\(73\) 1.02678e8i 0.423180i 0.977358 + 0.211590i \(0.0678642\pi\)
−0.977358 + 0.211590i \(0.932136\pi\)
\(74\) 0 0
\(75\) 1.41946e8 0.518020
\(76\) 0 0
\(77\) −4.34203e7 −0.140762
\(78\) 0 0
\(79\) 3.87253e8 1.11859 0.559297 0.828967i \(-0.311071\pi\)
0.559297 + 0.828967i \(0.311071\pi\)
\(80\) 0 0
\(81\) 3.21299e8 0.829329
\(82\) 0 0
\(83\) 5.61698e8i 1.29913i 0.760307 + 0.649563i \(0.225048\pi\)
−0.760307 + 0.649563i \(0.774952\pi\)
\(84\) 0 0
\(85\) 2.00159e7i 0.0415901i
\(86\) 0 0
\(87\) 2.46381e7 0.0461073
\(88\) 0 0
\(89\) 9.09198e8i 1.53604i 0.640424 + 0.768021i \(0.278759\pi\)
−0.640424 + 0.768021i \(0.721241\pi\)
\(90\) 0 0
\(91\) −3.69622e8 + 3.03725e7i −0.565030 + 0.0464296i
\(92\) 0 0
\(93\) 2.55616e8i 0.354336i
\(94\) 0 0
\(95\) 2.11312e9 2.66175
\(96\) 0 0
\(97\) 6.23976e8i 0.715640i −0.933791 0.357820i \(-0.883520\pi\)
0.933791 0.357820i \(-0.116480\pi\)
\(98\) 0 0
\(99\) 2.23540e8i 0.233882i
\(100\) 0 0
\(101\) 6.69015e8 0.639719 0.319860 0.947465i \(-0.396364\pi\)
0.319860 + 0.947465i \(0.396364\pi\)
\(102\) 0 0
\(103\) 1.21287e9 1.06181 0.530905 0.847432i \(-0.321852\pi\)
0.530905 + 0.847432i \(0.321852\pi\)
\(104\) 0 0
\(105\) −3.01891e8 −0.242381
\(106\) 0 0
\(107\) −1.14055e9 −0.841176 −0.420588 0.907252i \(-0.638176\pi\)
−0.420588 + 0.907252i \(0.638176\pi\)
\(108\) 0 0
\(109\) 9.82861e7i 0.0666919i 0.999444 + 0.0333459i \(0.0106163\pi\)
−0.999444 + 0.0333459i \(0.989384\pi\)
\(110\) 0 0
\(111\) 5.61351e8i 0.350979i
\(112\) 0 0
\(113\) −2.48449e8 −0.143346 −0.0716728 0.997428i \(-0.522834\pi\)
−0.0716728 + 0.997428i \(0.522834\pi\)
\(114\) 0 0
\(115\) 3.85082e9i 2.05311i
\(116\) 0 0
\(117\) −1.56366e8 1.90292e9i −0.0771449 0.938824i
\(118\) 0 0
\(119\) 2.90588e7i 0.0132836i
\(120\) 0 0
\(121\) 2.21259e9 0.938354
\(122\) 0 0
\(123\) 4.25057e8i 0.167446i
\(124\) 0 0
\(125\) 5.57542e9i 2.04260i
\(126\) 0 0
\(127\) 1.57466e9 0.537118 0.268559 0.963263i \(-0.413453\pi\)
0.268559 + 0.963263i \(0.413453\pi\)
\(128\) 0 0
\(129\) −3.75389e8 −0.119352
\(130\) 0 0
\(131\) −3.33624e9 −0.989774 −0.494887 0.868957i \(-0.664790\pi\)
−0.494887 + 0.868957i \(0.664790\pi\)
\(132\) 0 0
\(133\) −3.06780e9 −0.850147
\(134\) 0 0
\(135\) 3.20416e9i 0.830255i
\(136\) 0 0
\(137\) 5.69379e9i 1.38089i 0.723386 + 0.690444i \(0.242585\pi\)
−0.723386 + 0.690444i \(0.757415\pi\)
\(138\) 0 0
\(139\) −1.81683e9 −0.412809 −0.206404 0.978467i \(-0.566176\pi\)
−0.206404 + 0.978467i \(0.566176\pi\)
\(140\) 0 0
\(141\) 1.03843e9i 0.221255i
\(142\) 0 0
\(143\) −1.23738e9 + 1.01678e8i −0.247452 + 0.0203336i
\(144\) 0 0
\(145\) 1.80873e9i 0.339795i
\(146\) 0 0
\(147\) −9.25319e8 −0.163442
\(148\) 0 0
\(149\) 2.39994e9i 0.398898i 0.979908 + 0.199449i \(0.0639153\pi\)
−0.979908 + 0.199449i \(0.936085\pi\)
\(150\) 0 0
\(151\) 2.74361e9i 0.429463i −0.976673 0.214731i \(-0.931112\pi\)
0.976673 0.214731i \(-0.0688876\pi\)
\(152\) 0 0
\(153\) 1.49603e8 0.0220714
\(154\) 0 0
\(155\) −1.87653e10 −2.61133
\(156\) 0 0
\(157\) −9.62221e9 −1.26394 −0.631970 0.774993i \(-0.717753\pi\)
−0.631970 + 0.774993i \(0.717753\pi\)
\(158\) 0 0
\(159\) 4.82177e8 0.0598301
\(160\) 0 0
\(161\) 5.59057e9i 0.655752i
\(162\) 0 0
\(163\) 9.96850e9i 1.10608i −0.833156 0.553039i \(-0.813468\pi\)
0.833156 0.553039i \(-0.186532\pi\)
\(164\) 0 0
\(165\) −1.01064e9 −0.106149
\(166\) 0 0
\(167\) 4.84870e9i 0.482393i 0.970476 + 0.241197i \(0.0775399\pi\)
−0.970476 + 0.241197i \(0.922460\pi\)
\(168\) 0 0
\(169\) −1.04623e10 + 1.73109e9i −0.986586 + 0.163241i
\(170\) 0 0
\(171\) 1.57939e10i 1.41256i
\(172\) 0 0
\(173\) 1.79702e10 1.52527 0.762635 0.646830i \(-0.223905\pi\)
0.762635 + 0.646830i \(0.223905\pi\)
\(174\) 0 0
\(175\) 1.51284e10i 1.21933i
\(176\) 0 0
\(177\) 2.26286e9i 0.173292i
\(178\) 0 0
\(179\) 2.31558e10 1.68586 0.842930 0.538023i \(-0.180829\pi\)
0.842930 + 0.538023i \(0.180829\pi\)
\(180\) 0 0
\(181\) −1.46060e10 −1.01153 −0.505765 0.862671i \(-0.668790\pi\)
−0.505765 + 0.862671i \(0.668790\pi\)
\(182\) 0 0
\(183\) −6.55336e9 −0.431951
\(184\) 0 0
\(185\) −4.12098e10 −2.58659
\(186\) 0 0
\(187\) 9.72799e7i 0.00581749i
\(188\) 0 0
\(189\) 4.65175e9i 0.265179i
\(190\) 0 0
\(191\) 1.09778e10 0.596851 0.298425 0.954433i \(-0.403539\pi\)
0.298425 + 0.954433i \(0.403539\pi\)
\(192\) 0 0
\(193\) 1.91123e10i 0.991527i 0.868458 + 0.495763i \(0.165112\pi\)
−0.868458 + 0.495763i \(0.834888\pi\)
\(194\) 0 0
\(195\) −8.60319e9 + 7.06940e8i −0.426092 + 0.0350128i
\(196\) 0 0
\(197\) 2.16512e10i 1.02420i 0.858927 + 0.512098i \(0.171132\pi\)
−0.858927 + 0.512098i \(0.828868\pi\)
\(198\) 0 0
\(199\) 3.01847e10 1.36442 0.682210 0.731156i \(-0.261019\pi\)
0.682210 + 0.731156i \(0.261019\pi\)
\(200\) 0 0
\(201\) 4.21521e9i 0.182153i
\(202\) 0 0
\(203\) 2.62589e9i 0.108529i
\(204\) 0 0
\(205\) 3.12042e10 1.23402
\(206\) 0 0
\(207\) −2.87818e10 −1.08956
\(208\) 0 0
\(209\) −1.02700e10 −0.372317
\(210\) 0 0
\(211\) −1.82448e10 −0.633676 −0.316838 0.948480i \(-0.602621\pi\)
−0.316838 + 0.948480i \(0.602621\pi\)
\(212\) 0 0
\(213\) 1.03021e10i 0.342939i
\(214\) 0 0
\(215\) 2.75580e10i 0.879580i
\(216\) 0 0
\(217\) 2.72432e10 0.834045
\(218\) 0 0
\(219\) 3.46963e9i 0.101926i
\(220\) 0 0
\(221\) −6.80473e7 8.28110e8i −0.00191887 0.0233519i
\(222\) 0 0
\(223\) 2.84507e10i 0.770409i 0.922831 + 0.385205i \(0.125869\pi\)
−0.922831 + 0.385205i \(0.874131\pi\)
\(224\) 0 0
\(225\) 7.78851e10 2.02597
\(226\) 0 0
\(227\) 5.14986e10i 1.28730i 0.765321 + 0.643649i \(0.222580\pi\)
−0.765321 + 0.643649i \(0.777420\pi\)
\(228\) 0 0
\(229\) 2.56379e10i 0.616061i −0.951377 0.308030i \(-0.900330\pi\)
0.951377 0.308030i \(-0.0996698\pi\)
\(230\) 0 0
\(231\) 1.46723e9 0.0339035
\(232\) 0 0
\(233\) 2.07583e10 0.461414 0.230707 0.973023i \(-0.425896\pi\)
0.230707 + 0.973023i \(0.425896\pi\)
\(234\) 0 0
\(235\) 7.62334e10 1.63057
\(236\) 0 0
\(237\) −1.30858e10 −0.269421
\(238\) 0 0
\(239\) 9.37885e10i 1.85934i −0.368392 0.929671i \(-0.620091\pi\)
0.368392 0.929671i \(-0.379909\pi\)
\(240\) 0 0
\(241\) 1.05800e10i 0.202026i 0.994885 + 0.101013i \(0.0322084\pi\)
−0.994885 + 0.101013i \(0.967792\pi\)
\(242\) 0 0
\(243\) −3.62805e10 −0.667491
\(244\) 0 0
\(245\) 6.79294e10i 1.20451i
\(246\) 0 0
\(247\) −8.74251e10 + 7.18389e9i −1.49451 + 0.122807i
\(248\) 0 0
\(249\) 1.89805e10i 0.312904i
\(250\) 0 0
\(251\) 1.07571e11 1.71066 0.855328 0.518088i \(-0.173356\pi\)
0.855328 + 0.518088i \(0.173356\pi\)
\(252\) 0 0
\(253\) 1.87155e10i 0.287183i
\(254\) 0 0
\(255\) 6.76363e8i 0.0100173i
\(256\) 0 0
\(257\) 4.66181e10 0.666585 0.333292 0.942824i \(-0.391840\pi\)
0.333292 + 0.942824i \(0.391840\pi\)
\(258\) 0 0
\(259\) 5.98279e10 0.826142
\(260\) 0 0
\(261\) 1.35188e10 0.180325
\(262\) 0 0
\(263\) −2.21429e10 −0.285387 −0.142693 0.989767i \(-0.545576\pi\)
−0.142693 + 0.989767i \(0.545576\pi\)
\(264\) 0 0
\(265\) 3.53976e10i 0.440927i
\(266\) 0 0
\(267\) 3.07230e10i 0.369966i
\(268\) 0 0
\(269\) 1.09267e11 1.27234 0.636172 0.771548i \(-0.280517\pi\)
0.636172 + 0.771548i \(0.280517\pi\)
\(270\) 0 0
\(271\) 1.68151e11i 1.89381i 0.321508 + 0.946907i \(0.395810\pi\)
−0.321508 + 0.946907i \(0.604190\pi\)
\(272\) 0 0
\(273\) 1.24900e10 1.02633e9i 0.136091 0.0111829i
\(274\) 0 0
\(275\) 5.06450e10i 0.533998i
\(276\) 0 0
\(277\) −7.45812e10 −0.761150 −0.380575 0.924750i \(-0.624274\pi\)
−0.380575 + 0.924750i \(0.624274\pi\)
\(278\) 0 0
\(279\) 1.40256e11i 1.38580i
\(280\) 0 0
\(281\) 8.30956e10i 0.795059i 0.917589 + 0.397530i \(0.130132\pi\)
−0.917589 + 0.397530i \(0.869868\pi\)
\(282\) 0 0
\(283\) 1.94259e11 1.80029 0.900146 0.435588i \(-0.143459\pi\)
0.900146 + 0.435588i \(0.143459\pi\)
\(284\) 0 0
\(285\) −7.14050e10 −0.641101
\(286\) 0 0
\(287\) −4.53019e10 −0.394137
\(288\) 0 0
\(289\) −1.18523e11 −0.999451
\(290\) 0 0
\(291\) 2.10849e10i 0.172367i
\(292\) 0 0
\(293\) 4.16649e10i 0.330268i −0.986271 0.165134i \(-0.947194\pi\)
0.986271 0.165134i \(-0.0528056\pi\)
\(294\) 0 0
\(295\) 1.66121e11 1.27710
\(296\) 0 0
\(297\) 1.55726e10i 0.116134i
\(298\) 0 0
\(299\) 1.30915e10 + 1.59318e11i 0.0947258 + 1.15278i
\(300\) 0 0
\(301\) 4.00084e10i 0.280933i
\(302\) 0 0
\(303\) −2.26069e10 −0.154081
\(304\) 0 0
\(305\) 4.81095e11i 3.18333i
\(306\) 0 0
\(307\) 1.32639e11i 0.852215i −0.904672 0.426108i \(-0.859884\pi\)
0.904672 0.426108i \(-0.140116\pi\)
\(308\) 0 0
\(309\) −4.09844e10 −0.255744
\(310\) 0 0
\(311\) −2.26899e11 −1.37534 −0.687672 0.726021i \(-0.741367\pi\)
−0.687672 + 0.726021i \(0.741367\pi\)
\(312\) 0 0
\(313\) −1.17724e11 −0.693294 −0.346647 0.937996i \(-0.612680\pi\)
−0.346647 + 0.937996i \(0.612680\pi\)
\(314\) 0 0
\(315\) −1.65646e11 −0.947948
\(316\) 0 0
\(317\) 4.09676e10i 0.227863i −0.993489 0.113931i \(-0.963656\pi\)
0.993489 0.113931i \(-0.0363444\pi\)
\(318\) 0 0
\(319\) 8.79065e9i 0.0475295i
\(320\) 0 0
\(321\) 3.85406e10 0.202603
\(322\) 0 0
\(323\) 6.87316e9i 0.0351354i
\(324\) 0 0
\(325\) −3.54262e10 4.31123e11i −0.176136 2.14351i
\(326\) 0 0
\(327\) 3.32121e9i 0.0160632i
\(328\) 0 0
\(329\) −1.10675e11 −0.520795
\(330\) 0 0
\(331\) 3.46906e10i 0.158850i 0.996841 + 0.0794248i \(0.0253084\pi\)
−0.996841 + 0.0794248i \(0.974692\pi\)
\(332\) 0 0
\(333\) 3.08011e11i 1.37267i
\(334\) 0 0
\(335\) −3.09447e11 −1.34241
\(336\) 0 0
\(337\) 2.95493e11 1.24800 0.623998 0.781426i \(-0.285507\pi\)
0.623998 + 0.781426i \(0.285507\pi\)
\(338\) 0 0
\(339\) 8.39542e9 0.0345258
\(340\) 0 0
\(341\) 9.12017e10 0.365265
\(342\) 0 0
\(343\) 2.43949e11i 0.951648i
\(344\) 0 0
\(345\) 1.30124e11i 0.494506i
\(346\) 0 0
\(347\) −3.63709e11 −1.34670 −0.673351 0.739323i \(-0.735146\pi\)
−0.673351 + 0.739323i \(0.735146\pi\)
\(348\) 0 0
\(349\) 1.68090e11i 0.606494i −0.952912 0.303247i \(-0.901929\pi\)
0.952912 0.303247i \(-0.0980708\pi\)
\(350\) 0 0
\(351\) 1.08930e10 + 1.32564e11i 0.0383060 + 0.466170i
\(352\) 0 0
\(353\) 2.07923e11i 0.712715i 0.934350 + 0.356357i \(0.115981\pi\)
−0.934350 + 0.356357i \(0.884019\pi\)
\(354\) 0 0
\(355\) −7.56296e11 −2.52734
\(356\) 0 0
\(357\) 9.81935e8i 0.00319945i
\(358\) 0 0
\(359\) 1.38162e11i 0.438998i 0.975613 + 0.219499i \(0.0704422\pi\)
−0.975613 + 0.219499i \(0.929558\pi\)
\(360\) 0 0
\(361\) −4.02925e11 −1.24865
\(362\) 0 0
\(363\) −7.47662e10 −0.226009
\(364\) 0 0
\(365\) 2.54712e11 0.751159
\(366\) 0 0
\(367\) 6.66426e11 1.91758 0.958792 0.284108i \(-0.0916973\pi\)
0.958792 + 0.284108i \(0.0916973\pi\)
\(368\) 0 0
\(369\) 2.33227e11i 0.654878i
\(370\) 0 0
\(371\) 5.13897e10i 0.140830i
\(372\) 0 0
\(373\) −5.96945e11 −1.59678 −0.798390 0.602141i \(-0.794314\pi\)
−0.798390 + 0.602141i \(0.794314\pi\)
\(374\) 0 0
\(375\) 1.88401e11i 0.491973i
\(376\) 0 0
\(377\) −6.14906e9 7.48317e10i −0.0156774 0.190787i
\(378\) 0 0
\(379\) 3.71080e11i 0.923828i 0.886925 + 0.461914i \(0.152837\pi\)
−0.886925 + 0.461914i \(0.847163\pi\)
\(380\) 0 0
\(381\) −5.32097e10 −0.129369
\(382\) 0 0
\(383\) 7.23332e11i 1.71768i 0.512242 + 0.858841i \(0.328815\pi\)
−0.512242 + 0.858841i \(0.671185\pi\)
\(384\) 0 0
\(385\) 1.07712e11i 0.249857i
\(386\) 0 0
\(387\) −2.05975e11 −0.466782
\(388\) 0 0
\(389\) 6.25929e10 0.138596 0.0692982 0.997596i \(-0.477924\pi\)
0.0692982 + 0.997596i \(0.477924\pi\)
\(390\) 0 0
\(391\) −1.25252e10 −0.0271013
\(392\) 0 0
\(393\) 1.12736e11 0.238394
\(394\) 0 0
\(395\) 9.60651e11i 1.98554i
\(396\) 0 0
\(397\) 3.39383e10i 0.0685699i 0.999412 + 0.0342849i \(0.0109154\pi\)
−0.999412 + 0.0342849i \(0.989085\pi\)
\(398\) 0 0
\(399\) 1.03665e11 0.204764
\(400\) 0 0
\(401\) 2.01721e11i 0.389584i −0.980845 0.194792i \(-0.937597\pi\)
0.980845 0.194792i \(-0.0624031\pi\)
\(402\) 0 0
\(403\) 7.76368e11 6.37956e10i 1.46621 0.120481i
\(404\) 0 0
\(405\) 7.97041e11i 1.47209i
\(406\) 0 0
\(407\) 2.00285e11 0.361804
\(408\) 0 0
\(409\) 9.33986e11i 1.65039i −0.564851 0.825193i \(-0.691066\pi\)
0.564851 0.825193i \(-0.308934\pi\)
\(410\) 0 0
\(411\) 1.92400e11i 0.332596i
\(412\) 0 0
\(413\) −2.41172e11 −0.407899
\(414\) 0 0
\(415\) 1.39339e12 2.30599
\(416\) 0 0
\(417\) 6.13932e10 0.0994278
\(418\) 0 0
\(419\) −6.88583e10 −0.109142 −0.0545711 0.998510i \(-0.517379\pi\)
−0.0545711 + 0.998510i \(0.517379\pi\)
\(420\) 0 0
\(421\) 1.15439e12i 1.79095i 0.445111 + 0.895475i \(0.353164\pi\)
−0.445111 + 0.895475i \(0.646836\pi\)
\(422\) 0 0
\(423\) 5.69784e11i 0.865324i
\(424\) 0 0
\(425\) 3.38939e10 0.0503931
\(426\) 0 0
\(427\) 6.98447e11i 1.01674i
\(428\) 0 0
\(429\) 4.18126e10 3.43582e9i 0.0596005 0.00489748i
\(430\) 0 0
\(431\) 8.01718e10i 0.111911i −0.998433 0.0559557i \(-0.982179\pi\)
0.998433 0.0559557i \(-0.0178206\pi\)
\(432\) 0 0
\(433\) −1.16534e11 −0.159315 −0.0796573 0.996822i \(-0.525383\pi\)
−0.0796573 + 0.996822i \(0.525383\pi\)
\(434\) 0 0
\(435\) 6.11192e10i 0.0818420i
\(436\) 0 0
\(437\) 1.32231e12i 1.73447i
\(438\) 0 0
\(439\) −8.15734e11 −1.04823 −0.524117 0.851646i \(-0.675604\pi\)
−0.524117 + 0.851646i \(0.675604\pi\)
\(440\) 0 0
\(441\) −5.07719e11 −0.639219
\(442\) 0 0
\(443\) 5.07254e10 0.0625761 0.0312880 0.999510i \(-0.490039\pi\)
0.0312880 + 0.999510i \(0.490039\pi\)
\(444\) 0 0
\(445\) 2.25543e12 2.72652
\(446\) 0 0
\(447\) 8.10970e10i 0.0960774i
\(448\) 0 0
\(449\) 1.49521e12i 1.73618i 0.496408 + 0.868089i \(0.334652\pi\)
−0.496408 + 0.868089i \(0.665348\pi\)
\(450\) 0 0
\(451\) −1.51657e11 −0.172610
\(452\) 0 0
\(453\) 9.27100e10i 0.103439i
\(454\) 0 0
\(455\) 7.53446e10 + 9.16915e11i 0.0824140 + 1.00295i
\(456\) 0 0
\(457\) 1.07544e12i 1.15335i 0.816973 + 0.576676i \(0.195650\pi\)
−0.816973 + 0.576676i \(0.804350\pi\)
\(458\) 0 0
\(459\) −1.04219e10 −0.0109595
\(460\) 0 0
\(461\) 5.71601e11i 0.589439i −0.955584 0.294719i \(-0.904774\pi\)
0.955584 0.294719i \(-0.0952261\pi\)
\(462\) 0 0
\(463\) 1.28589e12i 1.30044i −0.759745 0.650221i \(-0.774676\pi\)
0.759745 0.650221i \(-0.225324\pi\)
\(464\) 0 0
\(465\) 6.34103e11 0.628958
\(466\) 0 0
\(467\) 5.26066e11 0.511816 0.255908 0.966701i \(-0.417626\pi\)
0.255908 + 0.966701i \(0.417626\pi\)
\(468\) 0 0
\(469\) 4.49251e11 0.428757
\(470\) 0 0
\(471\) 3.25147e11 0.304429
\(472\) 0 0
\(473\) 1.33936e11i 0.123033i
\(474\) 0 0
\(475\) 3.57825e12i 3.22514i
\(476\) 0 0
\(477\) 2.64569e11 0.233995
\(478\) 0 0
\(479\) 1.34343e12i 1.16602i 0.812467 + 0.583008i \(0.198124\pi\)
−0.812467 + 0.583008i \(0.801876\pi\)
\(480\) 0 0
\(481\) 1.70496e12 1.40099e11i 1.45231 0.119339i
\(482\) 0 0
\(483\) 1.88912e11i 0.157942i
\(484\) 0 0
\(485\) −1.54789e12 −1.27028
\(486\) 0 0
\(487\) 1.01560e12i 0.818167i 0.912497 + 0.409083i \(0.134151\pi\)
−0.912497 + 0.409083i \(0.865849\pi\)
\(488\) 0 0
\(489\) 3.36848e11i 0.266406i
\(490\) 0 0
\(491\) 8.74388e11 0.678949 0.339475 0.940615i \(-0.389751\pi\)
0.339475 + 0.940615i \(0.389751\pi\)
\(492\) 0 0
\(493\) 5.88310e9 0.00448534
\(494\) 0 0
\(495\) −5.54532e11 −0.415149
\(496\) 0 0
\(497\) 1.09798e12 0.807219
\(498\) 0 0
\(499\) 1.06049e12i 0.765689i −0.923813 0.382844i \(-0.874945\pi\)
0.923813 0.382844i \(-0.125055\pi\)
\(500\) 0 0
\(501\) 1.63844e11i 0.116188i
\(502\) 0 0
\(503\) −7.38730e11 −0.514553 −0.257276 0.966338i \(-0.582825\pi\)
−0.257276 + 0.966338i \(0.582825\pi\)
\(504\) 0 0
\(505\) 1.65961e12i 1.13552i
\(506\) 0 0
\(507\) 3.53533e11 5.84959e10i 0.237626 0.0393178i
\(508\) 0 0
\(509\) 8.32382e11i 0.549658i 0.961493 + 0.274829i \(0.0886213\pi\)
−0.961493 + 0.274829i \(0.911379\pi\)
\(510\) 0 0
\(511\) −3.69788e11 −0.239916
\(512\) 0 0
\(513\) 1.10026e12i 0.701402i
\(514\) 0 0
\(515\) 3.00874e12i 1.88474i
\(516\) 0 0
\(517\) −3.70504e11 −0.228079
\(518\) 0 0
\(519\) −6.07238e11 −0.367372
\(520\) 0 0
\(521\) −1.50790e12 −0.896611 −0.448305 0.893880i \(-0.647972\pi\)
−0.448305 + 0.893880i \(0.647972\pi\)
\(522\) 0 0
\(523\) 5.89491e11 0.344524 0.172262 0.985051i \(-0.444892\pi\)
0.172262 + 0.985051i \(0.444892\pi\)
\(524\) 0 0
\(525\) 5.11206e11i 0.293683i
\(526\) 0 0
\(527\) 6.10363e10i 0.0344699i
\(528\) 0 0
\(529\) 6.08550e11 0.337867
\(530\) 0 0
\(531\) 1.24162e12i 0.677742i
\(532\) 0 0
\(533\) −1.29100e12 + 1.06084e11i −0.692873 + 0.0569346i
\(534\) 0 0
\(535\) 2.82934e12i 1.49311i
\(536\) 0 0
\(537\) −7.82465e11 −0.406051
\(538\) 0 0
\(539\) 3.30146e11i 0.168483i
\(540\) 0 0
\(541\) 2.19081e12i 1.09956i 0.835311 + 0.549778i \(0.185288\pi\)
−0.835311 + 0.549778i \(0.814712\pi\)
\(542\) 0 0
\(543\) 4.93557e11 0.243634
\(544\) 0 0
\(545\) 2.43817e11 0.118380
\(546\) 0 0
\(547\) −7.33131e10 −0.0350138 −0.0175069 0.999847i \(-0.505573\pi\)
−0.0175069 + 0.999847i \(0.505573\pi\)
\(548\) 0 0
\(549\) −3.59580e12 −1.68935
\(550\) 0 0
\(551\) 6.21090e11i 0.287060i
\(552\) 0 0
\(553\) 1.39466e12i 0.634170i
\(554\) 0 0
\(555\) 1.39253e12 0.622998
\(556\) 0 0
\(557\) 1.03789e12i 0.456880i −0.973558 0.228440i \(-0.926637\pi\)
0.973558 0.228440i \(-0.0733626\pi\)
\(558\) 0 0
\(559\) 9.36880e10 + 1.14015e12i 0.0405818 + 0.493865i
\(560\) 0 0
\(561\) 3.28721e9i 0.00140118i
\(562\) 0 0
\(563\) 2.43180e12 1.02009 0.510046 0.860147i \(-0.329628\pi\)
0.510046 + 0.860147i \(0.329628\pi\)
\(564\) 0 0
\(565\) 6.16324e11i 0.254443i
\(566\) 0 0
\(567\) 1.15713e12i 0.470175i
\(568\) 0 0
\(569\) −2.12643e12 −0.850446 −0.425223 0.905089i \(-0.639804\pi\)
−0.425223 + 0.905089i \(0.639804\pi\)
\(570\) 0 0
\(571\) −1.01100e12 −0.398004 −0.199002 0.979999i \(-0.563770\pi\)
−0.199002 + 0.979999i \(0.563770\pi\)
\(572\) 0 0
\(573\) −3.70954e11 −0.143756
\(574\) 0 0
\(575\) −6.52078e12 −2.48768
\(576\) 0 0
\(577\) 1.09472e12i 0.411161i −0.978640 0.205581i \(-0.934092\pi\)
0.978640 0.205581i \(-0.0659083\pi\)
\(578\) 0 0
\(579\) 6.45828e11i 0.238816i
\(580\) 0 0
\(581\) −2.02291e12 −0.736520
\(582\) 0 0
\(583\) 1.72037e11i 0.0616755i
\(584\) 0 0
\(585\) −4.72054e12 + 3.87895e11i −1.66644 + 0.136935i
\(586\) 0 0
\(587\) 3.19306e12i 1.11003i −0.831839 0.555017i \(-0.812712\pi\)
0.831839 0.555017i \(-0.187288\pi\)
\(588\) 0 0
\(589\) 6.44372e12 2.20606
\(590\) 0 0
\(591\) 7.31621e11i 0.246685i
\(592\) 0 0
\(593\) 1.90468e12i 0.632521i 0.948672 + 0.316261i \(0.102427\pi\)
−0.948672 + 0.316261i \(0.897573\pi\)
\(594\) 0 0
\(595\) −7.20857e10 −0.0235789
\(596\) 0 0
\(597\) −1.01998e12 −0.328630
\(598\) 0 0
\(599\) −7.04878e11 −0.223714 −0.111857 0.993724i \(-0.535680\pi\)
−0.111857 + 0.993724i \(0.535680\pi\)
\(600\) 0 0
\(601\) −2.01041e12 −0.628565 −0.314282 0.949330i \(-0.601764\pi\)
−0.314282 + 0.949330i \(0.601764\pi\)
\(602\) 0 0
\(603\) 2.31287e12i 0.712400i
\(604\) 0 0
\(605\) 5.48873e12i 1.66561i
\(606\) 0 0
\(607\) −2.44941e12 −0.732338 −0.366169 0.930548i \(-0.619331\pi\)
−0.366169 + 0.930548i \(0.619331\pi\)
\(608\) 0 0
\(609\) 8.87321e10i 0.0261398i
\(610\) 0 0
\(611\) −3.15397e12 + 2.59168e11i −0.915529 + 0.0752307i
\(612\) 0 0
\(613\) 3.35213e12i 0.958846i −0.877584 0.479423i \(-0.840846\pi\)
0.877584 0.479423i \(-0.159154\pi\)
\(614\) 0 0
\(615\) −1.05443e12 −0.297221
\(616\) 0 0
\(617\) 5.56801e12i 1.54674i −0.633956 0.773369i \(-0.718570\pi\)
0.633956 0.773369i \(-0.281430\pi\)
\(618\) 0 0
\(619\) 1.68860e12i 0.462295i 0.972919 + 0.231147i \(0.0742480\pi\)
−0.972919 + 0.231147i \(0.925752\pi\)
\(620\) 0 0
\(621\) 2.00505e12 0.541018
\(622\) 0 0
\(623\) −3.27441e12 −0.870836
\(624\) 0 0
\(625\) 5.62644e12 1.47494
\(626\) 0 0
\(627\) 3.47037e11 0.0896752
\(628\) 0 0
\(629\) 1.34040e11i 0.0341433i
\(630\) 0 0
\(631\) 3.30581e12i 0.830130i 0.909792 + 0.415065i \(0.136241\pi\)
−0.909792 + 0.415065i \(0.863759\pi\)
\(632\) 0 0
\(633\) 6.16514e11 0.152625
\(634\) 0 0
\(635\) 3.90623e12i 0.953401i
\(636\) 0 0
\(637\) 2.30937e11 + 2.81042e12i 0.0555733 + 0.676306i
\(638\) 0 0
\(639\) 5.65272e12i 1.34123i
\(640\) 0 0
\(641\) 1.40932e12 0.329722 0.164861 0.986317i \(-0.447282\pi\)
0.164861 + 0.986317i \(0.447282\pi\)
\(642\) 0 0
\(643\) 5.28783e12i 1.21991i −0.792436 0.609955i \(-0.791187\pi\)
0.792436 0.609955i \(-0.208813\pi\)
\(644\) 0 0
\(645\) 9.31222e11i 0.211853i
\(646\) 0 0
\(647\) 6.17036e12 1.38434 0.692168 0.721737i \(-0.256656\pi\)
0.692168 + 0.721737i \(0.256656\pi\)
\(648\) 0 0
\(649\) −8.07369e11 −0.178637
\(650\) 0 0
\(651\) −9.20582e11 −0.200885
\(652\) 0 0
\(653\) −3.45993e12 −0.744661 −0.372330 0.928100i \(-0.621441\pi\)
−0.372330 + 0.928100i \(0.621441\pi\)
\(654\) 0 0
\(655\) 8.27614e12i 1.75688i
\(656\) 0 0
\(657\) 1.90377e12i 0.398631i
\(658\) 0 0
\(659\) 7.43406e12 1.53547 0.767736 0.640766i \(-0.221383\pi\)
0.767736 + 0.640766i \(0.221383\pi\)
\(660\) 0 0
\(661\) 2.27635e12i 0.463802i −0.972739 0.231901i \(-0.925506\pi\)
0.972739 0.231901i \(-0.0744945\pi\)
\(662\) 0 0
\(663\) 2.29941e9 + 2.79829e10i 0.000462173 + 0.00562447i
\(664\) 0 0
\(665\) 7.61023e12i 1.50904i
\(666\) 0 0
\(667\) −1.13184e12 −0.221420
\(668\) 0 0
\(669\) 9.61387e11i 0.185558i
\(670\) 0 0
\(671\) 2.33818e12i 0.445274i
\(672\) 0 0
\(673\) 5.42300e12 1.01899 0.509497 0.860472i \(-0.329831\pi\)
0.509497 + 0.860472i \(0.329831\pi\)
\(674\) 0 0
\(675\) −5.42575e12 −1.00599
\(676\) 0 0
\(677\) −6.13007e12 −1.12154 −0.560772 0.827970i \(-0.689496\pi\)
−0.560772 + 0.827970i \(0.689496\pi\)
\(678\) 0 0
\(679\) 2.24720e12 0.405721
\(680\) 0 0
\(681\) 1.74020e12i 0.310054i
\(682\) 0 0
\(683\) 2.12778e12i 0.374140i −0.982347 0.187070i \(-0.940101\pi\)
0.982347 0.187070i \(-0.0598991\pi\)
\(684\) 0 0
\(685\) 1.41245e13 2.45112
\(686\) 0 0
\(687\) 8.66339e11i 0.148382i
\(688\) 0 0
\(689\) −1.20340e11 1.46449e12i −0.0203434 0.247571i
\(690\) 0 0
\(691\) 1.99702e12i 0.333220i 0.986023 + 0.166610i \(0.0532821\pi\)
−0.986023 + 0.166610i \(0.946718\pi\)
\(692\) 0 0
\(693\) 8.05063e11 0.132596
\(694\) 0 0
\(695\) 4.50699e12i 0.732749i
\(696\) 0 0
\(697\) 1.01495e11i 0.0162892i
\(698\) 0 0
\(699\) −7.01450e11 −0.111135
\(700\) 0 0
\(701\) −5.33488e11 −0.0834437 −0.0417218 0.999129i \(-0.513284\pi\)
−0.0417218 + 0.999129i \(0.513284\pi\)
\(702\) 0 0
\(703\) 1.41508e13 2.18516
\(704\) 0 0
\(705\) −2.57602e12 −0.392734
\(706\) 0 0
\(707\) 2.40941e12i 0.362679i
\(708\) 0 0
\(709\) 2.15946e12i 0.320950i −0.987040 0.160475i \(-0.948697\pi\)
0.987040 0.160475i \(-0.0513027\pi\)
\(710\) 0 0
\(711\) −7.18011e12 −1.05370
\(712\) 0 0
\(713\) 1.17426e13i 1.70162i
\(714\) 0 0
\(715\) 2.52230e11 + 3.06955e12i 0.0360927 + 0.439235i
\(716\) 0 0
\(717\) 3.16923e12i 0.447835i
\(718\) 0 0
\(719\) 1.06545e13 1.48680 0.743400 0.668847i \(-0.233212\pi\)
0.743400 + 0.668847i \(0.233212\pi\)
\(720\) 0 0
\(721\) 4.36805e12i 0.601976i
\(722\) 0 0
\(723\) 3.57511e11i 0.0486594i
\(724\) 0 0
\(725\) 3.06281e12 0.411717
\(726\) 0 0
\(727\) 1.18120e13 1.56827 0.784134 0.620592i \(-0.213108\pi\)
0.784134 + 0.620592i \(0.213108\pi\)
\(728\) 0 0
\(729\) −5.09817e12 −0.668560
\(730\) 0 0
\(731\) −8.96357e10 −0.0116106
\(732\) 0 0
\(733\) 1.04467e13i 1.33663i −0.743878 0.668315i \(-0.767016\pi\)
0.743878 0.668315i \(-0.232984\pi\)
\(734\) 0 0
\(735\) 2.29542e12i 0.290115i
\(736\) 0 0
\(737\) 1.50395e12 0.187772
\(738\) 0 0
\(739\) 1.25115e13i 1.54315i −0.636137 0.771576i \(-0.719469\pi\)
0.636137 0.771576i \(-0.280531\pi\)
\(740\) 0 0
\(741\) 2.95421e12 2.42753e11i 0.359964 0.0295789i
\(742\) 0 0
\(743\) 1.13486e13i 1.36614i 0.730354 + 0.683069i \(0.239355\pi\)
−0.730354 + 0.683069i \(0.760645\pi\)
\(744\) 0 0
\(745\) 5.95349e12 0.708057
\(746\) 0 0
\(747\) 1.04145e13i 1.22376i
\(748\) 0 0
\(749\) 4.10760e12i 0.476892i
\(750\) 0 0
\(751\) 9.95796e12 1.14233 0.571164 0.820836i \(-0.306492\pi\)
0.571164 + 0.820836i \(0.306492\pi\)
\(752\) 0 0
\(753\) −3.63495e12 −0.412023
\(754\) 0 0
\(755\) −6.80602e12 −0.762310
\(756\) 0 0
\(757\) −2.18826e12 −0.242197 −0.121098 0.992641i \(-0.538642\pi\)
−0.121098 + 0.992641i \(0.538642\pi\)
\(758\) 0 0
\(759\) 6.32420e11i 0.0691700i
\(760\) 0 0
\(761\) 1.14282e13i 1.23523i −0.786481 0.617615i \(-0.788099\pi\)
0.786481 0.617615i \(-0.211901\pi\)
\(762\) 0 0
\(763\) −3.53970e11 −0.0378099
\(764\) 0 0
\(765\) 3.71118e11i 0.0391774i
\(766\) 0 0
\(767\) −6.87285e12 + 5.64755e11i −0.717064 + 0.0589225i
\(768\) 0 0
\(769\) 9.31548e12i 0.960587i −0.877108 0.480293i \(-0.840530\pi\)
0.877108 0.480293i \(-0.159470\pi\)
\(770\) 0 0
\(771\) −1.57528e12 −0.160552
\(772\) 0 0
\(773\) 6.03026e12i 0.607475i 0.952756 + 0.303737i \(0.0982345\pi\)
−0.952756 + 0.303737i \(0.901765\pi\)
\(774\) 0 0
\(775\) 3.17762e13i 3.16405i
\(776\) 0 0
\(777\) −2.02166e12 −0.198982
\(778\) 0 0
\(779\) −1.07151e13 −1.04250
\(780\) 0 0
\(781\) 3.67570e12 0.353517
\(782\) 0 0
\(783\) −9.41769e11 −0.0895399
\(784\) 0 0
\(785\) 2.38697e13i 2.24353i
\(786\) 0 0
\(787\) 6.85370e12i 0.636852i −0.947948 0.318426i \(-0.896846\pi\)
0.947948 0.318426i \(-0.103154\pi\)
\(788\) 0 0
\(789\) 7.48237e11 0.0687373
\(790\) 0 0
\(791\) 8.94771e11i 0.0812676i
\(792\) 0 0
\(793\) 1.63556e12 + 1.99041e13i 0.146871 + 1.78737i
\(794\) 0 0
\(795\) 1.19613e12i 0.106200i
\(796\) 0 0
\(797\) −1.81697e13 −1.59509 −0.797545 0.603260i \(-0.793868\pi\)
−0.797545 + 0.603260i \(0.793868\pi\)
\(798\) 0 0
\(799\) 2.47958e11i 0.0215237i
\(800\) 0 0
\(801\) 1.68576e13i 1.44693i
\(802\) 0 0
\(803\) −1.23793e12 −0.105070
\(804\) 0 0
\(805\) 1.38684e13 1.16398
\(806\) 0 0
\(807\) −3.69228e12 −0.306453
\(808\) 0 0
\(809\) 1.88038e13 1.54339 0.771697 0.635990i \(-0.219408\pi\)
0.771697 + 0.635990i \(0.219408\pi\)
\(810\) 0 0
\(811\) 1.23796e13i 1.00487i −0.864614 0.502436i \(-0.832437\pi\)
0.864614 0.502436i \(-0.167563\pi\)
\(812\) 0 0
\(813\) 5.68203e12i 0.456138i
\(814\) 0 0
\(815\) −2.47287e13 −1.96332
\(816\) 0 0
\(817\) 9.46302e12i 0.743071i
\(818\) 0 0
\(819\) 6.85322e12 5.63142e11i 0.532252 0.0437361i
\(820\) 0 0
\(821\) 1.66782e13i 1.28117i 0.767889 + 0.640584i \(0.221307\pi\)
−0.767889 + 0.640584i \(0.778693\pi\)
\(822\) 0 0
\(823\) 2.24352e11 0.0170463 0.00852315 0.999964i \(-0.497287\pi\)
0.00852315 + 0.999964i \(0.497287\pi\)
\(824\) 0 0
\(825\) 1.71136e12i 0.128617i
\(826\) 0 0
\(827\) 4.52668e12i 0.336516i 0.985743 + 0.168258i \(0.0538141\pi\)
−0.985743 + 0.168258i \(0.946186\pi\)
\(828\) 0 0
\(829\) −2.17452e13 −1.59907 −0.799537 0.600616i \(-0.794922\pi\)
−0.799537 + 0.600616i \(0.794922\pi\)
\(830\) 0 0
\(831\) 2.52019e12 0.183328
\(832\) 0 0
\(833\) −2.20948e11 −0.0158997
\(834\) 0 0
\(835\) 1.20281e13 0.856263
\(836\) 0 0
\(837\) 9.77072e12i 0.688116i
\(838\) 0 0
\(839\) 2.03862e13i 1.42039i −0.704006 0.710194i \(-0.748607\pi\)
0.704006 0.710194i \(-0.251393\pi\)
\(840\) 0 0
\(841\) −1.39755e13 −0.963354
\(842\) 0 0
\(843\) 2.80791e12i 0.191495i
\(844\) 0 0
\(845\) 4.29429e12 + 2.59535e13i 0.289759 + 1.75122i
\(846\) 0 0
\(847\) 7.96847e12i 0.531985i
\(848\) 0 0
\(849\) −6.56427e12 −0.433613
\(850\) 0 0
\(851\) 2.57876e13i 1.68550i
\(852\) 0 0
\(853\) 2.18038e13i 1.41014i −0.709140 0.705068i \(-0.750916\pi\)
0.709140 0.705068i \(-0.249084\pi\)
\(854\) 0 0
\(855\) −3.91796e13 −2.50734
\(856\) 0 0
\(857\) 1.63788e13 1.03722 0.518608 0.855012i \(-0.326451\pi\)
0.518608 + 0.855012i \(0.326451\pi\)
\(858\) 0 0
\(859\) −6.46193e12 −0.404942 −0.202471 0.979288i \(-0.564897\pi\)
−0.202471 + 0.979288i \(0.564897\pi\)
\(860\) 0 0
\(861\) 1.53081e12 0.0949307
\(862\) 0 0
\(863\) 5.52060e12i 0.338796i 0.985548 + 0.169398i \(0.0541823\pi\)
−0.985548 + 0.169398i \(0.945818\pi\)
\(864\) 0 0
\(865\) 4.45785e13i 2.70740i
\(866\) 0 0
\(867\) 4.00504e12 0.240725
\(868\) 0 0
\(869\) 4.66889e12i 0.277731i
\(870\) 0 0
\(871\) 1.28026e13 1.05201e12i 0.753732 0.0619356i
\(872\) 0 0
\(873\) 1.15692e13i 0.674125i
\(874\) 0 0
\(875\) −2.00795e13 −1.15802
\(876\) 0 0
\(877\) 9.43230e12i 0.538418i 0.963082 + 0.269209i \(0.0867622\pi\)
−0.963082 + 0.269209i \(0.913238\pi\)
\(878\) 0 0
\(879\) 1.40791e12i 0.0795472i
\(880\) 0 0
\(881\) −3.28469e13 −1.83697 −0.918485 0.395455i \(-0.870587\pi\)
−0.918485 + 0.395455i \(0.870587\pi\)
\(882\) 0 0
\(883\) 7.28752e12 0.403419 0.201710 0.979445i \(-0.435350\pi\)
0.201710 + 0.979445i \(0.435350\pi\)
\(884\) 0 0
\(885\) −5.61344e12 −0.307599
\(886\) 0 0
\(887\) 2.78898e12 0.151283 0.0756413 0.997135i \(-0.475900\pi\)
0.0756413 + 0.997135i \(0.475900\pi\)
\(888\) 0 0
\(889\) 5.67101e12i 0.304511i
\(890\) 0 0
\(891\) 3.87372e12i 0.205911i
\(892\) 0 0
\(893\) −2.61774e13 −1.37751
\(894\) 0 0
\(895\) 5.74423e13i 2.99246i
\(896\) 0 0
\(897\) −4.42378e11 5.38357e12i −0.0228154 0.277654i
\(898\) 0 0
\(899\) 5.51551e12i 0.281623i
\(900\) 0 0
\(901\) 1.15135e11 0.00582029
\(902\) 0 0
\(903\) 1.35194e12i 0.0676645i
\(904\) 0 0
\(905\) 3.62330e13i 1.79550i
\(906\) 0 0
\(907\) 2.96724e13 1.45586 0.727930 0.685651i \(-0.240482\pi\)
0.727930 + 0.685651i \(0.240482\pi\)
\(908\) 0 0
\(909\) −1.24043e13 −0.602608
\(910\) 0 0
\(911\) −2.08157e13 −1.00128 −0.500642 0.865654i \(-0.666903\pi\)
−0.500642 + 0.865654i \(0.666903\pi\)
\(912\) 0 0
\(913\) −6.77208e12 −0.322555
\(914\) 0 0
\(915\) 1.62568e13i 0.766726i
\(916\) 0 0
\(917\) 1.20152e13i 0.561137i
\(918\) 0 0
\(919\) 1.89789e13 0.877712 0.438856 0.898557i \(-0.355384\pi\)
0.438856 + 0.898557i \(0.355384\pi\)
\(920\) 0 0
\(921\) 4.48205e12i 0.205262i
\(922\) 0 0
\(923\) 3.12899e13 2.57115e12i 1.41905 0.116606i
\(924\) 0 0
\(925\) 6.97826e13i 3.13407i
\(926\) 0 0
\(927\) −2.24880e13 −1.00021
\(928\) 0 0
\(929\) 1.34519e13i 0.592535i 0.955105 + 0.296267i \(0.0957420\pi\)
−0.955105 + 0.296267i \(0.904258\pi\)
\(930\) 0 0
\(931\) 2.33259e13i 1.01757i
\(932\) 0 0
\(933\) 7.66722e12 0.331261
\(934\) 0 0
\(935\) −2.41321e11 −0.0103262
\(936\) 0 0
\(937\) 1.61070e13 0.682631 0.341316 0.939949i \(-0.389128\pi\)
0.341316 + 0.939949i \(0.389128\pi\)
\(938\) 0 0
\(939\) 3.97806e12 0.166985
\(940\) 0 0
\(941\) 1.21020e13i 0.503157i −0.967837 0.251578i \(-0.919050\pi\)
0.967837 0.251578i \(-0.0809496\pi\)
\(942\) 0 0
\(943\) 1.95265e13i 0.804121i
\(944\) 0 0
\(945\) 1.15395e13 0.470700
\(946\) 0 0
\(947\) 2.33927e13i 0.945162i −0.881287 0.472581i \(-0.843323\pi\)
0.881287 0.472581i \(-0.156677\pi\)
\(948\) 0 0
\(949\) −1.05381e13 + 8.65935e11i −0.421759 + 0.0346567i
\(950\) 0 0
\(951\) 1.38435e12i 0.0548823i
\(952\) 0 0
\(953\) −2.85315e13 −1.12049 −0.560243 0.828328i \(-0.689292\pi\)
−0.560243 + 0.828328i \(0.689292\pi\)
\(954\) 0 0
\(955\) 2.72325e13i 1.05943i
\(956\) 0 0
\(957\) 2.97047e11i 0.0114478i
\(958\) 0 0
\(959\) −2.05057e13 −0.782873
\(960\) 0 0
\(961\) −3.07830e13 −1.16428
\(962\) 0 0
\(963\) 2.11471e13 0.792378
\(964\) 0 0
\(965\) 4.74115e13 1.75999
\(966\) 0 0
\(967\) 1.02571e13i 0.377230i −0.982051 0.188615i \(-0.939600\pi\)
0.982051 0.188615i \(-0.0603998\pi\)
\(968\) 0 0
\(969\) 2.32253e11i 0.00846261i
\(970\) 0 0
\(971\) −6.57160e12 −0.237238 −0.118619 0.992940i \(-0.537847\pi\)
−0.118619 + 0.992940i \(0.537847\pi\)
\(972\) 0 0
\(973\) 6.54319e12i 0.234036i
\(974\) 0 0
\(975\) 1.19710e12 + 1.45682e13i 0.0424237 + 0.516280i
\(976\) 0 0
\(977\) 8.02624e12i 0.281829i 0.990022 + 0.140915i \(0.0450043\pi\)
−0.990022 + 0.140915i \(0.954996\pi\)
\(978\) 0 0
\(979\) −1.09617e13 −0.381378
\(980\) 0 0
\(981\) 1.82234e12i 0.0628229i
\(982\) 0 0
\(983\) 1.37031e12i 0.0468089i −0.999726 0.0234045i \(-0.992549\pi\)
0.999726 0.0234045i \(-0.00745055\pi\)
\(984\) 0 0
\(985\) 5.37097e13 1.81798
\(986\) 0 0
\(987\) 3.73984e12 0.125437
\(988\) 0 0
\(989\) 1.72448e13 0.573160
\(990\) 0 0
\(991\) 2.44907e13 0.806621 0.403310 0.915063i \(-0.367859\pi\)
0.403310 + 0.915063i \(0.367859\pi\)
\(992\) 0 0
\(993\) 1.17224e12i 0.0382600i
\(994\) 0 0
\(995\) 7.48787e13i 2.42189i
\(996\) 0 0
\(997\) 2.41809e13 0.775075 0.387538 0.921854i \(-0.373326\pi\)
0.387538 + 0.921854i \(0.373326\pi\)
\(998\) 0 0
\(999\) 2.14571e13i 0.681596i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 104.10.f.a.25.16 yes 32
4.3 odd 2 208.10.f.d.129.17 32
13.12 even 2 inner 104.10.f.a.25.15 32
52.51 odd 2 208.10.f.d.129.18 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.f.a.25.15 32 13.12 even 2 inner
104.10.f.a.25.16 yes 32 1.1 even 1 trivial
208.10.f.d.129.17 32 4.3 odd 2
208.10.f.d.129.18 32 52.51 odd 2