Properties

Label 104.10.f.a.25.11
Level $104$
Weight $10$
Character 104.25
Analytic conductor $53.564$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [104,10,Mod(25,104)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(104, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("104.25"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 104.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(53.5637269610\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 25.11
Character \(\chi\) \(=\) 104.25
Dual form 104.10.f.a.25.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-76.3670 q^{3} -1713.06i q^{5} -425.676i q^{7} -13851.1 q^{9} -24500.1i q^{11} +(-102978. - 314.799i) q^{13} +130821. i q^{15} -139497. q^{17} -572688. i q^{19} +32507.6i q^{21} -1.45112e6 q^{23} -981447. q^{25} +2.56090e6 q^{27} +5.71538e6 q^{29} -8.04731e6i q^{31} +1.87100e6i q^{33} -729208. q^{35} +1.92934e7i q^{37} +(7.86410e6 + 24040.3i) q^{39} -2.04134e7i q^{41} -3.39230e7 q^{43} +2.37277e7i q^{45} +4.53942e7i q^{47} +4.01724e7 q^{49} +1.06530e7 q^{51} -8.54616e7 q^{53} -4.19702e7 q^{55} +4.37345e7i q^{57} +7.95866e7i q^{59} +1.38028e8 q^{61} +5.89607e6i q^{63} +(-539270. + 1.76407e8i) q^{65} +2.43776e8i q^{67} +1.10818e8 q^{69} +1.14544e8i q^{71} -1.44800e8i q^{73} +7.49501e7 q^{75} -1.04291e7 q^{77} -7.25337e7 q^{79} +7.70627e7 q^{81} +2.40348e8i q^{83} +2.38966e8i q^{85} -4.36467e8 q^{87} +4.23885e8i q^{89} +(-134002. + 4.38351e7i) q^{91} +6.14549e8i q^{93} -9.81049e8 q^{95} +9.39888e8i q^{97} +3.39353e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 162 q^{3} + 223074 q^{9} + 66270 q^{13} - 487902 q^{17} + 3171556 q^{23} - 13526722 q^{25} - 3694974 q^{27} + 8833508 q^{29} - 8281126 q^{35} - 12056860 q^{39} + 89959038 q^{43} - 172344874 q^{49}+ \cdots + 1741143356 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −76.3670 −0.544327 −0.272164 0.962251i \(-0.587739\pi\)
−0.272164 + 0.962251i \(0.587739\pi\)
\(4\) 0 0
\(5\) 1713.06i 1.22577i −0.790174 0.612883i \(-0.790010\pi\)
0.790174 0.612883i \(-0.209990\pi\)
\(6\) 0 0
\(7\) 425.676i 0.0670098i −0.999439 0.0335049i \(-0.989333\pi\)
0.999439 0.0335049i \(-0.0106669\pi\)
\(8\) 0 0
\(9\) −13851.1 −0.703708
\(10\) 0 0
\(11\) 24500.1i 0.504547i −0.967656 0.252273i \(-0.918822\pi\)
0.967656 0.252273i \(-0.0811782\pi\)
\(12\) 0 0
\(13\) −102978. 314.799i −0.999995 0.00305695i
\(14\) 0 0
\(15\) 130821.i 0.667218i
\(16\) 0 0
\(17\) −139497. −0.405083 −0.202542 0.979274i \(-0.564920\pi\)
−0.202542 + 0.979274i \(0.564920\pi\)
\(18\) 0 0
\(19\) 572688.i 1.00815i −0.863659 0.504077i \(-0.831833\pi\)
0.863659 0.504077i \(-0.168167\pi\)
\(20\) 0 0
\(21\) 32507.6i 0.0364752i
\(22\) 0 0
\(23\) −1.45112e6 −1.08125 −0.540627 0.841262i \(-0.681813\pi\)
−0.540627 + 0.841262i \(0.681813\pi\)
\(24\) 0 0
\(25\) −981447. −0.502501
\(26\) 0 0
\(27\) 2.56090e6 0.927375
\(28\) 0 0
\(29\) 5.71538e6 1.50056 0.750281 0.661119i \(-0.229918\pi\)
0.750281 + 0.661119i \(0.229918\pi\)
\(30\) 0 0
\(31\) 8.04731e6i 1.56503i −0.622630 0.782516i \(-0.713936\pi\)
0.622630 0.782516i \(-0.286064\pi\)
\(32\) 0 0
\(33\) 1.87100e6i 0.274639i
\(34\) 0 0
\(35\) −729208. −0.0821382
\(36\) 0 0
\(37\) 1.92934e7i 1.69240i 0.532868 + 0.846198i \(0.321114\pi\)
−0.532868 + 0.846198i \(0.678886\pi\)
\(38\) 0 0
\(39\) 7.86410e6 + 24040.3i 0.544325 + 0.00166398i
\(40\) 0 0
\(41\) 2.04134e7i 1.12820i −0.825705 0.564102i \(-0.809223\pi\)
0.825705 0.564102i \(-0.190777\pi\)
\(42\) 0 0
\(43\) −3.39230e7 −1.51316 −0.756582 0.653899i \(-0.773132\pi\)
−0.756582 + 0.653899i \(0.773132\pi\)
\(44\) 0 0
\(45\) 2.37277e7i 0.862580i
\(46\) 0 0
\(47\) 4.53942e7i 1.35694i 0.734629 + 0.678469i \(0.237356\pi\)
−0.734629 + 0.678469i \(0.762644\pi\)
\(48\) 0 0
\(49\) 4.01724e7 0.995510
\(50\) 0 0
\(51\) 1.06530e7 0.220498
\(52\) 0 0
\(53\) −8.54616e7 −1.48775 −0.743874 0.668320i \(-0.767014\pi\)
−0.743874 + 0.668320i \(0.767014\pi\)
\(54\) 0 0
\(55\) −4.19702e7 −0.618456
\(56\) 0 0
\(57\) 4.37345e7i 0.548766i
\(58\) 0 0
\(59\) 7.95866e7i 0.855078i 0.903997 + 0.427539i \(0.140619\pi\)
−0.903997 + 0.427539i \(0.859381\pi\)
\(60\) 0 0
\(61\) 1.38028e8 1.27639 0.638195 0.769874i \(-0.279681\pi\)
0.638195 + 0.769874i \(0.279681\pi\)
\(62\) 0 0
\(63\) 5.89607e6i 0.0471553i
\(64\) 0 0
\(65\) −539270. + 1.76407e8i −0.00374710 + 1.22576i
\(66\) 0 0
\(67\) 2.43776e8i 1.47793i 0.673742 + 0.738967i \(0.264686\pi\)
−0.673742 + 0.738967i \(0.735314\pi\)
\(68\) 0 0
\(69\) 1.10818e8 0.588556
\(70\) 0 0
\(71\) 1.14544e8i 0.534944i 0.963566 + 0.267472i \(0.0861883\pi\)
−0.963566 + 0.267472i \(0.913812\pi\)
\(72\) 0 0
\(73\) 1.44800e8i 0.596782i −0.954444 0.298391i \(-0.903550\pi\)
0.954444 0.298391i \(-0.0964500\pi\)
\(74\) 0 0
\(75\) 7.49501e7 0.273525
\(76\) 0 0
\(77\) −1.04291e7 −0.0338095
\(78\) 0 0
\(79\) −7.25337e7 −0.209516 −0.104758 0.994498i \(-0.533407\pi\)
−0.104758 + 0.994498i \(0.533407\pi\)
\(80\) 0 0
\(81\) 7.70627e7 0.198912
\(82\) 0 0
\(83\) 2.40348e8i 0.555890i 0.960597 + 0.277945i \(0.0896533\pi\)
−0.960597 + 0.277945i \(0.910347\pi\)
\(84\) 0 0
\(85\) 2.38966e8i 0.496537i
\(86\) 0 0
\(87\) −4.36467e8 −0.816798
\(88\) 0 0
\(89\) 4.23885e8i 0.716132i 0.933696 + 0.358066i \(0.116564\pi\)
−0.933696 + 0.358066i \(0.883436\pi\)
\(90\) 0 0
\(91\) −134002. + 4.38351e7i −0.000204846 + 0.0670094i
\(92\) 0 0
\(93\) 6.14549e8i 0.851890i
\(94\) 0 0
\(95\) −9.81049e8 −1.23576
\(96\) 0 0
\(97\) 9.39888e8i 1.07796i 0.842318 + 0.538981i \(0.181191\pi\)
−0.842318 + 0.538981i \(0.818809\pi\)
\(98\) 0 0
\(99\) 3.39353e8i 0.355053i
\(100\) 0 0
\(101\) −4.57905e8 −0.437854 −0.218927 0.975741i \(-0.570256\pi\)
−0.218927 + 0.975741i \(0.570256\pi\)
\(102\) 0 0
\(103\) 1.57302e9 1.37710 0.688550 0.725189i \(-0.258248\pi\)
0.688550 + 0.725189i \(0.258248\pi\)
\(104\) 0 0
\(105\) 5.56875e7 0.0447101
\(106\) 0 0
\(107\) 2.30348e8 0.169886 0.0849428 0.996386i \(-0.472929\pi\)
0.0849428 + 0.996386i \(0.472929\pi\)
\(108\) 0 0
\(109\) 7.54070e8i 0.511673i 0.966720 + 0.255836i \(0.0823508\pi\)
−0.966720 + 0.255836i \(0.917649\pi\)
\(110\) 0 0
\(111\) 1.47338e9i 0.921218i
\(112\) 0 0
\(113\) 2.92337e8 0.168667 0.0843336 0.996438i \(-0.473124\pi\)
0.0843336 + 0.996438i \(0.473124\pi\)
\(114\) 0 0
\(115\) 2.48585e9i 1.32536i
\(116\) 0 0
\(117\) 1.42635e9 + 4.36031e6i 0.703704 + 0.00215120i
\(118\) 0 0
\(119\) 5.93805e7i 0.0271445i
\(120\) 0 0
\(121\) 1.75769e9 0.745433
\(122\) 0 0
\(123\) 1.55891e9i 0.614112i
\(124\) 0 0
\(125\) 1.66454e9i 0.609817i
\(126\) 0 0
\(127\) −4.40722e9 −1.50331 −0.751654 0.659557i \(-0.770744\pi\)
−0.751654 + 0.659557i \(0.770744\pi\)
\(128\) 0 0
\(129\) 2.59060e9 0.823657
\(130\) 0 0
\(131\) −1.52816e9 −0.453366 −0.226683 0.973969i \(-0.572788\pi\)
−0.226683 + 0.973969i \(0.572788\pi\)
\(132\) 0 0
\(133\) −2.43780e8 −0.0675562
\(134\) 0 0
\(135\) 4.38697e9i 1.13674i
\(136\) 0 0
\(137\) 8.54102e8i 0.207141i 0.994622 + 0.103571i \(0.0330268\pi\)
−0.994622 + 0.103571i \(0.966973\pi\)
\(138\) 0 0
\(139\) −2.38628e9 −0.542195 −0.271097 0.962552i \(-0.587387\pi\)
−0.271097 + 0.962552i \(0.587387\pi\)
\(140\) 0 0
\(141\) 3.46662e9i 0.738618i
\(142\) 0 0
\(143\) −7.71262e6 + 2.52297e9i −0.00154237 + 0.504544i
\(144\) 0 0
\(145\) 9.79079e9i 1.83934i
\(146\) 0 0
\(147\) −3.06785e9 −0.541883
\(148\) 0 0
\(149\) 3.49957e9i 0.581669i −0.956773 0.290835i \(-0.906067\pi\)
0.956773 0.290835i \(-0.0939329\pi\)
\(150\) 0 0
\(151\) 5.22200e9i 0.817411i −0.912666 0.408706i \(-0.865980\pi\)
0.912666 0.408706i \(-0.134020\pi\)
\(152\) 0 0
\(153\) 1.93218e9 0.285060
\(154\) 0 0
\(155\) −1.37855e10 −1.91836
\(156\) 0 0
\(157\) 1.05387e10 1.38433 0.692166 0.721738i \(-0.256656\pi\)
0.692166 + 0.721738i \(0.256656\pi\)
\(158\) 0 0
\(159\) 6.52645e9 0.809822
\(160\) 0 0
\(161\) 6.17707e8i 0.0724546i
\(162\) 0 0
\(163\) 1.01036e10i 1.12107i −0.828132 0.560533i \(-0.810596\pi\)
0.828132 0.560533i \(-0.189404\pi\)
\(164\) 0 0
\(165\) 3.20514e9 0.336642
\(166\) 0 0
\(167\) 1.90716e10i 1.89741i −0.316155 0.948707i \(-0.602392\pi\)
0.316155 0.948707i \(-0.397608\pi\)
\(168\) 0 0
\(169\) 1.06043e10 + 6.48346e7i 0.999981 + 0.00611387i
\(170\) 0 0
\(171\) 7.93235e9i 0.709446i
\(172\) 0 0
\(173\) −1.74243e10 −1.47893 −0.739467 0.673193i \(-0.764922\pi\)
−0.739467 + 0.673193i \(0.764922\pi\)
\(174\) 0 0
\(175\) 4.17778e8i 0.0336724i
\(176\) 0 0
\(177\) 6.07779e9i 0.465442i
\(178\) 0 0
\(179\) −5.31675e9 −0.387086 −0.193543 0.981092i \(-0.561998\pi\)
−0.193543 + 0.981092i \(0.561998\pi\)
\(180\) 0 0
\(181\) 2.27345e10 1.57446 0.787230 0.616659i \(-0.211514\pi\)
0.787230 + 0.616659i \(0.211514\pi\)
\(182\) 0 0
\(183\) −1.05408e10 −0.694775
\(184\) 0 0
\(185\) 3.30508e10 2.07448
\(186\) 0 0
\(187\) 3.41769e9i 0.204383i
\(188\) 0 0
\(189\) 1.09011e9i 0.0621432i
\(190\) 0 0
\(191\) −1.76412e10 −0.959130 −0.479565 0.877506i \(-0.659206\pi\)
−0.479565 + 0.877506i \(0.659206\pi\)
\(192\) 0 0
\(193\) 2.15736e10i 1.11922i 0.828756 + 0.559610i \(0.189049\pi\)
−0.828756 + 0.559610i \(0.810951\pi\)
\(194\) 0 0
\(195\) 4.11824e7 1.34717e10i 0.00203965 0.667215i
\(196\) 0 0
\(197\) 1.12930e10i 0.534210i 0.963667 + 0.267105i \(0.0860671\pi\)
−0.963667 + 0.267105i \(0.913933\pi\)
\(198\) 0 0
\(199\) −3.73738e10 −1.68938 −0.844692 0.535253i \(-0.820216\pi\)
−0.844692 + 0.535253i \(0.820216\pi\)
\(200\) 0 0
\(201\) 1.86165e10i 0.804480i
\(202\) 0 0
\(203\) 2.43290e9i 0.100552i
\(204\) 0 0
\(205\) −3.49693e10 −1.38291
\(206\) 0 0
\(207\) 2.00996e10 0.760887
\(208\) 0 0
\(209\) −1.40309e10 −0.508661
\(210\) 0 0
\(211\) 1.19444e10 0.414851 0.207426 0.978251i \(-0.433491\pi\)
0.207426 + 0.978251i \(0.433491\pi\)
\(212\) 0 0
\(213\) 8.74736e9i 0.291185i
\(214\) 0 0
\(215\) 5.81121e10i 1.85478i
\(216\) 0 0
\(217\) −3.42555e9 −0.104872
\(218\) 0 0
\(219\) 1.10580e10i 0.324845i
\(220\) 0 0
\(221\) 1.43651e10 + 4.39135e7i 0.405081 + 0.00123832i
\(222\) 0 0
\(223\) 2.12181e10i 0.574558i −0.957847 0.287279i \(-0.907249\pi\)
0.957847 0.287279i \(-0.0927506\pi\)
\(224\) 0 0
\(225\) 1.35941e10 0.353614
\(226\) 0 0
\(227\) 3.47026e9i 0.0867453i 0.999059 + 0.0433727i \(0.0138103\pi\)
−0.999059 + 0.0433727i \(0.986190\pi\)
\(228\) 0 0
\(229\) 4.81403e10i 1.15678i 0.815762 + 0.578388i \(0.196318\pi\)
−0.815762 + 0.578388i \(0.803682\pi\)
\(230\) 0 0
\(231\) 7.96441e8 0.0184035
\(232\) 0 0
\(233\) 1.69111e10 0.375899 0.187949 0.982179i \(-0.439816\pi\)
0.187949 + 0.982179i \(0.439816\pi\)
\(234\) 0 0
\(235\) 7.77629e10 1.66329
\(236\) 0 0
\(237\) 5.53919e9 0.114046
\(238\) 0 0
\(239\) 5.85031e10i 1.15981i 0.814683 + 0.579907i \(0.196911\pi\)
−0.814683 + 0.579907i \(0.803089\pi\)
\(240\) 0 0
\(241\) 2.05744e10i 0.392871i 0.980517 + 0.196435i \(0.0629366\pi\)
−0.980517 + 0.196435i \(0.937063\pi\)
\(242\) 0 0
\(243\) −5.62912e10 −1.03565
\(244\) 0 0
\(245\) 6.88177e10i 1.22026i
\(246\) 0 0
\(247\) −1.80282e8 + 5.89741e10i −0.00308188 + 1.00815i
\(248\) 0 0
\(249\) 1.83547e10i 0.302586i
\(250\) 0 0
\(251\) −2.53163e10 −0.402595 −0.201297 0.979530i \(-0.564516\pi\)
−0.201297 + 0.979530i \(0.564516\pi\)
\(252\) 0 0
\(253\) 3.55526e10i 0.545543i
\(254\) 0 0
\(255\) 1.82491e10i 0.270279i
\(256\) 0 0
\(257\) 1.36643e10 0.195383 0.0976916 0.995217i \(-0.468854\pi\)
0.0976916 + 0.995217i \(0.468854\pi\)
\(258\) 0 0
\(259\) 8.21276e9 0.113407
\(260\) 0 0
\(261\) −7.91642e10 −1.05596
\(262\) 0 0
\(263\) 1.02747e11 1.32424 0.662120 0.749398i \(-0.269657\pi\)
0.662120 + 0.749398i \(0.269657\pi\)
\(264\) 0 0
\(265\) 1.46401e11i 1.82363i
\(266\) 0 0
\(267\) 3.23708e10i 0.389810i
\(268\) 0 0
\(269\) 8.33227e9 0.0970238 0.0485119 0.998823i \(-0.484552\pi\)
0.0485119 + 0.998823i \(0.484552\pi\)
\(270\) 0 0
\(271\) 1.49932e10i 0.168862i −0.996429 0.0844310i \(-0.973093\pi\)
0.996429 0.0844310i \(-0.0269073\pi\)
\(272\) 0 0
\(273\) 1.02334e7 3.34756e9i 0.000111503 0.0364751i
\(274\) 0 0
\(275\) 2.40456e10i 0.253535i
\(276\) 0 0
\(277\) −1.20096e11 −1.22566 −0.612829 0.790215i \(-0.709969\pi\)
−0.612829 + 0.790215i \(0.709969\pi\)
\(278\) 0 0
\(279\) 1.11464e11i 1.10133i
\(280\) 0 0
\(281\) 8.70624e10i 0.833014i 0.909132 + 0.416507i \(0.136746\pi\)
−0.909132 + 0.416507i \(0.863254\pi\)
\(282\) 0 0
\(283\) −1.64657e11 −1.52596 −0.762979 0.646424i \(-0.776264\pi\)
−0.762979 + 0.646424i \(0.776264\pi\)
\(284\) 0 0
\(285\) 7.49198e10 0.672658
\(286\) 0 0
\(287\) −8.68948e9 −0.0756006
\(288\) 0 0
\(289\) −9.91285e10 −0.835908
\(290\) 0 0
\(291\) 7.17765e10i 0.586764i
\(292\) 0 0
\(293\) 1.78258e11i 1.41301i 0.707709 + 0.706504i \(0.249729\pi\)
−0.707709 + 0.706504i \(0.750271\pi\)
\(294\) 0 0
\(295\) 1.36337e11 1.04813
\(296\) 0 0
\(297\) 6.27423e10i 0.467904i
\(298\) 0 0
\(299\) 1.49433e11 + 4.56811e8i 1.08125 + 0.00330534i
\(300\) 0 0
\(301\) 1.44402e10i 0.101397i
\(302\) 0 0
\(303\) 3.49688e10 0.238336
\(304\) 0 0
\(305\) 2.36451e11i 1.56456i
\(306\) 0 0
\(307\) 2.16364e11i 1.39015i −0.718937 0.695076i \(-0.755371\pi\)
0.718937 0.695076i \(-0.244629\pi\)
\(308\) 0 0
\(309\) −1.20126e11 −0.749593
\(310\) 0 0
\(311\) 4.31714e10 0.261683 0.130841 0.991403i \(-0.458232\pi\)
0.130841 + 0.991403i \(0.458232\pi\)
\(312\) 0 0
\(313\) 1.02683e11 0.604711 0.302355 0.953195i \(-0.402227\pi\)
0.302355 + 0.953195i \(0.402227\pi\)
\(314\) 0 0
\(315\) 1.01003e10 0.0578013
\(316\) 0 0
\(317\) 9.71219e10i 0.540195i −0.962833 0.270097i \(-0.912944\pi\)
0.962833 0.270097i \(-0.0870559\pi\)
\(318\) 0 0
\(319\) 1.40028e11i 0.757104i
\(320\) 0 0
\(321\) −1.75910e10 −0.0924734
\(322\) 0 0
\(323\) 7.98882e10i 0.408386i
\(324\) 0 0
\(325\) 1.01067e11 + 3.08959e8i 0.502498 + 0.00153612i
\(326\) 0 0
\(327\) 5.75861e10i 0.278517i
\(328\) 0 0
\(329\) 1.93232e10 0.0909280
\(330\) 0 0
\(331\) 1.28537e11i 0.588577i 0.955717 + 0.294288i \(0.0950826\pi\)
−0.955717 + 0.294288i \(0.904917\pi\)
\(332\) 0 0
\(333\) 2.67235e11i 1.19095i
\(334\) 0 0
\(335\) 4.17603e11 1.81160
\(336\) 0 0
\(337\) −3.35448e11 −1.41674 −0.708371 0.705841i \(-0.750569\pi\)
−0.708371 + 0.705841i \(0.750569\pi\)
\(338\) 0 0
\(339\) −2.23249e10 −0.0918102
\(340\) 0 0
\(341\) −1.97160e11 −0.789632
\(342\) 0 0
\(343\) 3.42780e10i 0.133719i
\(344\) 0 0
\(345\) 1.89837e11i 0.721432i
\(346\) 0 0
\(347\) 5.38880e9 0.0199531 0.00997654 0.999950i \(-0.496824\pi\)
0.00997654 + 0.999950i \(0.496824\pi\)
\(348\) 0 0
\(349\) 3.49011e11i 1.25929i −0.776884 0.629644i \(-0.783201\pi\)
0.776884 0.629644i \(-0.216799\pi\)
\(350\) 0 0
\(351\) −2.63715e11 8.06168e8i −0.927370 0.00283494i
\(352\) 0 0
\(353\) 2.43649e11i 0.835176i −0.908637 0.417588i \(-0.862876\pi\)
0.908637 0.417588i \(-0.137124\pi\)
\(354\) 0 0
\(355\) 1.96220e11 0.655716
\(356\) 0 0
\(357\) 4.53471e9i 0.0147755i
\(358\) 0 0
\(359\) 4.86575e11i 1.54605i −0.634373 0.773027i \(-0.718742\pi\)
0.634373 0.773027i \(-0.281258\pi\)
\(360\) 0 0
\(361\) −5.28408e9 −0.0163752
\(362\) 0 0
\(363\) −1.34230e11 −0.405759
\(364\) 0 0
\(365\) −2.48051e11 −0.731515
\(366\) 0 0
\(367\) −3.67290e8 −0.00105685 −0.000528423 1.00000i \(-0.500168\pi\)
−0.000528423 1.00000i \(0.500168\pi\)
\(368\) 0 0
\(369\) 2.82747e11i 0.793925i
\(370\) 0 0
\(371\) 3.63790e10i 0.0996937i
\(372\) 0 0
\(373\) −4.13188e10 −0.110524 −0.0552622 0.998472i \(-0.517599\pi\)
−0.0552622 + 0.998472i \(0.517599\pi\)
\(374\) 0 0
\(375\) 1.27116e11i 0.331940i
\(376\) 0 0
\(377\) −5.88557e11 1.79920e9i −1.50056 0.00458715i
\(378\) 0 0
\(379\) 2.88524e11i 0.718299i −0.933280 0.359150i \(-0.883067\pi\)
0.933280 0.359150i \(-0.116933\pi\)
\(380\) 0 0
\(381\) 3.36566e11 0.818292
\(382\) 0 0
\(383\) 1.88448e11i 0.447504i −0.974646 0.223752i \(-0.928169\pi\)
0.974646 0.223752i \(-0.0718306\pi\)
\(384\) 0 0
\(385\) 1.78657e10i 0.0414426i
\(386\) 0 0
\(387\) 4.69870e11 1.06483
\(388\) 0 0
\(389\) 1.61250e11 0.357048 0.178524 0.983936i \(-0.442868\pi\)
0.178524 + 0.983936i \(0.442868\pi\)
\(390\) 0 0
\(391\) 2.02427e11 0.437998
\(392\) 0 0
\(393\) 1.16701e11 0.246779
\(394\) 0 0
\(395\) 1.24255e11i 0.256818i
\(396\) 0 0
\(397\) 8.85792e11i 1.78968i 0.446390 + 0.894838i \(0.352709\pi\)
−0.446390 + 0.894838i \(0.647291\pi\)
\(398\) 0 0
\(399\) 1.86167e10 0.0367727
\(400\) 0 0
\(401\) 4.43502e11i 0.856536i −0.903652 0.428268i \(-0.859124\pi\)
0.903652 0.428268i \(-0.140876\pi\)
\(402\) 0 0
\(403\) −2.53329e9 + 8.28694e11i −0.00478423 + 1.56503i
\(404\) 0 0
\(405\) 1.32013e11i 0.243820i
\(406\) 0 0
\(407\) 4.72692e11 0.853893
\(408\) 0 0
\(409\) 6.71077e11i 1.18582i 0.805270 + 0.592908i \(0.202020\pi\)
−0.805270 + 0.592908i \(0.797980\pi\)
\(410\) 0 0
\(411\) 6.52252e10i 0.112753i
\(412\) 0 0
\(413\) 3.38781e10 0.0572986
\(414\) 0 0
\(415\) 4.11730e11 0.681391
\(416\) 0 0
\(417\) 1.82233e11 0.295131
\(418\) 0 0
\(419\) −1.17956e12 −1.86964 −0.934819 0.355125i \(-0.884438\pi\)
−0.934819 + 0.355125i \(0.884438\pi\)
\(420\) 0 0
\(421\) 6.27955e10i 0.0974225i 0.998813 + 0.0487112i \(0.0155114\pi\)
−0.998813 + 0.0487112i \(0.984489\pi\)
\(422\) 0 0
\(423\) 6.28758e11i 0.954887i
\(424\) 0 0
\(425\) 1.36909e11 0.203555
\(426\) 0 0
\(427\) 5.87553e10i 0.0855306i
\(428\) 0 0
\(429\) 5.88990e8 1.92671e11i 0.000839556 0.274637i
\(430\) 0 0
\(431\) 3.62937e11i 0.506621i 0.967385 + 0.253310i \(0.0815194\pi\)
−0.967385 + 0.253310i \(0.918481\pi\)
\(432\) 0 0
\(433\) 1.24949e11 0.170819 0.0854096 0.996346i \(-0.472780\pi\)
0.0854096 + 0.996346i \(0.472780\pi\)
\(434\) 0 0
\(435\) 7.47693e11i 1.00120i
\(436\) 0 0
\(437\) 8.31039e11i 1.09007i
\(438\) 0 0
\(439\) −6.52823e10 −0.0838891 −0.0419445 0.999120i \(-0.513355\pi\)
−0.0419445 + 0.999120i \(0.513355\pi\)
\(440\) 0 0
\(441\) −5.56431e11 −0.700548
\(442\) 0 0
\(443\) −6.09884e11 −0.752368 −0.376184 0.926545i \(-0.622764\pi\)
−0.376184 + 0.926545i \(0.622764\pi\)
\(444\) 0 0
\(445\) 7.26140e11 0.877810
\(446\) 0 0
\(447\) 2.67251e11i 0.316618i
\(448\) 0 0
\(449\) 7.71029e11i 0.895287i 0.894212 + 0.447643i \(0.147737\pi\)
−0.894212 + 0.447643i \(0.852263\pi\)
\(450\) 0 0
\(451\) −5.00130e11 −0.569231
\(452\) 0 0
\(453\) 3.98788e11i 0.444939i
\(454\) 0 0
\(455\) 7.50922e10 + 2.29554e8i 0.0821379 + 0.000251093i
\(456\) 0 0
\(457\) 4.79089e11i 0.513799i 0.966438 + 0.256899i \(0.0827009\pi\)
−0.966438 + 0.256899i \(0.917299\pi\)
\(458\) 0 0
\(459\) −3.57237e11 −0.375664
\(460\) 0 0
\(461\) 1.54060e12i 1.58868i −0.607476 0.794338i \(-0.707818\pi\)
0.607476 0.794338i \(-0.292182\pi\)
\(462\) 0 0
\(463\) 2.83548e11i 0.286756i −0.989668 0.143378i \(-0.954204\pi\)
0.989668 0.143378i \(-0.0457964\pi\)
\(464\) 0 0
\(465\) 1.05276e12 1.04422
\(466\) 0 0
\(467\) −1.70101e12 −1.65494 −0.827468 0.561513i \(-0.810220\pi\)
−0.827468 + 0.561513i \(0.810220\pi\)
\(468\) 0 0
\(469\) 1.03770e11 0.0990360
\(470\) 0 0
\(471\) −8.04813e11 −0.753530
\(472\) 0 0
\(473\) 8.31118e11i 0.763462i
\(474\) 0 0
\(475\) 5.62063e11i 0.506598i
\(476\) 0 0
\(477\) 1.18374e12 1.04694
\(478\) 0 0
\(479\) 7.64990e11i 0.663966i 0.943285 + 0.331983i \(0.107718\pi\)
−0.943285 + 0.331983i \(0.892282\pi\)
\(480\) 0 0
\(481\) 6.07356e9 1.98679e12i 0.00517357 1.69239i
\(482\) 0 0
\(483\) 4.71724e10i 0.0394390i
\(484\) 0 0
\(485\) 1.61008e12 1.32133
\(486\) 0 0
\(487\) 1.91214e12i 1.54042i 0.637790 + 0.770211i \(0.279849\pi\)
−0.637790 + 0.770211i \(0.720151\pi\)
\(488\) 0 0
\(489\) 7.71580e11i 0.610227i
\(490\) 0 0
\(491\) −3.14035e11 −0.243843 −0.121922 0.992540i \(-0.538906\pi\)
−0.121922 + 0.992540i \(0.538906\pi\)
\(492\) 0 0
\(493\) −7.97278e11 −0.607853
\(494\) 0 0
\(495\) 5.81332e11 0.435212
\(496\) 0 0
\(497\) 4.87585e10 0.0358465
\(498\) 0 0
\(499\) 1.05884e12i 0.764502i 0.924059 + 0.382251i \(0.124851\pi\)
−0.924059 + 0.382251i \(0.875149\pi\)
\(500\) 0 0
\(501\) 1.45644e12i 1.03281i
\(502\) 0 0
\(503\) 8.28369e11 0.576990 0.288495 0.957481i \(-0.406845\pi\)
0.288495 + 0.957481i \(0.406845\pi\)
\(504\) 0 0
\(505\) 7.84418e11i 0.536706i
\(506\) 0 0
\(507\) −8.09819e11 4.95122e9i −0.544317 0.00332795i
\(508\) 0 0
\(509\) 1.72270e12i 1.13757i −0.822485 0.568787i \(-0.807413\pi\)
0.822485 0.568787i \(-0.192587\pi\)
\(510\) 0 0
\(511\) −6.16379e10 −0.0399902
\(512\) 0 0
\(513\) 1.46660e12i 0.934937i
\(514\) 0 0
\(515\) 2.69467e12i 1.68800i
\(516\) 0 0
\(517\) 1.11216e12 0.684638
\(518\) 0 0
\(519\) 1.33064e12 0.805024
\(520\) 0 0
\(521\) 4.85856e11 0.288894 0.144447 0.989513i \(-0.453860\pi\)
0.144447 + 0.989513i \(0.453860\pi\)
\(522\) 0 0
\(523\) −3.84027e11 −0.224442 −0.112221 0.993683i \(-0.535796\pi\)
−0.112221 + 0.993683i \(0.535796\pi\)
\(524\) 0 0
\(525\) 3.19045e10i 0.0183288i
\(526\) 0 0
\(527\) 1.12258e12i 0.633968i
\(528\) 0 0
\(529\) 3.04595e11 0.169111
\(530\) 0 0
\(531\) 1.10236e12i 0.601725i
\(532\) 0 0
\(533\) −6.42611e9 + 2.10212e12i −0.00344886 + 1.12820i
\(534\) 0 0
\(535\) 3.94599e11i 0.208240i
\(536\) 0 0
\(537\) 4.06025e11 0.210702
\(538\) 0 0
\(539\) 9.84229e11i 0.502281i
\(540\) 0 0
\(541\) 1.38946e12i 0.697361i 0.937242 + 0.348680i \(0.113370\pi\)
−0.937242 + 0.348680i \(0.886630\pi\)
\(542\) 0 0
\(543\) −1.73617e12 −0.857022
\(544\) 0 0
\(545\) 1.29177e12 0.627191
\(546\) 0 0
\(547\) −3.27868e12 −1.56587 −0.782936 0.622102i \(-0.786279\pi\)
−0.782936 + 0.622102i \(0.786279\pi\)
\(548\) 0 0
\(549\) −1.91184e12 −0.898206
\(550\) 0 0
\(551\) 3.27313e12i 1.51280i
\(552\) 0 0
\(553\) 3.08759e10i 0.0140396i
\(554\) 0 0
\(555\) −2.52399e12 −1.12920
\(556\) 0 0
\(557\) 2.21272e12i 0.974044i −0.873390 0.487022i \(-0.838083\pi\)
0.873390 0.487022i \(-0.161917\pi\)
\(558\) 0 0
\(559\) 3.49331e12 + 1.06789e10i 1.51316 + 0.00462567i
\(560\) 0 0
\(561\) 2.60999e11i 0.111251i
\(562\) 0 0
\(563\) −2.20696e12 −0.925777 −0.462889 0.886416i \(-0.653187\pi\)
−0.462889 + 0.886416i \(0.653187\pi\)
\(564\) 0 0
\(565\) 5.00790e11i 0.206746i
\(566\) 0 0
\(567\) 3.28037e10i 0.0133291i
\(568\) 0 0
\(569\) −3.20319e12 −1.28108 −0.640541 0.767924i \(-0.721290\pi\)
−0.640541 + 0.767924i \(0.721290\pi\)
\(570\) 0 0
\(571\) 1.45480e12 0.572717 0.286359 0.958123i \(-0.407555\pi\)
0.286359 + 0.958123i \(0.407555\pi\)
\(572\) 0 0
\(573\) 1.34720e12 0.522081
\(574\) 0 0
\(575\) 1.42420e12 0.543331
\(576\) 0 0
\(577\) 4.31781e11i 0.162171i −0.996707 0.0810853i \(-0.974161\pi\)
0.996707 0.0810853i \(-0.0258386\pi\)
\(578\) 0 0
\(579\) 1.64751e12i 0.609222i
\(580\) 0 0
\(581\) 1.02310e11 0.0372501
\(582\) 0 0
\(583\) 2.09382e12i 0.750638i
\(584\) 0 0
\(585\) 7.46946e9 2.44342e12i 0.00263687 0.862576i
\(586\) 0 0
\(587\) 2.89662e12i 1.00698i −0.864002 0.503489i \(-0.832050\pi\)
0.864002 0.503489i \(-0.167950\pi\)
\(588\) 0 0
\(589\) −4.60860e12 −1.57779
\(590\) 0 0
\(591\) 8.62414e11i 0.290785i
\(592\) 0 0
\(593\) 2.94073e12i 0.976581i −0.872681 0.488291i \(-0.837621\pi\)
0.872681 0.488291i \(-0.162379\pi\)
\(594\) 0 0
\(595\) 1.01722e11 0.0332728
\(596\) 0 0
\(597\) 2.85412e12 0.919578
\(598\) 0 0
\(599\) 5.01755e12 1.59247 0.796234 0.604989i \(-0.206822\pi\)
0.796234 + 0.604989i \(0.206822\pi\)
\(600\) 0 0
\(601\) 5.93082e12 1.85430 0.927150 0.374691i \(-0.122251\pi\)
0.927150 + 0.374691i \(0.122251\pi\)
\(602\) 0 0
\(603\) 3.37657e12i 1.04003i
\(604\) 0 0
\(605\) 3.01103e12i 0.913726i
\(606\) 0 0
\(607\) −8.39821e11 −0.251095 −0.125547 0.992088i \(-0.540069\pi\)
−0.125547 + 0.992088i \(0.540069\pi\)
\(608\) 0 0
\(609\) 1.85793e11i 0.0547334i
\(610\) 0 0
\(611\) 1.42900e10 4.67459e12i 0.00414809 1.35693i
\(612\) 0 0
\(613\) 1.33280e12i 0.381234i −0.981664 0.190617i \(-0.938951\pi\)
0.981664 0.190617i \(-0.0610489\pi\)
\(614\) 0 0
\(615\) 2.67050e12 0.752757
\(616\) 0 0
\(617\) 3.16126e12i 0.878166i 0.898447 + 0.439083i \(0.144697\pi\)
−0.898447 + 0.439083i \(0.855303\pi\)
\(618\) 0 0
\(619\) 3.30760e12i 0.905534i 0.891629 + 0.452767i \(0.149563\pi\)
−0.891629 + 0.452767i \(0.850437\pi\)
\(620\) 0 0
\(621\) −3.71617e12 −1.00273
\(622\) 0 0
\(623\) 1.80438e11 0.0479878
\(624\) 0 0
\(625\) −4.76835e12 −1.24999
\(626\) 0 0
\(627\) 1.07150e12 0.276878
\(628\) 0 0
\(629\) 2.69138e12i 0.685562i
\(630\) 0 0
\(631\) 1.98059e12i 0.497350i 0.968587 + 0.248675i \(0.0799951\pi\)
−0.968587 + 0.248675i \(0.920005\pi\)
\(632\) 0 0
\(633\) −9.12156e11 −0.225815
\(634\) 0 0
\(635\) 7.54983e12i 1.84270i
\(636\) 0 0
\(637\) −4.13686e12 1.26462e10i −0.995505 0.00304322i
\(638\) 0 0
\(639\) 1.58655e12i 0.376444i
\(640\) 0 0
\(641\) −1.34461e12 −0.314582 −0.157291 0.987552i \(-0.550276\pi\)
−0.157291 + 0.987552i \(0.550276\pi\)
\(642\) 0 0
\(643\) 3.55018e12i 0.819031i 0.912303 + 0.409516i \(0.134302\pi\)
−0.912303 + 0.409516i \(0.865698\pi\)
\(644\) 0 0
\(645\) 4.43785e12i 1.00961i
\(646\) 0 0
\(647\) 8.29159e12 1.86024 0.930119 0.367258i \(-0.119703\pi\)
0.930119 + 0.367258i \(0.119703\pi\)
\(648\) 0 0
\(649\) 1.94988e12 0.431427
\(650\) 0 0
\(651\) 2.61599e11 0.0570849
\(652\) 0 0
\(653\) 4.48358e12 0.964973 0.482487 0.875903i \(-0.339734\pi\)
0.482487 + 0.875903i \(0.339734\pi\)
\(654\) 0 0
\(655\) 2.61783e12i 0.555720i
\(656\) 0 0
\(657\) 2.00564e12i 0.419960i
\(658\) 0 0
\(659\) −3.15620e12 −0.651899 −0.325950 0.945387i \(-0.605684\pi\)
−0.325950 + 0.945387i \(0.605684\pi\)
\(660\) 0 0
\(661\) 8.75602e12i 1.78402i 0.452013 + 0.892011i \(0.350706\pi\)
−0.452013 + 0.892011i \(0.649294\pi\)
\(662\) 0 0
\(663\) −1.09702e12 3.35354e9i −0.220497 0.000674051i
\(664\) 0 0
\(665\) 4.17609e11i 0.0828080i
\(666\) 0 0
\(667\) −8.29370e12 −1.62249
\(668\) 0 0
\(669\) 1.62036e12i 0.312747i
\(670\) 0 0
\(671\) 3.38171e12i 0.643999i
\(672\) 0 0
\(673\) −5.24324e12 −0.985218 −0.492609 0.870251i \(-0.663957\pi\)
−0.492609 + 0.870251i \(0.663957\pi\)
\(674\) 0 0
\(675\) −2.51338e12 −0.466006
\(676\) 0 0
\(677\) −3.75361e12 −0.686752 −0.343376 0.939198i \(-0.611571\pi\)
−0.343376 + 0.939198i \(0.611571\pi\)
\(678\) 0 0
\(679\) 4.00088e11 0.0722340
\(680\) 0 0
\(681\) 2.65014e11i 0.0472179i
\(682\) 0 0
\(683\) 1.87161e12i 0.329095i 0.986369 + 0.164548i \(0.0526164\pi\)
−0.986369 + 0.164548i \(0.947384\pi\)
\(684\) 0 0
\(685\) 1.46313e12 0.253907
\(686\) 0 0
\(687\) 3.67633e12i 0.629665i
\(688\) 0 0
\(689\) 8.80064e12 + 2.69032e10i 1.48774 + 0.00454797i
\(690\) 0 0
\(691\) 5.87987e12i 0.981107i 0.871411 + 0.490553i \(0.163205\pi\)
−0.871411 + 0.490553i \(0.836795\pi\)
\(692\) 0 0
\(693\) 1.44455e11 0.0237920
\(694\) 0 0
\(695\) 4.08784e12i 0.664603i
\(696\) 0 0
\(697\) 2.84760e12i 0.457016i
\(698\) 0 0
\(699\) −1.29145e12 −0.204612
\(700\) 0 0
\(701\) −8.67254e12 −1.35649 −0.678243 0.734838i \(-0.737258\pi\)
−0.678243 + 0.734838i \(0.737258\pi\)
\(702\) 0 0
\(703\) 1.10491e13 1.70620
\(704\) 0 0
\(705\) −5.93852e12 −0.905372
\(706\) 0 0
\(707\) 1.94919e11i 0.0293405i
\(708\) 0 0
\(709\) 1.16380e13i 1.72969i 0.502037 + 0.864846i \(0.332584\pi\)
−0.502037 + 0.864846i \(0.667416\pi\)
\(710\) 0 0
\(711\) 1.00467e12 0.147438
\(712\) 0 0
\(713\) 1.16776e13i 1.69220i
\(714\) 0 0
\(715\) 4.32199e12 + 1.32122e10i 0.618453 + 0.00189059i
\(716\) 0 0
\(717\) 4.46771e12i 0.631318i
\(718\) 0 0
\(719\) 2.21919e12 0.309681 0.154841 0.987939i \(-0.450514\pi\)
0.154841 + 0.987939i \(0.450514\pi\)
\(720\) 0 0
\(721\) 6.69595e11i 0.0922791i
\(722\) 0 0
\(723\) 1.57120e12i 0.213850i
\(724\) 0 0
\(725\) −5.60934e12 −0.754034
\(726\) 0 0
\(727\) 1.03358e13 1.37227 0.686134 0.727475i \(-0.259306\pi\)
0.686134 + 0.727475i \(0.259306\pi\)
\(728\) 0 0
\(729\) 2.78197e12 0.364819
\(730\) 0 0
\(731\) 4.73215e12 0.612958
\(732\) 0 0
\(733\) 6.58421e12i 0.842433i 0.906960 + 0.421217i \(0.138397\pi\)
−0.906960 + 0.421217i \(0.861603\pi\)
\(734\) 0 0
\(735\) 5.25540e12i 0.664222i
\(736\) 0 0
\(737\) 5.97255e12 0.745686
\(738\) 0 0
\(739\) 1.06694e13i 1.31595i 0.753039 + 0.657976i \(0.228587\pi\)
−0.753039 + 0.657976i \(0.771413\pi\)
\(740\) 0 0
\(741\) 1.37676e10 4.50368e12i 0.00167755 0.548763i
\(742\) 0 0
\(743\) 9.24168e12i 1.11250i −0.831014 0.556251i \(-0.812239\pi\)
0.831014 0.556251i \(-0.187761\pi\)
\(744\) 0 0
\(745\) −5.99496e12 −0.712990
\(746\) 0 0
\(747\) 3.32908e12i 0.391184i
\(748\) 0 0
\(749\) 9.80535e10i 0.0113840i
\(750\) 0 0
\(751\) 1.15521e11 0.0132520 0.00662602 0.999978i \(-0.497891\pi\)
0.00662602 + 0.999978i \(0.497891\pi\)
\(752\) 0 0
\(753\) 1.93333e12 0.219143
\(754\) 0 0
\(755\) −8.94559e12 −1.00195
\(756\) 0 0
\(757\) 2.53437e11 0.0280503 0.0140252 0.999902i \(-0.495536\pi\)
0.0140252 + 0.999902i \(0.495536\pi\)
\(758\) 0 0
\(759\) 2.71505e12i 0.296954i
\(760\) 0 0
\(761\) 1.04156e13i 1.12578i −0.826533 0.562889i \(-0.809690\pi\)
0.826533 0.562889i \(-0.190310\pi\)
\(762\) 0 0
\(763\) 3.20989e11 0.0342871
\(764\) 0 0
\(765\) 3.30994e12i 0.349417i
\(766\) 0 0
\(767\) 2.50538e10 8.19564e12i 0.00261393 0.855074i
\(768\) 0 0
\(769\) 9.65857e10i 0.00995966i −0.999988 0.00497983i \(-0.998415\pi\)
0.999988 0.00497983i \(-0.00158514\pi\)
\(770\) 0 0
\(771\) −1.04350e12 −0.106352
\(772\) 0 0
\(773\) 1.54930e13i 1.56073i 0.625327 + 0.780363i \(0.284966\pi\)
−0.625327 + 0.780363i \(0.715034\pi\)
\(774\) 0 0
\(775\) 7.89801e12i 0.786430i
\(776\) 0 0
\(777\) −6.27184e11 −0.0617306
\(778\) 0 0
\(779\) −1.16905e13 −1.13740
\(780\) 0 0
\(781\) 2.80633e12 0.269904
\(782\) 0 0
\(783\) 1.46365e13 1.39158
\(784\) 0 0
\(785\) 1.80535e13i 1.69687i
\(786\) 0 0
\(787\) 1.63867e13i 1.52267i 0.648359 + 0.761335i \(0.275456\pi\)
−0.648359 + 0.761335i \(0.724544\pi\)
\(788\) 0 0
\(789\) −7.84645e12 −0.720820
\(790\) 0 0
\(791\) 1.24441e11i 0.0113023i
\(792\) 0 0
\(793\) −1.42138e13 4.34512e10i −1.27638 0.00390186i
\(794\) 0 0
\(795\) 1.11802e13i 0.992652i
\(796\) 0 0
\(797\) 8.42824e12 0.739903 0.369951 0.929051i \(-0.379374\pi\)
0.369951 + 0.929051i \(0.379374\pi\)
\(798\) 0 0
\(799\) 6.33234e12i 0.549672i
\(800\) 0 0
\(801\) 5.87126e12i 0.503947i
\(802\) 0 0
\(803\) −3.54762e12 −0.301104
\(804\) 0 0
\(805\) 1.05817e12 0.0888123
\(806\) 0 0
\(807\) −6.36311e11 −0.0528127
\(808\) 0 0
\(809\) −1.18753e13 −0.974712 −0.487356 0.873203i \(-0.662039\pi\)
−0.487356 + 0.873203i \(0.662039\pi\)
\(810\) 0 0
\(811\) 2.84361e12i 0.230822i −0.993318 0.115411i \(-0.963182\pi\)
0.993318 0.115411i \(-0.0368185\pi\)
\(812\) 0 0
\(813\) 1.14498e12i 0.0919162i
\(814\) 0 0
\(815\) −1.73080e13 −1.37416
\(816\) 0 0
\(817\) 1.94273e13i 1.52550i
\(818\) 0 0
\(819\) 1.85608e9 6.07164e11i 0.000144151 0.0471551i
\(820\) 0 0
\(821\) 1.05095e13i 0.807303i −0.914913 0.403652i \(-0.867741\pi\)
0.914913 0.403652i \(-0.132259\pi\)
\(822\) 0 0
\(823\) 1.98701e13 1.50973 0.754867 0.655878i \(-0.227702\pi\)
0.754867 + 0.655878i \(0.227702\pi\)
\(824\) 0 0
\(825\) 1.83629e12i 0.138006i
\(826\) 0 0
\(827\) 1.31516e13i 0.977699i 0.872368 + 0.488850i \(0.162583\pi\)
−0.872368 + 0.488850i \(0.837417\pi\)
\(828\) 0 0
\(829\) 1.47154e13 1.08213 0.541063 0.840982i \(-0.318022\pi\)
0.541063 + 0.840982i \(0.318022\pi\)
\(830\) 0 0
\(831\) 9.17137e12 0.667160
\(832\) 0 0
\(833\) −5.60392e12 −0.403264
\(834\) 0 0
\(835\) −3.26707e13 −2.32579
\(836\) 0 0
\(837\) 2.06083e13i 1.45137i
\(838\) 0 0
\(839\) 1.49293e13i 1.04019i 0.854110 + 0.520093i \(0.174103\pi\)
−0.854110 + 0.520093i \(0.825897\pi\)
\(840\) 0 0
\(841\) 1.81584e13 1.25169
\(842\) 0 0
\(843\) 6.64870e12i 0.453432i
\(844\) 0 0
\(845\) 1.11065e11 1.81658e13i 0.00749417 1.22574i
\(846\) 0 0
\(847\) 7.48207e11i 0.0499513i
\(848\) 0 0
\(849\) 1.25744e13 0.830620
\(850\) 0 0
\(851\) 2.79971e13i 1.82991i
\(852\) 0 0
\(853\) 2.52397e13i 1.63235i −0.577803 0.816176i \(-0.696090\pi\)
0.577803 0.816176i \(-0.303910\pi\)
\(854\) 0 0
\(855\) 1.35886e13 0.869614
\(856\) 0 0
\(857\) 1.12215e13 0.710617 0.355308 0.934749i \(-0.384376\pi\)
0.355308 + 0.934749i \(0.384376\pi\)
\(858\) 0 0
\(859\) 9.07217e12 0.568515 0.284258 0.958748i \(-0.408253\pi\)
0.284258 + 0.958748i \(0.408253\pi\)
\(860\) 0 0
\(861\) 6.63590e11 0.0411515
\(862\) 0 0
\(863\) 1.49491e13i 0.917415i 0.888587 + 0.458707i \(0.151687\pi\)
−0.888587 + 0.458707i \(0.848313\pi\)
\(864\) 0 0
\(865\) 2.98489e13i 1.81283i
\(866\) 0 0
\(867\) 7.57015e12 0.455007
\(868\) 0 0
\(869\) 1.77709e12i 0.105711i
\(870\) 0 0
\(871\) 7.67406e10 2.51035e13i 0.00451797 1.47793i
\(872\) 0 0
\(873\) 1.30185e13i 0.758570i
\(874\) 0 0
\(875\) −7.08556e11 −0.0408637
\(876\) 0 0
\(877\) 2.88188e13i 1.64505i 0.568732 + 0.822523i \(0.307434\pi\)
−0.568732 + 0.822523i \(0.692566\pi\)
\(878\) 0 0
\(879\) 1.36130e13i 0.769139i
\(880\) 0 0
\(881\) 5.34093e12 0.298693 0.149347 0.988785i \(-0.452283\pi\)
0.149347 + 0.988785i \(0.452283\pi\)
\(882\) 0 0
\(883\) −3.05434e13 −1.69080 −0.845402 0.534130i \(-0.820639\pi\)
−0.845402 + 0.534130i \(0.820639\pi\)
\(884\) 0 0
\(885\) −1.04116e13 −0.570523
\(886\) 0 0
\(887\) −2.14512e13 −1.16358 −0.581788 0.813340i \(-0.697647\pi\)
−0.581788 + 0.813340i \(0.697647\pi\)
\(888\) 0 0
\(889\) 1.87605e12i 0.100736i
\(890\) 0 0
\(891\) 1.88804e12i 0.100360i
\(892\) 0 0
\(893\) 2.59967e13 1.36800
\(894\) 0 0
\(895\) 9.10791e12i 0.474477i
\(896\) 0 0
\(897\) −1.14117e13 3.48853e10i −0.588554 0.00179919i
\(898\) 0 0
\(899\) 4.59935e13i 2.34843i
\(900\) 0 0
\(901\) 1.19216e13 0.602662
\(902\) 0 0
\(903\) 1.10276e12i 0.0551930i
\(904\) 0 0
\(905\) 3.89455e13i 1.92992i
\(906\) 0 0
\(907\) 8.20371e12 0.402511 0.201255 0.979539i \(-0.435498\pi\)
0.201255 + 0.979539i \(0.435498\pi\)
\(908\) 0 0
\(909\) 6.34248e12 0.308121
\(910\) 0 0
\(911\) −3.25403e13 −1.56527 −0.782635 0.622481i \(-0.786125\pi\)
−0.782635 + 0.622481i \(0.786125\pi\)
\(912\) 0 0
\(913\) 5.88856e12 0.280473
\(914\) 0 0
\(915\) 1.80570e13i 0.851631i
\(916\) 0 0
\(917\) 6.50502e11i 0.0303799i
\(918\) 0 0
\(919\) −4.85596e12 −0.224572 −0.112286 0.993676i \(-0.535817\pi\)
−0.112286 + 0.993676i \(0.535817\pi\)
\(920\) 0 0
\(921\) 1.65231e13i 0.756697i
\(922\) 0 0
\(923\) 3.60583e10 1.17954e13i 0.00163530 0.534942i
\(924\) 0 0
\(925\) 1.89355e13i 0.850430i
\(926\) 0 0
\(927\) −2.17880e13 −0.969076
\(928\) 0 0
\(929\) 3.99103e12i 0.175798i −0.996129 0.0878991i \(-0.971985\pi\)
0.996129 0.0878991i \(-0.0280153\pi\)
\(930\) 0 0
\(931\) 2.30063e13i 1.00363i
\(932\) 0 0
\(933\) −3.29687e12 −0.142441
\(934\) 0 0
\(935\) 5.85471e12 0.250526
\(936\) 0 0
\(937\) 1.06502e13 0.451366 0.225683 0.974201i \(-0.427539\pi\)
0.225683 + 0.974201i \(0.427539\pi\)
\(938\) 0 0
\(939\) −7.84157e12 −0.329161
\(940\) 0 0
\(941\) 3.63674e13i 1.51202i 0.654558 + 0.756012i \(0.272855\pi\)
−0.654558 + 0.756012i \(0.727145\pi\)
\(942\) 0 0
\(943\) 2.96222e13i 1.21988i
\(944\) 0 0
\(945\) −1.86743e12 −0.0761729
\(946\) 0 0
\(947\) 4.33387e12i 0.175106i −0.996160 0.0875530i \(-0.972095\pi\)
0.996160 0.0875530i \(-0.0279047\pi\)
\(948\) 0 0
\(949\) −4.55829e10 + 1.49112e13i −0.00182433 + 0.596780i
\(950\) 0 0
\(951\) 7.41691e12i 0.294043i
\(952\) 0 0
\(953\) 1.22670e13 0.481748 0.240874 0.970556i \(-0.422566\pi\)
0.240874 + 0.970556i \(0.422566\pi\)
\(954\) 0 0
\(955\) 3.02204e13i 1.17567i
\(956\) 0 0
\(957\) 1.06935e13i 0.412112i
\(958\) 0 0
\(959\) 3.63571e11 0.0138805
\(960\) 0 0
\(961\) −3.83196e13 −1.44933
\(962\) 0 0
\(963\) −3.19056e12 −0.119550
\(964\) 0 0
\(965\) 3.69569e13 1.37190
\(966\) 0 0
\(967\) 3.83239e13i 1.40945i −0.709479 0.704727i \(-0.751070\pi\)
0.709479 0.704727i \(-0.248930\pi\)
\(968\) 0 0
\(969\) 6.10082e12i 0.222296i
\(970\) 0 0
\(971\) −1.67255e13 −0.603799 −0.301900 0.953340i \(-0.597621\pi\)
−0.301900 + 0.953340i \(0.597621\pi\)
\(972\) 0 0
\(973\) 1.01578e12i 0.0363323i
\(974\) 0 0
\(975\) −7.71819e12 2.35942e10i −0.273524 0.000836152i
\(976\) 0 0
\(977\) 2.01291e13i 0.706805i −0.935471 0.353402i \(-0.885025\pi\)
0.935471 0.353402i \(-0.114975\pi\)
\(978\) 0 0
\(979\) 1.03852e13 0.361322
\(980\) 0 0
\(981\) 1.04447e13i 0.360068i
\(982\) 0 0
\(983\) 1.62112e13i 0.553765i 0.960904 + 0.276883i \(0.0893013\pi\)
−0.960904 + 0.276883i \(0.910699\pi\)
\(984\) 0 0
\(985\) 1.93456e13 0.654816
\(986\) 0 0
\(987\) −1.47566e12 −0.0494946
\(988\) 0 0
\(989\) 4.92263e13 1.63612
\(990\) 0 0
\(991\) −2.94051e12 −0.0968483 −0.0484241 0.998827i \(-0.515420\pi\)
−0.0484241 + 0.998827i \(0.515420\pi\)
\(992\) 0 0
\(993\) 9.81601e12i 0.320379i
\(994\) 0 0
\(995\) 6.40235e13i 2.07079i
\(996\) 0 0
\(997\) −5.67456e12 −0.181888 −0.0909439 0.995856i \(-0.528988\pi\)
−0.0909439 + 0.995856i \(0.528988\pi\)
\(998\) 0 0
\(999\) 4.94085e13i 1.56949i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 104.10.f.a.25.11 32
4.3 odd 2 208.10.f.d.129.22 32
13.12 even 2 inner 104.10.f.a.25.12 yes 32
52.51 odd 2 208.10.f.d.129.21 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.f.a.25.11 32 1.1 even 1 trivial
104.10.f.a.25.12 yes 32 13.12 even 2 inner
208.10.f.d.129.21 32 52.51 odd 2
208.10.f.d.129.22 32 4.3 odd 2