Properties

Label 104.10.a.d.1.5
Level $104$
Weight $10$
Character 104.1
Self dual yes
Analytic conductor $53.564$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [104,10,Mod(1,104)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(104, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("104.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 104.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,141] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.5637269610\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3 x^{7} - 135356 x^{6} - 24398 x^{5} + 5213582205 x^{4} + 598076469 x^{3} + \cdots + 15\!\cdots\!64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{25}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-5.30867\) of defining polynomial
Character \(\chi\) \(=\) 104.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+23.3087 q^{3} -760.329 q^{5} -8557.89 q^{7} -19139.7 q^{9} -72978.2 q^{11} +28561.0 q^{13} -17722.3 q^{15} +266694. q^{17} -161914. q^{19} -199473. q^{21} +1.43017e6 q^{23} -1.37503e6 q^{25} -904906. q^{27} +5.84621e6 q^{29} -962113. q^{31} -1.70103e6 q^{33} +6.50681e6 q^{35} -3.09958e6 q^{37} +665719. q^{39} -1.35817e7 q^{41} +1.14462e7 q^{43} +1.45525e7 q^{45} -2.29931e6 q^{47} +3.28838e7 q^{49} +6.21629e6 q^{51} -3.07448e7 q^{53} +5.54874e7 q^{55} -3.77399e6 q^{57} +3.05327e7 q^{59} +6.53064e7 q^{61} +1.63795e8 q^{63} -2.17158e7 q^{65} -1.81368e8 q^{67} +3.33354e7 q^{69} -1.23157e8 q^{71} +4.31054e8 q^{73} -3.20500e7 q^{75} +6.24539e8 q^{77} +4.22314e8 q^{79} +3.55635e8 q^{81} +1.40247e8 q^{83} -2.02775e8 q^{85} +1.36267e8 q^{87} -5.82829e7 q^{89} -2.44422e8 q^{91} -2.24256e7 q^{93} +1.23108e8 q^{95} +5.66836e8 q^{97} +1.39678e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 141 q^{3} + 2051 q^{5} - 2417 q^{7} + 115741 q^{9} - 53118 q^{11} + 228488 q^{13} - 464555 q^{15} + 433095 q^{17} - 434954 q^{19} + 906875 q^{21} - 1124296 q^{23} + 5966065 q^{25} + 7820643 q^{27}+ \cdots - 641626736 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 23.3087 0.166139 0.0830696 0.996544i \(-0.473528\pi\)
0.0830696 + 0.996544i \(0.473528\pi\)
\(4\) 0 0
\(5\) −760.329 −0.544047 −0.272024 0.962291i \(-0.587693\pi\)
−0.272024 + 0.962291i \(0.587693\pi\)
\(6\) 0 0
\(7\) −8557.89 −1.34718 −0.673590 0.739106i \(-0.735248\pi\)
−0.673590 + 0.739106i \(0.735248\pi\)
\(8\) 0 0
\(9\) −19139.7 −0.972398
\(10\) 0 0
\(11\) −72978.2 −1.50289 −0.751443 0.659798i \(-0.770642\pi\)
−0.751443 + 0.659798i \(0.770642\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) 0 0
\(15\) −17722.3 −0.0903875
\(16\) 0 0
\(17\) 266694. 0.774450 0.387225 0.921985i \(-0.373434\pi\)
0.387225 + 0.921985i \(0.373434\pi\)
\(18\) 0 0
\(19\) −161914. −0.285031 −0.142516 0.989793i \(-0.545519\pi\)
−0.142516 + 0.989793i \(0.545519\pi\)
\(20\) 0 0
\(21\) −199473. −0.223819
\(22\) 0 0
\(23\) 1.43017e6 1.06565 0.532823 0.846227i \(-0.321131\pi\)
0.532823 + 0.846227i \(0.321131\pi\)
\(24\) 0 0
\(25\) −1.37503e6 −0.704013
\(26\) 0 0
\(27\) −904906. −0.327692
\(28\) 0 0
\(29\) 5.84621e6 1.53491 0.767456 0.641102i \(-0.221522\pi\)
0.767456 + 0.641102i \(0.221522\pi\)
\(30\) 0 0
\(31\) −962113. −0.187111 −0.0935553 0.995614i \(-0.529823\pi\)
−0.0935553 + 0.995614i \(0.529823\pi\)
\(32\) 0 0
\(33\) −1.70103e6 −0.249688
\(34\) 0 0
\(35\) 6.50681e6 0.732929
\(36\) 0 0
\(37\) −3.09958e6 −0.271892 −0.135946 0.990716i \(-0.543407\pi\)
−0.135946 + 0.990716i \(0.543407\pi\)
\(38\) 0 0
\(39\) 665719. 0.0460787
\(40\) 0 0
\(41\) −1.35817e7 −0.750634 −0.375317 0.926896i \(-0.622466\pi\)
−0.375317 + 0.926896i \(0.622466\pi\)
\(42\) 0 0
\(43\) 1.14462e7 0.510568 0.255284 0.966866i \(-0.417831\pi\)
0.255284 + 0.966866i \(0.417831\pi\)
\(44\) 0 0
\(45\) 1.45525e7 0.529030
\(46\) 0 0
\(47\) −2.29931e6 −0.0687316 −0.0343658 0.999409i \(-0.510941\pi\)
−0.0343658 + 0.999409i \(0.510941\pi\)
\(48\) 0 0
\(49\) 3.28838e7 0.814892
\(50\) 0 0
\(51\) 6.21629e6 0.128666
\(52\) 0 0
\(53\) −3.07448e7 −0.535218 −0.267609 0.963528i \(-0.586234\pi\)
−0.267609 + 0.963528i \(0.586234\pi\)
\(54\) 0 0
\(55\) 5.54874e7 0.817641
\(56\) 0 0
\(57\) −3.77399e6 −0.0473548
\(58\) 0 0
\(59\) 3.05327e7 0.328043 0.164022 0.986457i \(-0.447553\pi\)
0.164022 + 0.986457i \(0.447553\pi\)
\(60\) 0 0
\(61\) 6.53064e7 0.603909 0.301955 0.953322i \(-0.402361\pi\)
0.301955 + 0.953322i \(0.402361\pi\)
\(62\) 0 0
\(63\) 1.63795e8 1.30999
\(64\) 0 0
\(65\) −2.17158e7 −0.150891
\(66\) 0 0
\(67\) −1.81368e8 −1.09957 −0.549787 0.835305i \(-0.685291\pi\)
−0.549787 + 0.835305i \(0.685291\pi\)
\(68\) 0 0
\(69\) 3.33354e7 0.177045
\(70\) 0 0
\(71\) −1.23157e8 −0.575172 −0.287586 0.957755i \(-0.592853\pi\)
−0.287586 + 0.957755i \(0.592853\pi\)
\(72\) 0 0
\(73\) 4.31054e8 1.77655 0.888277 0.459308i \(-0.151903\pi\)
0.888277 + 0.459308i \(0.151903\pi\)
\(74\) 0 0
\(75\) −3.20500e7 −0.116964
\(76\) 0 0
\(77\) 6.24539e8 2.02466
\(78\) 0 0
\(79\) 4.22314e8 1.21987 0.609935 0.792451i \(-0.291195\pi\)
0.609935 + 0.792451i \(0.291195\pi\)
\(80\) 0 0
\(81\) 3.55635e8 0.917955
\(82\) 0 0
\(83\) 1.40247e8 0.324370 0.162185 0.986760i \(-0.448146\pi\)
0.162185 + 0.986760i \(0.448146\pi\)
\(84\) 0 0
\(85\) −2.02775e8 −0.421337
\(86\) 0 0
\(87\) 1.36267e8 0.255009
\(88\) 0 0
\(89\) −5.82829e7 −0.0984659 −0.0492330 0.998787i \(-0.515678\pi\)
−0.0492330 + 0.998787i \(0.515678\pi\)
\(90\) 0 0
\(91\) −2.44422e8 −0.373640
\(92\) 0 0
\(93\) −2.24256e7 −0.0310864
\(94\) 0 0
\(95\) 1.23108e8 0.155070
\(96\) 0 0
\(97\) 5.66836e8 0.650107 0.325054 0.945696i \(-0.394618\pi\)
0.325054 + 0.945696i \(0.394618\pi\)
\(98\) 0 0
\(99\) 1.39678e9 1.46140
\(100\) 0 0
\(101\) −9.25870e8 −0.885327 −0.442663 0.896688i \(-0.645966\pi\)
−0.442663 + 0.896688i \(0.645966\pi\)
\(102\) 0 0
\(103\) −5.98439e8 −0.523905 −0.261952 0.965081i \(-0.584366\pi\)
−0.261952 + 0.965081i \(0.584366\pi\)
\(104\) 0 0
\(105\) 1.51665e8 0.121768
\(106\) 0 0
\(107\) 1.70825e9 1.25987 0.629933 0.776649i \(-0.283082\pi\)
0.629933 + 0.776649i \(0.283082\pi\)
\(108\) 0 0
\(109\) −1.25896e9 −0.854264 −0.427132 0.904189i \(-0.640476\pi\)
−0.427132 + 0.904189i \(0.640476\pi\)
\(110\) 0 0
\(111\) −7.22472e7 −0.0451718
\(112\) 0 0
\(113\) 3.28543e9 1.89557 0.947783 0.318916i \(-0.103319\pi\)
0.947783 + 0.318916i \(0.103319\pi\)
\(114\) 0 0
\(115\) −1.08740e9 −0.579761
\(116\) 0 0
\(117\) −5.46649e8 −0.269695
\(118\) 0 0
\(119\) −2.28234e9 −1.04332
\(120\) 0 0
\(121\) 2.96787e9 1.25867
\(122\) 0 0
\(123\) −3.16573e8 −0.124710
\(124\) 0 0
\(125\) 2.53049e9 0.927063
\(126\) 0 0
\(127\) −4.05548e9 −1.38333 −0.691665 0.722218i \(-0.743123\pi\)
−0.691665 + 0.722218i \(0.743123\pi\)
\(128\) 0 0
\(129\) 2.66796e8 0.0848252
\(130\) 0 0
\(131\) −3.77943e9 −1.12126 −0.560629 0.828067i \(-0.689441\pi\)
−0.560629 + 0.828067i \(0.689441\pi\)
\(132\) 0 0
\(133\) 1.38564e9 0.383988
\(134\) 0 0
\(135\) 6.88026e8 0.178280
\(136\) 0 0
\(137\) 4.81328e9 1.16734 0.583672 0.811990i \(-0.301616\pi\)
0.583672 + 0.811990i \(0.301616\pi\)
\(138\) 0 0
\(139\) −4.46497e9 −1.01450 −0.507250 0.861799i \(-0.669338\pi\)
−0.507250 + 0.861799i \(0.669338\pi\)
\(140\) 0 0
\(141\) −5.35938e7 −0.0114190
\(142\) 0 0
\(143\) −2.08433e9 −0.416826
\(144\) 0 0
\(145\) −4.44504e9 −0.835064
\(146\) 0 0
\(147\) 7.66478e8 0.135385
\(148\) 0 0
\(149\) −6.05916e9 −1.00710 −0.503552 0.863965i \(-0.667974\pi\)
−0.503552 + 0.863965i \(0.667974\pi\)
\(150\) 0 0
\(151\) −1.18321e10 −1.85211 −0.926054 0.377391i \(-0.876821\pi\)
−0.926054 + 0.377391i \(0.876821\pi\)
\(152\) 0 0
\(153\) −5.10445e9 −0.753074
\(154\) 0 0
\(155\) 7.31522e8 0.101797
\(156\) 0 0
\(157\) 5.90973e9 0.776281 0.388140 0.921600i \(-0.373118\pi\)
0.388140 + 0.921600i \(0.373118\pi\)
\(158\) 0 0
\(159\) −7.16621e8 −0.0889206
\(160\) 0 0
\(161\) −1.22392e10 −1.43562
\(162\) 0 0
\(163\) 5.52891e9 0.613473 0.306736 0.951795i \(-0.400763\pi\)
0.306736 + 0.951795i \(0.400763\pi\)
\(164\) 0 0
\(165\) 1.29334e9 0.135842
\(166\) 0 0
\(167\) −9.99601e9 −0.994494 −0.497247 0.867609i \(-0.665656\pi\)
−0.497247 + 0.867609i \(0.665656\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 3.09898e9 0.277164
\(172\) 0 0
\(173\) 9.33064e9 0.791961 0.395980 0.918259i \(-0.370405\pi\)
0.395980 + 0.918259i \(0.370405\pi\)
\(174\) 0 0
\(175\) 1.17673e10 0.948431
\(176\) 0 0
\(177\) 7.11676e8 0.0545008
\(178\) 0 0
\(179\) −1.22801e10 −0.894051 −0.447026 0.894521i \(-0.647517\pi\)
−0.447026 + 0.894521i \(0.647517\pi\)
\(180\) 0 0
\(181\) 1.05153e10 0.728227 0.364114 0.931355i \(-0.381372\pi\)
0.364114 + 0.931355i \(0.381372\pi\)
\(182\) 0 0
\(183\) 1.52221e9 0.100333
\(184\) 0 0
\(185\) 2.35670e9 0.147922
\(186\) 0 0
\(187\) −1.94629e10 −1.16391
\(188\) 0 0
\(189\) 7.74408e9 0.441460
\(190\) 0 0
\(191\) −3.37965e10 −1.83748 −0.918739 0.394866i \(-0.870791\pi\)
−0.918739 + 0.394866i \(0.870791\pi\)
\(192\) 0 0
\(193\) −1.31326e10 −0.681306 −0.340653 0.940189i \(-0.610648\pi\)
−0.340653 + 0.940189i \(0.610648\pi\)
\(194\) 0 0
\(195\) −5.06165e8 −0.0250690
\(196\) 0 0
\(197\) 5.65962e9 0.267725 0.133863 0.991000i \(-0.457262\pi\)
0.133863 + 0.991000i \(0.457262\pi\)
\(198\) 0 0
\(199\) 1.44927e10 0.655102 0.327551 0.944833i \(-0.393777\pi\)
0.327551 + 0.944833i \(0.393777\pi\)
\(200\) 0 0
\(201\) −4.22745e9 −0.182682
\(202\) 0 0
\(203\) −5.00312e10 −2.06780
\(204\) 0 0
\(205\) 1.03266e10 0.408380
\(206\) 0 0
\(207\) −2.73731e10 −1.03623
\(208\) 0 0
\(209\) 1.18162e10 0.428369
\(210\) 0 0
\(211\) 2.59902e10 0.902689 0.451345 0.892350i \(-0.350945\pi\)
0.451345 + 0.892350i \(0.350945\pi\)
\(212\) 0 0
\(213\) −2.87063e9 −0.0955586
\(214\) 0 0
\(215\) −8.70287e9 −0.277773
\(216\) 0 0
\(217\) 8.23365e9 0.252071
\(218\) 0 0
\(219\) 1.00473e10 0.295155
\(220\) 0 0
\(221\) 7.61705e9 0.214794
\(222\) 0 0
\(223\) 6.57125e10 1.77941 0.889706 0.456535i \(-0.150910\pi\)
0.889706 + 0.456535i \(0.150910\pi\)
\(224\) 0 0
\(225\) 2.63176e10 0.684581
\(226\) 0 0
\(227\) 4.49432e10 1.12343 0.561716 0.827330i \(-0.310141\pi\)
0.561716 + 0.827330i \(0.310141\pi\)
\(228\) 0 0
\(229\) 3.42551e10 0.823124 0.411562 0.911382i \(-0.364983\pi\)
0.411562 + 0.911382i \(0.364983\pi\)
\(230\) 0 0
\(231\) 1.45572e10 0.336375
\(232\) 0 0
\(233\) 5.33250e10 1.18530 0.592651 0.805459i \(-0.298081\pi\)
0.592651 + 0.805459i \(0.298081\pi\)
\(234\) 0 0
\(235\) 1.74823e9 0.0373932
\(236\) 0 0
\(237\) 9.84358e9 0.202668
\(238\) 0 0
\(239\) 3.81658e10 0.756631 0.378315 0.925677i \(-0.376503\pi\)
0.378315 + 0.925677i \(0.376503\pi\)
\(240\) 0 0
\(241\) −1.28089e9 −0.0244587 −0.0122294 0.999925i \(-0.503893\pi\)
−0.0122294 + 0.999925i \(0.503893\pi\)
\(242\) 0 0
\(243\) 2.61006e10 0.480201
\(244\) 0 0
\(245\) −2.50025e10 −0.443339
\(246\) 0 0
\(247\) −4.62441e9 −0.0790534
\(248\) 0 0
\(249\) 3.26896e9 0.0538906
\(250\) 0 0
\(251\) −8.97468e10 −1.42721 −0.713604 0.700549i \(-0.752938\pi\)
−0.713604 + 0.700549i \(0.752938\pi\)
\(252\) 0 0
\(253\) −1.04371e11 −1.60154
\(254\) 0 0
\(255\) −4.72642e9 −0.0700006
\(256\) 0 0
\(257\) 1.03761e11 1.48366 0.741829 0.670589i \(-0.233959\pi\)
0.741829 + 0.670589i \(0.233959\pi\)
\(258\) 0 0
\(259\) 2.65259e10 0.366287
\(260\) 0 0
\(261\) −1.11895e11 −1.49254
\(262\) 0 0
\(263\) 9.31045e9 0.119997 0.0599984 0.998198i \(-0.480890\pi\)
0.0599984 + 0.998198i \(0.480890\pi\)
\(264\) 0 0
\(265\) 2.33762e10 0.291184
\(266\) 0 0
\(267\) −1.35850e9 −0.0163590
\(268\) 0 0
\(269\) 1.67871e11 1.95475 0.977374 0.211520i \(-0.0678413\pi\)
0.977374 + 0.211520i \(0.0678413\pi\)
\(270\) 0 0
\(271\) 4.68715e10 0.527894 0.263947 0.964537i \(-0.414976\pi\)
0.263947 + 0.964537i \(0.414976\pi\)
\(272\) 0 0
\(273\) −5.69715e9 −0.0620763
\(274\) 0 0
\(275\) 1.00347e11 1.05805
\(276\) 0 0
\(277\) −9.62593e9 −0.0982389 −0.0491195 0.998793i \(-0.515642\pi\)
−0.0491195 + 0.998793i \(0.515642\pi\)
\(278\) 0 0
\(279\) 1.84146e10 0.181946
\(280\) 0 0
\(281\) −1.85107e10 −0.177111 −0.0885553 0.996071i \(-0.528225\pi\)
−0.0885553 + 0.996071i \(0.528225\pi\)
\(282\) 0 0
\(283\) −2.04503e10 −0.189523 −0.0947613 0.995500i \(-0.530209\pi\)
−0.0947613 + 0.995500i \(0.530209\pi\)
\(284\) 0 0
\(285\) 2.86947e9 0.0257632
\(286\) 0 0
\(287\) 1.16231e11 1.01124
\(288\) 0 0
\(289\) −4.74621e10 −0.400227
\(290\) 0 0
\(291\) 1.32122e10 0.108008
\(292\) 0 0
\(293\) −2.17741e11 −1.72598 −0.862990 0.505220i \(-0.831411\pi\)
−0.862990 + 0.505220i \(0.831411\pi\)
\(294\) 0 0
\(295\) −2.32149e10 −0.178471
\(296\) 0 0
\(297\) 6.60384e10 0.492484
\(298\) 0 0
\(299\) 4.08471e10 0.295557
\(300\) 0 0
\(301\) −9.79553e10 −0.687826
\(302\) 0 0
\(303\) −2.15808e10 −0.147087
\(304\) 0 0
\(305\) −4.96544e10 −0.328555
\(306\) 0 0
\(307\) 2.42492e11 1.55802 0.779012 0.627009i \(-0.215721\pi\)
0.779012 + 0.627009i \(0.215721\pi\)
\(308\) 0 0
\(309\) −1.39488e10 −0.0870410
\(310\) 0 0
\(311\) 3.92653e10 0.238005 0.119003 0.992894i \(-0.462030\pi\)
0.119003 + 0.992894i \(0.462030\pi\)
\(312\) 0 0
\(313\) −2.32562e11 −1.36958 −0.684792 0.728738i \(-0.740107\pi\)
−0.684792 + 0.728738i \(0.740107\pi\)
\(314\) 0 0
\(315\) −1.24538e11 −0.712698
\(316\) 0 0
\(317\) −9.44806e10 −0.525504 −0.262752 0.964863i \(-0.584630\pi\)
−0.262752 + 0.964863i \(0.584630\pi\)
\(318\) 0 0
\(319\) −4.26646e11 −2.30680
\(320\) 0 0
\(321\) 3.98171e10 0.209313
\(322\) 0 0
\(323\) −4.31814e10 −0.220742
\(324\) 0 0
\(325\) −3.92721e10 −0.195258
\(326\) 0 0
\(327\) −2.93446e10 −0.141927
\(328\) 0 0
\(329\) 1.96772e10 0.0925938
\(330\) 0 0
\(331\) 3.11905e11 1.42822 0.714111 0.700032i \(-0.246831\pi\)
0.714111 + 0.700032i \(0.246831\pi\)
\(332\) 0 0
\(333\) 5.93251e10 0.264387
\(334\) 0 0
\(335\) 1.37899e11 0.598220
\(336\) 0 0
\(337\) −3.56759e11 −1.50675 −0.753375 0.657592i \(-0.771575\pi\)
−0.753375 + 0.657592i \(0.771575\pi\)
\(338\) 0 0
\(339\) 7.65790e10 0.314928
\(340\) 0 0
\(341\) 7.02133e10 0.281206
\(342\) 0 0
\(343\) 6.39256e10 0.249374
\(344\) 0 0
\(345\) −2.53459e10 −0.0963211
\(346\) 0 0
\(347\) −2.88336e11 −1.06762 −0.533809 0.845605i \(-0.679240\pi\)
−0.533809 + 0.845605i \(0.679240\pi\)
\(348\) 0 0
\(349\) 2.28837e11 0.825680 0.412840 0.910803i \(-0.364537\pi\)
0.412840 + 0.910803i \(0.364537\pi\)
\(350\) 0 0
\(351\) −2.58450e10 −0.0908855
\(352\) 0 0
\(353\) −4.56093e11 −1.56339 −0.781695 0.623661i \(-0.785644\pi\)
−0.781695 + 0.623661i \(0.785644\pi\)
\(354\) 0 0
\(355\) 9.36401e10 0.312921
\(356\) 0 0
\(357\) −5.31983e10 −0.173337
\(358\) 0 0
\(359\) −1.33745e11 −0.424966 −0.212483 0.977165i \(-0.568155\pi\)
−0.212483 + 0.977165i \(0.568155\pi\)
\(360\) 0 0
\(361\) −2.96472e11 −0.918757
\(362\) 0 0
\(363\) 6.91772e10 0.209114
\(364\) 0 0
\(365\) −3.27742e11 −0.966529
\(366\) 0 0
\(367\) −3.54059e11 −1.01878 −0.509388 0.860537i \(-0.670128\pi\)
−0.509388 + 0.860537i \(0.670128\pi\)
\(368\) 0 0
\(369\) 2.59951e11 0.729915
\(370\) 0 0
\(371\) 2.63111e11 0.721034
\(372\) 0 0
\(373\) −7.64050e10 −0.204377 −0.102189 0.994765i \(-0.532585\pi\)
−0.102189 + 0.994765i \(0.532585\pi\)
\(374\) 0 0
\(375\) 5.89823e10 0.154021
\(376\) 0 0
\(377\) 1.66974e11 0.425708
\(378\) 0 0
\(379\) 2.67191e11 0.665190 0.332595 0.943070i \(-0.392076\pi\)
0.332595 + 0.943070i \(0.392076\pi\)
\(380\) 0 0
\(381\) −9.45279e10 −0.229825
\(382\) 0 0
\(383\) −4.56769e11 −1.08468 −0.542340 0.840159i \(-0.682462\pi\)
−0.542340 + 0.840159i \(0.682462\pi\)
\(384\) 0 0
\(385\) −4.74855e11 −1.10151
\(386\) 0 0
\(387\) −2.19077e11 −0.496475
\(388\) 0 0
\(389\) −2.16479e10 −0.0479338 −0.0239669 0.999713i \(-0.507630\pi\)
−0.0239669 + 0.999713i \(0.507630\pi\)
\(390\) 0 0
\(391\) 3.81419e11 0.825290
\(392\) 0 0
\(393\) −8.80935e10 −0.186285
\(394\) 0 0
\(395\) −3.21098e11 −0.663667
\(396\) 0 0
\(397\) 8.80505e11 1.77899 0.889497 0.456941i \(-0.151055\pi\)
0.889497 + 0.456941i \(0.151055\pi\)
\(398\) 0 0
\(399\) 3.22974e10 0.0637954
\(400\) 0 0
\(401\) 4.42207e10 0.0854035 0.0427018 0.999088i \(-0.486403\pi\)
0.0427018 + 0.999088i \(0.486403\pi\)
\(402\) 0 0
\(403\) −2.74789e10 −0.0518951
\(404\) 0 0
\(405\) −2.70399e11 −0.499411
\(406\) 0 0
\(407\) 2.26202e11 0.408622
\(408\) 0 0
\(409\) 7.71666e11 1.36356 0.681780 0.731557i \(-0.261206\pi\)
0.681780 + 0.731557i \(0.261206\pi\)
\(410\) 0 0
\(411\) 1.12191e11 0.193941
\(412\) 0 0
\(413\) −2.61295e11 −0.441933
\(414\) 0 0
\(415\) −1.06634e11 −0.176473
\(416\) 0 0
\(417\) −1.04073e11 −0.168548
\(418\) 0 0
\(419\) 5.30237e11 0.840441 0.420220 0.907422i \(-0.361953\pi\)
0.420220 + 0.907422i \(0.361953\pi\)
\(420\) 0 0
\(421\) 7.88979e11 1.22404 0.612021 0.790842i \(-0.290357\pi\)
0.612021 + 0.790842i \(0.290357\pi\)
\(422\) 0 0
\(423\) 4.40081e10 0.0668345
\(424\) 0 0
\(425\) −3.66711e11 −0.545223
\(426\) 0 0
\(427\) −5.58885e11 −0.813574
\(428\) 0 0
\(429\) −4.85830e10 −0.0692511
\(430\) 0 0
\(431\) −3.60743e11 −0.503558 −0.251779 0.967785i \(-0.581016\pi\)
−0.251779 + 0.967785i \(0.581016\pi\)
\(432\) 0 0
\(433\) 1.42994e12 1.95489 0.977446 0.211187i \(-0.0677330\pi\)
0.977446 + 0.211187i \(0.0677330\pi\)
\(434\) 0 0
\(435\) −1.03608e11 −0.138737
\(436\) 0 0
\(437\) −2.31564e11 −0.303742
\(438\) 0 0
\(439\) −1.04184e11 −0.133878 −0.0669391 0.997757i \(-0.521323\pi\)
−0.0669391 + 0.997757i \(0.521323\pi\)
\(440\) 0 0
\(441\) −6.29387e11 −0.792399
\(442\) 0 0
\(443\) 1.51201e12 1.86526 0.932629 0.360838i \(-0.117509\pi\)
0.932629 + 0.360838i \(0.117509\pi\)
\(444\) 0 0
\(445\) 4.43141e10 0.0535701
\(446\) 0 0
\(447\) −1.41231e11 −0.167319
\(448\) 0 0
\(449\) 7.12255e11 0.827041 0.413520 0.910495i \(-0.364299\pi\)
0.413520 + 0.910495i \(0.364299\pi\)
\(450\) 0 0
\(451\) 9.91172e11 1.12812
\(452\) 0 0
\(453\) −2.75791e11 −0.307708
\(454\) 0 0
\(455\) 1.85841e11 0.203278
\(456\) 0 0
\(457\) 6.97074e11 0.747577 0.373788 0.927514i \(-0.378059\pi\)
0.373788 + 0.927514i \(0.378059\pi\)
\(458\) 0 0
\(459\) −2.41333e11 −0.253781
\(460\) 0 0
\(461\) 2.70683e11 0.279130 0.139565 0.990213i \(-0.455430\pi\)
0.139565 + 0.990213i \(0.455430\pi\)
\(462\) 0 0
\(463\) −9.93801e10 −0.100504 −0.0502522 0.998737i \(-0.516003\pi\)
−0.0502522 + 0.998737i \(0.516003\pi\)
\(464\) 0 0
\(465\) 1.70508e10 0.0169125
\(466\) 0 0
\(467\) 3.19076e10 0.0310433 0.0155216 0.999880i \(-0.495059\pi\)
0.0155216 + 0.999880i \(0.495059\pi\)
\(468\) 0 0
\(469\) 1.55213e12 1.48132
\(470\) 0 0
\(471\) 1.37748e11 0.128971
\(472\) 0 0
\(473\) −8.35323e11 −0.767325
\(474\) 0 0
\(475\) 2.22635e11 0.200666
\(476\) 0 0
\(477\) 5.88447e11 0.520445
\(478\) 0 0
\(479\) −1.70914e12 −1.48344 −0.741718 0.670712i \(-0.765989\pi\)
−0.741718 + 0.670712i \(0.765989\pi\)
\(480\) 0 0
\(481\) −8.85272e10 −0.0754092
\(482\) 0 0
\(483\) −2.85281e11 −0.238512
\(484\) 0 0
\(485\) −4.30982e11 −0.353689
\(486\) 0 0
\(487\) 3.60245e11 0.290213 0.145107 0.989416i \(-0.453647\pi\)
0.145107 + 0.989416i \(0.453647\pi\)
\(488\) 0 0
\(489\) 1.28872e11 0.101922
\(490\) 0 0
\(491\) −5.61754e11 −0.436194 −0.218097 0.975927i \(-0.569985\pi\)
−0.218097 + 0.975927i \(0.569985\pi\)
\(492\) 0 0
\(493\) 1.55915e12 1.18871
\(494\) 0 0
\(495\) −1.06201e12 −0.795072
\(496\) 0 0
\(497\) 1.05397e12 0.774860
\(498\) 0 0
\(499\) 8.84030e11 0.638285 0.319143 0.947707i \(-0.396605\pi\)
0.319143 + 0.947707i \(0.396605\pi\)
\(500\) 0 0
\(501\) −2.32994e11 −0.165224
\(502\) 0 0
\(503\) −1.62861e11 −0.113439 −0.0567195 0.998390i \(-0.518064\pi\)
−0.0567195 + 0.998390i \(0.518064\pi\)
\(504\) 0 0
\(505\) 7.03965e11 0.481659
\(506\) 0 0
\(507\) 1.90136e10 0.0127799
\(508\) 0 0
\(509\) −2.29095e11 −0.151281 −0.0756407 0.997135i \(-0.524100\pi\)
−0.0756407 + 0.997135i \(0.524100\pi\)
\(510\) 0 0
\(511\) −3.68891e12 −2.39334
\(512\) 0 0
\(513\) 1.46517e11 0.0934025
\(514\) 0 0
\(515\) 4.55010e11 0.285029
\(516\) 0 0
\(517\) 1.67799e11 0.103296
\(518\) 0 0
\(519\) 2.17485e11 0.131576
\(520\) 0 0
\(521\) 2.26430e12 1.34637 0.673184 0.739475i \(-0.264926\pi\)
0.673184 + 0.739475i \(0.264926\pi\)
\(522\) 0 0
\(523\) 3.34805e12 1.95674 0.978371 0.206856i \(-0.0663231\pi\)
0.978371 + 0.206856i \(0.0663231\pi\)
\(524\) 0 0
\(525\) 2.74280e11 0.157572
\(526\) 0 0
\(527\) −2.56590e11 −0.144908
\(528\) 0 0
\(529\) 2.44239e11 0.135601
\(530\) 0 0
\(531\) −5.84387e11 −0.318988
\(532\) 0 0
\(533\) −3.87908e11 −0.208188
\(534\) 0 0
\(535\) −1.29883e12 −0.685427
\(536\) 0 0
\(537\) −2.86232e11 −0.148537
\(538\) 0 0
\(539\) −2.39980e12 −1.22469
\(540\) 0 0
\(541\) −5.11816e11 −0.256877 −0.128439 0.991717i \(-0.540997\pi\)
−0.128439 + 0.991717i \(0.540997\pi\)
\(542\) 0 0
\(543\) 2.45097e11 0.120987
\(544\) 0 0
\(545\) 9.57222e11 0.464760
\(546\) 0 0
\(547\) −1.95245e12 −0.932474 −0.466237 0.884660i \(-0.654391\pi\)
−0.466237 + 0.884660i \(0.654391\pi\)
\(548\) 0 0
\(549\) −1.24995e12 −0.587240
\(550\) 0 0
\(551\) −9.46581e11 −0.437497
\(552\) 0 0
\(553\) −3.61412e12 −1.64338
\(554\) 0 0
\(555\) 5.49316e10 0.0245756
\(556\) 0 0
\(557\) 9.52980e10 0.0419503 0.0209752 0.999780i \(-0.493323\pi\)
0.0209752 + 0.999780i \(0.493323\pi\)
\(558\) 0 0
\(559\) 3.26915e11 0.141606
\(560\) 0 0
\(561\) −4.53654e11 −0.193371
\(562\) 0 0
\(563\) 1.40128e12 0.587812 0.293906 0.955834i \(-0.405045\pi\)
0.293906 + 0.955834i \(0.405045\pi\)
\(564\) 0 0
\(565\) −2.49801e12 −1.03128
\(566\) 0 0
\(567\) −3.04348e12 −1.23665
\(568\) 0 0
\(569\) −2.77647e12 −1.11042 −0.555211 0.831709i \(-0.687363\pi\)
−0.555211 + 0.831709i \(0.687363\pi\)
\(570\) 0 0
\(571\) 1.78010e12 0.700779 0.350389 0.936604i \(-0.386049\pi\)
0.350389 + 0.936604i \(0.386049\pi\)
\(572\) 0 0
\(573\) −7.87752e11 −0.305277
\(574\) 0 0
\(575\) −1.96652e12 −0.750228
\(576\) 0 0
\(577\) −2.97560e10 −0.0111759 −0.00558796 0.999984i \(-0.501779\pi\)
−0.00558796 + 0.999984i \(0.501779\pi\)
\(578\) 0 0
\(579\) −3.06103e11 −0.113192
\(580\) 0 0
\(581\) −1.20022e12 −0.436985
\(582\) 0 0
\(583\) 2.24370e12 0.804372
\(584\) 0 0
\(585\) 4.15633e11 0.146727
\(586\) 0 0
\(587\) −2.59430e12 −0.901879 −0.450940 0.892554i \(-0.648911\pi\)
−0.450940 + 0.892554i \(0.648911\pi\)
\(588\) 0 0
\(589\) 1.55779e11 0.0533323
\(590\) 0 0
\(591\) 1.31918e11 0.0444796
\(592\) 0 0
\(593\) 2.65204e12 0.880713 0.440356 0.897823i \(-0.354852\pi\)
0.440356 + 0.897823i \(0.354852\pi\)
\(594\) 0 0
\(595\) 1.73533e12 0.567617
\(596\) 0 0
\(597\) 3.37805e11 0.108838
\(598\) 0 0
\(599\) −4.87808e12 −1.54821 −0.774103 0.633060i \(-0.781799\pi\)
−0.774103 + 0.633060i \(0.781799\pi\)
\(600\) 0 0
\(601\) −1.99353e12 −0.623287 −0.311643 0.950199i \(-0.600879\pi\)
−0.311643 + 0.950199i \(0.600879\pi\)
\(602\) 0 0
\(603\) 3.47133e12 1.06922
\(604\) 0 0
\(605\) −2.25656e12 −0.684774
\(606\) 0 0
\(607\) 5.03532e12 1.50549 0.752745 0.658312i \(-0.228729\pi\)
0.752745 + 0.658312i \(0.228729\pi\)
\(608\) 0 0
\(609\) −1.16616e12 −0.343543
\(610\) 0 0
\(611\) −6.56705e10 −0.0190627
\(612\) 0 0
\(613\) 3.95315e12 1.13076 0.565381 0.824830i \(-0.308729\pi\)
0.565381 + 0.824830i \(0.308729\pi\)
\(614\) 0 0
\(615\) 2.40699e11 0.0678479
\(616\) 0 0
\(617\) 1.59226e12 0.442313 0.221156 0.975238i \(-0.429017\pi\)
0.221156 + 0.975238i \(0.429017\pi\)
\(618\) 0 0
\(619\) −3.02552e12 −0.828310 −0.414155 0.910206i \(-0.635923\pi\)
−0.414155 + 0.910206i \(0.635923\pi\)
\(620\) 0 0
\(621\) −1.29417e12 −0.349204
\(622\) 0 0
\(623\) 4.98778e11 0.132651
\(624\) 0 0
\(625\) 7.61593e11 0.199647
\(626\) 0 0
\(627\) 2.75419e11 0.0711689
\(628\) 0 0
\(629\) −8.26641e11 −0.210566
\(630\) 0 0
\(631\) −4.22075e12 −1.05988 −0.529942 0.848034i \(-0.677786\pi\)
−0.529942 + 0.848034i \(0.677786\pi\)
\(632\) 0 0
\(633\) 6.05797e11 0.149972
\(634\) 0 0
\(635\) 3.08350e12 0.752597
\(636\) 0 0
\(637\) 9.39195e11 0.226010
\(638\) 0 0
\(639\) 2.35720e12 0.559296
\(640\) 0 0
\(641\) 4.24400e12 0.992920 0.496460 0.868060i \(-0.334633\pi\)
0.496460 + 0.868060i \(0.334633\pi\)
\(642\) 0 0
\(643\) 6.57522e11 0.151691 0.0758456 0.997120i \(-0.475834\pi\)
0.0758456 + 0.997120i \(0.475834\pi\)
\(644\) 0 0
\(645\) −2.02852e11 −0.0461489
\(646\) 0 0
\(647\) −4.83473e12 −1.08468 −0.542341 0.840158i \(-0.682462\pi\)
−0.542341 + 0.840158i \(0.682462\pi\)
\(648\) 0 0
\(649\) −2.22822e12 −0.493011
\(650\) 0 0
\(651\) 1.91915e11 0.0418789
\(652\) 0 0
\(653\) −7.26539e12 −1.56369 −0.781843 0.623475i \(-0.785720\pi\)
−0.781843 + 0.623475i \(0.785720\pi\)
\(654\) 0 0
\(655\) 2.87361e12 0.610017
\(656\) 0 0
\(657\) −8.25024e12 −1.72752
\(658\) 0 0
\(659\) −5.36348e11 −0.110780 −0.0553901 0.998465i \(-0.517640\pi\)
−0.0553901 + 0.998465i \(0.517640\pi\)
\(660\) 0 0
\(661\) 6.77323e12 1.38003 0.690016 0.723794i \(-0.257604\pi\)
0.690016 + 0.723794i \(0.257604\pi\)
\(662\) 0 0
\(663\) 1.77543e11 0.0356857
\(664\) 0 0
\(665\) −1.05354e12 −0.208907
\(666\) 0 0
\(667\) 8.36108e12 1.63567
\(668\) 0 0
\(669\) 1.53167e12 0.295630
\(670\) 0 0
\(671\) −4.76595e12 −0.907607
\(672\) 0 0
\(673\) −1.08002e12 −0.202938 −0.101469 0.994839i \(-0.532354\pi\)
−0.101469 + 0.994839i \(0.532354\pi\)
\(674\) 0 0
\(675\) 1.24427e12 0.230700
\(676\) 0 0
\(677\) 3.29260e12 0.602406 0.301203 0.953560i \(-0.402612\pi\)
0.301203 + 0.953560i \(0.402612\pi\)
\(678\) 0 0
\(679\) −4.85092e12 −0.875811
\(680\) 0 0
\(681\) 1.04757e12 0.186646
\(682\) 0 0
\(683\) 7.53068e12 1.32416 0.662080 0.749433i \(-0.269674\pi\)
0.662080 + 0.749433i \(0.269674\pi\)
\(684\) 0 0
\(685\) −3.65967e12 −0.635089
\(686\) 0 0
\(687\) 7.98440e11 0.136753
\(688\) 0 0
\(689\) −8.78103e11 −0.148443
\(690\) 0 0
\(691\) 1.05073e13 1.75323 0.876613 0.481196i \(-0.159797\pi\)
0.876613 + 0.481196i \(0.159797\pi\)
\(692\) 0 0
\(693\) −1.19535e13 −1.96877
\(694\) 0 0
\(695\) 3.39485e12 0.551936
\(696\) 0 0
\(697\) −3.62217e12 −0.581329
\(698\) 0 0
\(699\) 1.24293e12 0.196925
\(700\) 0 0
\(701\) 1.05023e13 1.64268 0.821340 0.570439i \(-0.193227\pi\)
0.821340 + 0.570439i \(0.193227\pi\)
\(702\) 0 0
\(703\) 5.01865e11 0.0774975
\(704\) 0 0
\(705\) 4.07489e10 0.00621248
\(706\) 0 0
\(707\) 7.92349e12 1.19269
\(708\) 0 0
\(709\) 6.60507e12 0.981678 0.490839 0.871250i \(-0.336690\pi\)
0.490839 + 0.871250i \(0.336690\pi\)
\(710\) 0 0
\(711\) −8.08297e12 −1.18620
\(712\) 0 0
\(713\) −1.37599e12 −0.199394
\(714\) 0 0
\(715\) 1.58478e12 0.226773
\(716\) 0 0
\(717\) 8.89594e11 0.125706
\(718\) 0 0
\(719\) 9.15000e12 1.27685 0.638427 0.769683i \(-0.279585\pi\)
0.638427 + 0.769683i \(0.279585\pi\)
\(720\) 0 0
\(721\) 5.12137e12 0.705793
\(722\) 0 0
\(723\) −2.98558e10 −0.00406355
\(724\) 0 0
\(725\) −8.03868e12 −1.08060
\(726\) 0 0
\(727\) 1.14659e13 1.52232 0.761158 0.648567i \(-0.224631\pi\)
0.761158 + 0.648567i \(0.224631\pi\)
\(728\) 0 0
\(729\) −6.39159e12 −0.838175
\(730\) 0 0
\(731\) 3.05264e12 0.395409
\(732\) 0 0
\(733\) 1.05626e13 1.35145 0.675727 0.737152i \(-0.263830\pi\)
0.675727 + 0.737152i \(0.263830\pi\)
\(734\) 0 0
\(735\) −5.82775e11 −0.0736560
\(736\) 0 0
\(737\) 1.32359e13 1.65253
\(738\) 0 0
\(739\) 1.05234e13 1.29795 0.648973 0.760811i \(-0.275199\pi\)
0.648973 + 0.760811i \(0.275199\pi\)
\(740\) 0 0
\(741\) −1.07789e11 −0.0131339
\(742\) 0 0
\(743\) −1.15961e13 −1.39592 −0.697961 0.716136i \(-0.745909\pi\)
−0.697961 + 0.716136i \(0.745909\pi\)
\(744\) 0 0
\(745\) 4.60695e12 0.547912
\(746\) 0 0
\(747\) −2.68428e12 −0.315417
\(748\) 0 0
\(749\) −1.46190e13 −1.69727
\(750\) 0 0
\(751\) −6.47624e11 −0.0742922 −0.0371461 0.999310i \(-0.511827\pi\)
−0.0371461 + 0.999310i \(0.511827\pi\)
\(752\) 0 0
\(753\) −2.09188e12 −0.237115
\(754\) 0 0
\(755\) 8.99630e12 1.00763
\(756\) 0 0
\(757\) 9.55339e12 1.05737 0.528684 0.848819i \(-0.322686\pi\)
0.528684 + 0.848819i \(0.322686\pi\)
\(758\) 0 0
\(759\) −2.43276e12 −0.266079
\(760\) 0 0
\(761\) −1.16939e13 −1.26395 −0.631974 0.774989i \(-0.717755\pi\)
−0.631974 + 0.774989i \(0.717755\pi\)
\(762\) 0 0
\(763\) 1.07740e13 1.15085
\(764\) 0 0
\(765\) 3.88106e12 0.409707
\(766\) 0 0
\(767\) 8.72044e11 0.0909828
\(768\) 0 0
\(769\) −1.01302e13 −1.04460 −0.522300 0.852762i \(-0.674926\pi\)
−0.522300 + 0.852762i \(0.674926\pi\)
\(770\) 0 0
\(771\) 2.41852e12 0.246494
\(772\) 0 0
\(773\) −1.42240e13 −1.43290 −0.716448 0.697640i \(-0.754233\pi\)
−0.716448 + 0.697640i \(0.754233\pi\)
\(774\) 0 0
\(775\) 1.32293e12 0.131728
\(776\) 0 0
\(777\) 6.18283e11 0.0608545
\(778\) 0 0
\(779\) 2.19907e12 0.213954
\(780\) 0 0
\(781\) 8.98780e12 0.864418
\(782\) 0 0
\(783\) −5.29027e12 −0.502979
\(784\) 0 0
\(785\) −4.49333e12 −0.422333
\(786\) 0 0
\(787\) −1.93779e12 −0.180062 −0.0900308 0.995939i \(-0.528697\pi\)
−0.0900308 + 0.995939i \(0.528697\pi\)
\(788\) 0 0
\(789\) 2.17014e11 0.0199362
\(790\) 0 0
\(791\) −2.81163e13 −2.55367
\(792\) 0 0
\(793\) 1.86522e12 0.167494
\(794\) 0 0
\(795\) 5.44868e11 0.0483770
\(796\) 0 0
\(797\) −9.79968e12 −0.860299 −0.430149 0.902758i \(-0.641539\pi\)
−0.430149 + 0.902758i \(0.641539\pi\)
\(798\) 0 0
\(799\) −6.13212e11 −0.0532292
\(800\) 0 0
\(801\) 1.11552e12 0.0957480
\(802\) 0 0
\(803\) −3.14575e13 −2.66996
\(804\) 0 0
\(805\) 9.30585e12 0.781043
\(806\) 0 0
\(807\) 3.91285e12 0.324760
\(808\) 0 0
\(809\) 2.37770e13 1.95159 0.975795 0.218685i \(-0.0701768\pi\)
0.975795 + 0.218685i \(0.0701768\pi\)
\(810\) 0 0
\(811\) −2.09072e12 −0.169708 −0.0848541 0.996393i \(-0.527042\pi\)
−0.0848541 + 0.996393i \(0.527042\pi\)
\(812\) 0 0
\(813\) 1.09251e12 0.0877039
\(814\) 0 0
\(815\) −4.20379e12 −0.333758
\(816\) 0 0
\(817\) −1.85330e12 −0.145528
\(818\) 0 0
\(819\) 4.67816e12 0.363327
\(820\) 0 0
\(821\) 4.74309e11 0.0364349 0.0182175 0.999834i \(-0.494201\pi\)
0.0182175 + 0.999834i \(0.494201\pi\)
\(822\) 0 0
\(823\) −1.13971e13 −0.865952 −0.432976 0.901406i \(-0.642536\pi\)
−0.432976 + 0.901406i \(0.642536\pi\)
\(824\) 0 0
\(825\) 2.33895e12 0.175784
\(826\) 0 0
\(827\) 2.79487e12 0.207772 0.103886 0.994589i \(-0.466872\pi\)
0.103886 + 0.994589i \(0.466872\pi\)
\(828\) 0 0
\(829\) 9.07639e12 0.667449 0.333724 0.942671i \(-0.391695\pi\)
0.333724 + 0.942671i \(0.391695\pi\)
\(830\) 0 0
\(831\) −2.24368e11 −0.0163213
\(832\) 0 0
\(833\) 8.76993e12 0.631093
\(834\) 0 0
\(835\) 7.60025e12 0.541052
\(836\) 0 0
\(837\) 8.70621e11 0.0613147
\(838\) 0 0
\(839\) −1.92299e12 −0.133982 −0.0669912 0.997754i \(-0.521340\pi\)
−0.0669912 + 0.997754i \(0.521340\pi\)
\(840\) 0 0
\(841\) 1.96710e13 1.35595
\(842\) 0 0
\(843\) −4.31460e11 −0.0294250
\(844\) 0 0
\(845\) −6.20224e11 −0.0418498
\(846\) 0 0
\(847\) −2.53987e13 −1.69565
\(848\) 0 0
\(849\) −4.76670e11 −0.0314871
\(850\) 0 0
\(851\) −4.43294e12 −0.289740
\(852\) 0 0
\(853\) −2.41358e13 −1.56096 −0.780478 0.625183i \(-0.785024\pi\)
−0.780478 + 0.625183i \(0.785024\pi\)
\(854\) 0 0
\(855\) −2.35624e12 −0.150790
\(856\) 0 0
\(857\) 9.09389e11 0.0575886 0.0287943 0.999585i \(-0.490833\pi\)
0.0287943 + 0.999585i \(0.490833\pi\)
\(858\) 0 0
\(859\) 2.51030e13 1.57310 0.786551 0.617525i \(-0.211865\pi\)
0.786551 + 0.617525i \(0.211865\pi\)
\(860\) 0 0
\(861\) 2.70919e12 0.168006
\(862\) 0 0
\(863\) −9.49620e11 −0.0582775 −0.0291388 0.999575i \(-0.509276\pi\)
−0.0291388 + 0.999575i \(0.509276\pi\)
\(864\) 0 0
\(865\) −7.09435e12 −0.430864
\(866\) 0 0
\(867\) −1.10628e12 −0.0664933
\(868\) 0 0
\(869\) −3.08197e13 −1.83333
\(870\) 0 0
\(871\) −5.18005e12 −0.304967
\(872\) 0 0
\(873\) −1.08491e13 −0.632163
\(874\) 0 0
\(875\) −2.16556e13 −1.24892
\(876\) 0 0
\(877\) −3.00749e13 −1.71674 −0.858372 0.513027i \(-0.828524\pi\)
−0.858372 + 0.513027i \(0.828524\pi\)
\(878\) 0 0
\(879\) −5.07525e12 −0.286753
\(880\) 0 0
\(881\) −3.02907e13 −1.69402 −0.847008 0.531581i \(-0.821598\pi\)
−0.847008 + 0.531581i \(0.821598\pi\)
\(882\) 0 0
\(883\) 1.09408e13 0.605654 0.302827 0.953046i \(-0.402070\pi\)
0.302827 + 0.953046i \(0.402070\pi\)
\(884\) 0 0
\(885\) −5.41108e11 −0.0296510
\(886\) 0 0
\(887\) −5.45555e12 −0.295926 −0.147963 0.988993i \(-0.547272\pi\)
−0.147963 + 0.988993i \(0.547272\pi\)
\(888\) 0 0
\(889\) 3.47064e13 1.86359
\(890\) 0 0
\(891\) −2.59536e13 −1.37958
\(892\) 0 0
\(893\) 3.72289e11 0.0195906
\(894\) 0 0
\(895\) 9.33690e12 0.486406
\(896\) 0 0
\(897\) 9.52092e11 0.0491036
\(898\) 0 0
\(899\) −5.62471e12 −0.287198
\(900\) 0 0
\(901\) −8.19947e12 −0.414500
\(902\) 0 0
\(903\) −2.28321e12 −0.114275
\(904\) 0 0
\(905\) −7.99507e12 −0.396190
\(906\) 0 0
\(907\) −3.28622e13 −1.61237 −0.806183 0.591666i \(-0.798470\pi\)
−0.806183 + 0.591666i \(0.798470\pi\)
\(908\) 0 0
\(909\) 1.77209e13 0.860890
\(910\) 0 0
\(911\) 3.47679e13 1.67242 0.836211 0.548408i \(-0.184766\pi\)
0.836211 + 0.548408i \(0.184766\pi\)
\(912\) 0 0
\(913\) −1.02350e13 −0.487492
\(914\) 0 0
\(915\) −1.15738e12 −0.0545859
\(916\) 0 0
\(917\) 3.23439e13 1.51054
\(918\) 0 0
\(919\) 2.19562e13 1.01540 0.507701 0.861533i \(-0.330495\pi\)
0.507701 + 0.861533i \(0.330495\pi\)
\(920\) 0 0
\(921\) 5.65216e12 0.258849
\(922\) 0 0
\(923\) −3.51750e12 −0.159524
\(924\) 0 0
\(925\) 4.26201e12 0.191415
\(926\) 0 0
\(927\) 1.14539e13 0.509444
\(928\) 0 0
\(929\) 1.74259e13 0.767582 0.383791 0.923420i \(-0.374618\pi\)
0.383791 + 0.923420i \(0.374618\pi\)
\(930\) 0 0
\(931\) −5.32434e12 −0.232269
\(932\) 0 0
\(933\) 9.15221e11 0.0395420
\(934\) 0 0
\(935\) 1.47982e13 0.633222
\(936\) 0 0
\(937\) −4.43313e12 −0.187881 −0.0939405 0.995578i \(-0.529946\pi\)
−0.0939405 + 0.995578i \(0.529946\pi\)
\(938\) 0 0
\(939\) −5.42071e12 −0.227542
\(940\) 0 0
\(941\) 3.54725e13 1.47482 0.737409 0.675447i \(-0.236049\pi\)
0.737409 + 0.675447i \(0.236049\pi\)
\(942\) 0 0
\(943\) −1.94242e13 −0.799910
\(944\) 0 0
\(945\) −5.88805e12 −0.240175
\(946\) 0 0
\(947\) −9.18897e12 −0.371272 −0.185636 0.982619i \(-0.559434\pi\)
−0.185636 + 0.982619i \(0.559434\pi\)
\(948\) 0 0
\(949\) 1.23113e13 0.492727
\(950\) 0 0
\(951\) −2.20222e12 −0.0873067
\(952\) 0 0
\(953\) 3.29318e13 1.29329 0.646646 0.762790i \(-0.276171\pi\)
0.646646 + 0.762790i \(0.276171\pi\)
\(954\) 0 0
\(955\) 2.56965e13 0.999674
\(956\) 0 0
\(957\) −9.94455e12 −0.383249
\(958\) 0 0
\(959\) −4.11915e13 −1.57262
\(960\) 0 0
\(961\) −2.55140e13 −0.964990
\(962\) 0 0
\(963\) −3.26954e13 −1.22509
\(964\) 0 0
\(965\) 9.98509e12 0.370663
\(966\) 0 0
\(967\) 1.21272e13 0.446007 0.223004 0.974818i \(-0.428414\pi\)
0.223004 + 0.974818i \(0.428414\pi\)
\(968\) 0 0
\(969\) −1.00650e12 −0.0366739
\(970\) 0 0
\(971\) −1.78158e12 −0.0643159 −0.0321579 0.999483i \(-0.510238\pi\)
−0.0321579 + 0.999483i \(0.510238\pi\)
\(972\) 0 0
\(973\) 3.82107e13 1.36671
\(974\) 0 0
\(975\) −9.15380e11 −0.0324400
\(976\) 0 0
\(977\) −2.04326e13 −0.717461 −0.358731 0.933441i \(-0.616790\pi\)
−0.358731 + 0.933441i \(0.616790\pi\)
\(978\) 0 0
\(979\) 4.25338e12 0.147983
\(980\) 0 0
\(981\) 2.40961e13 0.830684
\(982\) 0 0
\(983\) −4.47553e13 −1.52881 −0.764406 0.644735i \(-0.776968\pi\)
−0.764406 + 0.644735i \(0.776968\pi\)
\(984\) 0 0
\(985\) −4.30317e12 −0.145655
\(986\) 0 0
\(987\) 4.58650e11 0.0153835
\(988\) 0 0
\(989\) 1.63700e13 0.544084
\(990\) 0 0
\(991\) −1.66489e12 −0.0548346 −0.0274173 0.999624i \(-0.508728\pi\)
−0.0274173 + 0.999624i \(0.508728\pi\)
\(992\) 0 0
\(993\) 7.27008e12 0.237284
\(994\) 0 0
\(995\) −1.10192e13 −0.356406
\(996\) 0 0
\(997\) 4.18323e13 1.34086 0.670430 0.741973i \(-0.266110\pi\)
0.670430 + 0.741973i \(0.266110\pi\)
\(998\) 0 0
\(999\) 2.80483e12 0.0890968
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 104.10.a.d.1.5 8
4.3 odd 2 208.10.a.m.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.a.d.1.5 8 1.1 even 1 trivial
208.10.a.m.1.4 8 4.3 odd 2