Defining parameters
Level: | \( N \) | \(=\) | \( 104 = 2^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 104.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(140\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(104))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 130 | 27 | 103 |
Cusp forms | 122 | 27 | 95 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(31\) | \(6\) | \(25\) | \(29\) | \(6\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(34\) | \(8\) | \(26\) | \(32\) | \(8\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(34\) | \(7\) | \(27\) | \(32\) | \(7\) | \(25\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(31\) | \(6\) | \(25\) | \(29\) | \(6\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
Plus space | \(+\) | \(62\) | \(12\) | \(50\) | \(58\) | \(12\) | \(46\) | \(4\) | \(0\) | \(4\) | ||||
Minus space | \(-\) | \(68\) | \(15\) | \(53\) | \(64\) | \(15\) | \(49\) | \(4\) | \(0\) | \(4\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(104))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 13 | |||||||
104.10.a.a | $6$ | $53.564$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(-68\) | \(-176\) | \(-9664\) | $-$ | $-$ | \(q+(-11-\beta _{1})q^{3}+(-29+\beta _{2})q^{5}+\cdots\) | |
104.10.a.b | $6$ | $53.564$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(60\) | \(176\) | \(3416\) | $+$ | $+$ | \(q+(10-\beta _{1})q^{3}+(29-2\beta _{1}+\beta _{2})q^{5}+\cdots\) | |
104.10.a.c | $7$ | $53.564$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(13\) | \(-801\) | \(-1091\) | $-$ | $+$ | \(q+(2-\beta _{1})q^{3}+(-114+\beta _{2})q^{5}+(-157+\cdots)q^{7}+\cdots\) | |
104.10.a.d | $8$ | $53.564$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(141\) | \(2051\) | \(-2417\) | $+$ | $-$ | \(q+(18-\beta _{1})q^{3}+(2^{8}+2\beta _{1}+\beta _{3})q^{5}+\cdots\) |
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(104))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(104)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 2}\)