Properties

Label 104.10.a
Level $104$
Weight $10$
Character orbit 104.a
Rep. character $\chi_{104}(1,\cdot)$
Character field $\Q$
Dimension $27$
Newform subspaces $4$
Sturm bound $140$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 104.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(140\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(104))\).

Total New Old
Modular forms 130 27 103
Cusp forms 122 27 95
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(31\)\(6\)\(25\)\(29\)\(6\)\(23\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(34\)\(8\)\(26\)\(32\)\(8\)\(24\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(34\)\(7\)\(27\)\(32\)\(7\)\(25\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(31\)\(6\)\(25\)\(29\)\(6\)\(23\)\(2\)\(0\)\(2\)
Plus space\(+\)\(62\)\(12\)\(50\)\(58\)\(12\)\(46\)\(4\)\(0\)\(4\)
Minus space\(-\)\(68\)\(15\)\(53\)\(64\)\(15\)\(49\)\(4\)\(0\)\(4\)

Trace form

\( 27 q + 146 q^{3} + 1250 q^{5} - 9756 q^{7} + 252553 q^{9} - 138196 q^{11} + 28561 q^{13} - 159528 q^{15} - 392692 q^{17} - 1175856 q^{19} + 147292 q^{21} + 2753268 q^{23} + 8805591 q^{25} + 5241074 q^{27}+ \cdots + 2904694208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(104))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 13
104.10.a.a 104.a 1.a $6$ $53.564$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 104.10.a.a \(0\) \(-68\) \(-176\) \(-9664\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-11-\beta _{1})q^{3}+(-29+\beta _{2})q^{5}+\cdots\)
104.10.a.b 104.a 1.a $6$ $53.564$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 104.10.a.b \(0\) \(60\) \(176\) \(3416\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(10-\beta _{1})q^{3}+(29-2\beta _{1}+\beta _{2})q^{5}+\cdots\)
104.10.a.c 104.a 1.a $7$ $53.564$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 104.10.a.c \(0\) \(13\) \(-801\) \(-1091\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1})q^{3}+(-114+\beta _{2})q^{5}+(-157+\cdots)q^{7}+\cdots\)
104.10.a.d 104.a 1.a $8$ $53.564$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 104.10.a.d \(0\) \(141\) \(2051\) \(-2417\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(18-\beta _{1})q^{3}+(2^{8}+2\beta _{1}+\beta _{3})q^{5}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(104))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(104)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 2}\)