Properties

Label 104.10.a.d.1.4
Level $104$
Weight $10$
Character 104.1
Self dual yes
Analytic conductor $53.564$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [104,10,Mod(1,104)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(104, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("104.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 104.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,141] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.5637269610\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3 x^{7} - 135356 x^{6} - 24398 x^{5} + 5213582205 x^{4} + 598076469 x^{3} + \cdots + 15\!\cdots\!64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{25}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(6.68300\) of defining polynomial
Character \(\chi\) \(=\) 104.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+11.3170 q^{3} +2354.21 q^{5} -4597.91 q^{7} -19554.9 q^{9} +32973.7 q^{11} +28561.0 q^{13} +26642.6 q^{15} +429836. q^{17} +823596. q^{19} -52034.5 q^{21} -1.28007e6 q^{23} +3.58918e6 q^{25} -444056. q^{27} -3.75530e6 q^{29} -9.62778e6 q^{31} +373164. q^{33} -1.08244e7 q^{35} +1.56238e7 q^{37} +323225. q^{39} +2.86870e7 q^{41} +2.19320e7 q^{43} -4.60364e7 q^{45} +4.95057e7 q^{47} -1.92128e7 q^{49} +4.86446e6 q^{51} +9.82331e7 q^{53} +7.76271e7 q^{55} +9.32064e6 q^{57} -2.59979e7 q^{59} -8.44671e7 q^{61} +8.99117e7 q^{63} +6.72386e7 q^{65} -1.61951e8 q^{67} -1.44866e7 q^{69} +3.46667e8 q^{71} +2.95177e7 q^{73} +4.06188e7 q^{75} -1.51610e8 q^{77} -1.92628e8 q^{79} +3.79874e8 q^{81} +2.36393e8 q^{83} +1.01193e9 q^{85} -4.24987e7 q^{87} +1.08335e9 q^{89} -1.31321e8 q^{91} -1.08958e8 q^{93} +1.93892e9 q^{95} +5.84771e8 q^{97} -6.44799e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 141 q^{3} + 2051 q^{5} - 2417 q^{7} + 115741 q^{9} - 53118 q^{11} + 228488 q^{13} - 464555 q^{15} + 433095 q^{17} - 434954 q^{19} + 906875 q^{21} - 1124296 q^{23} + 5966065 q^{25} + 7820643 q^{27}+ \cdots - 641626736 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 11.3170 0.0806651 0.0403326 0.999186i \(-0.487158\pi\)
0.0403326 + 0.999186i \(0.487158\pi\)
\(4\) 0 0
\(5\) 2354.21 1.68454 0.842268 0.539059i \(-0.181220\pi\)
0.842268 + 0.539059i \(0.181220\pi\)
\(6\) 0 0
\(7\) −4597.91 −0.723801 −0.361900 0.932217i \(-0.617872\pi\)
−0.361900 + 0.932217i \(0.617872\pi\)
\(8\) 0 0
\(9\) −19554.9 −0.993493
\(10\) 0 0
\(11\) 32973.7 0.679049 0.339525 0.940597i \(-0.389734\pi\)
0.339525 + 0.940597i \(0.389734\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) 0 0
\(15\) 26642.6 0.135883
\(16\) 0 0
\(17\) 429836. 1.24820 0.624098 0.781346i \(-0.285466\pi\)
0.624098 + 0.781346i \(0.285466\pi\)
\(18\) 0 0
\(19\) 823596. 1.44985 0.724925 0.688828i \(-0.241874\pi\)
0.724925 + 0.688828i \(0.241874\pi\)
\(20\) 0 0
\(21\) −52034.5 −0.0583855
\(22\) 0 0
\(23\) −1.28007e6 −0.953806 −0.476903 0.878956i \(-0.658241\pi\)
−0.476903 + 0.878956i \(0.658241\pi\)
\(24\) 0 0
\(25\) 3.58918e6 1.83766
\(26\) 0 0
\(27\) −444056. −0.160805
\(28\) 0 0
\(29\) −3.75530e6 −0.985946 −0.492973 0.870045i \(-0.664090\pi\)
−0.492973 + 0.870045i \(0.664090\pi\)
\(30\) 0 0
\(31\) −9.62778e6 −1.87240 −0.936200 0.351468i \(-0.885682\pi\)
−0.936200 + 0.351468i \(0.885682\pi\)
\(32\) 0 0
\(33\) 373164. 0.0547756
\(34\) 0 0
\(35\) −1.08244e7 −1.21927
\(36\) 0 0
\(37\) 1.56238e7 1.37050 0.685249 0.728308i \(-0.259693\pi\)
0.685249 + 0.728308i \(0.259693\pi\)
\(38\) 0 0
\(39\) 323225. 0.0223725
\(40\) 0 0
\(41\) 2.86870e7 1.58547 0.792735 0.609567i \(-0.208657\pi\)
0.792735 + 0.609567i \(0.208657\pi\)
\(42\) 0 0
\(43\) 2.19320e7 0.978297 0.489148 0.872201i \(-0.337308\pi\)
0.489148 + 0.872201i \(0.337308\pi\)
\(44\) 0 0
\(45\) −4.60364e7 −1.67357
\(46\) 0 0
\(47\) 4.95057e7 1.47984 0.739921 0.672694i \(-0.234863\pi\)
0.739921 + 0.672694i \(0.234863\pi\)
\(48\) 0 0
\(49\) −1.92128e7 −0.476112
\(50\) 0 0
\(51\) 4.86446e6 0.100686
\(52\) 0 0
\(53\) 9.82331e7 1.71008 0.855040 0.518562i \(-0.173532\pi\)
0.855040 + 0.518562i \(0.173532\pi\)
\(54\) 0 0
\(55\) 7.76271e7 1.14388
\(56\) 0 0
\(57\) 9.32064e6 0.116952
\(58\) 0 0
\(59\) −2.59979e7 −0.279321 −0.139661 0.990199i \(-0.544601\pi\)
−0.139661 + 0.990199i \(0.544601\pi\)
\(60\) 0 0
\(61\) −8.44671e7 −0.781094 −0.390547 0.920583i \(-0.627714\pi\)
−0.390547 + 0.920583i \(0.627714\pi\)
\(62\) 0 0
\(63\) 8.99117e7 0.719091
\(64\) 0 0
\(65\) 6.72386e7 0.467206
\(66\) 0 0
\(67\) −1.61951e8 −0.981852 −0.490926 0.871201i \(-0.663342\pi\)
−0.490926 + 0.871201i \(0.663342\pi\)
\(68\) 0 0
\(69\) −1.44866e7 −0.0769389
\(70\) 0 0
\(71\) 3.46667e8 1.61901 0.809505 0.587113i \(-0.199736\pi\)
0.809505 + 0.587113i \(0.199736\pi\)
\(72\) 0 0
\(73\) 2.95177e7 0.121655 0.0608276 0.998148i \(-0.480626\pi\)
0.0608276 + 0.998148i \(0.480626\pi\)
\(74\) 0 0
\(75\) 4.06188e7 0.148235
\(76\) 0 0
\(77\) −1.51610e8 −0.491496
\(78\) 0 0
\(79\) −1.92628e8 −0.556412 −0.278206 0.960521i \(-0.589740\pi\)
−0.278206 + 0.960521i \(0.589740\pi\)
\(80\) 0 0
\(81\) 3.79874e8 0.980522
\(82\) 0 0
\(83\) 2.36393e8 0.546744 0.273372 0.961908i \(-0.411861\pi\)
0.273372 + 0.961908i \(0.411861\pi\)
\(84\) 0 0
\(85\) 1.01193e9 2.10263
\(86\) 0 0
\(87\) −4.24987e7 −0.0795314
\(88\) 0 0
\(89\) 1.08335e9 1.83026 0.915129 0.403162i \(-0.132089\pi\)
0.915129 + 0.403162i \(0.132089\pi\)
\(90\) 0 0
\(91\) −1.31321e8 −0.200746
\(92\) 0 0
\(93\) −1.08958e8 −0.151037
\(94\) 0 0
\(95\) 1.93892e9 2.44233
\(96\) 0 0
\(97\) 5.84771e8 0.670677 0.335338 0.942098i \(-0.391149\pi\)
0.335338 + 0.942098i \(0.391149\pi\)
\(98\) 0 0
\(99\) −6.44799e8 −0.674631
\(100\) 0 0
\(101\) −5.17234e8 −0.494585 −0.247292 0.968941i \(-0.579541\pi\)
−0.247292 + 0.968941i \(0.579541\pi\)
\(102\) 0 0
\(103\) 2.43025e8 0.212757 0.106378 0.994326i \(-0.466075\pi\)
0.106378 + 0.994326i \(0.466075\pi\)
\(104\) 0 0
\(105\) −1.22500e8 −0.0983524
\(106\) 0 0
\(107\) −1.92138e9 −1.41705 −0.708526 0.705684i \(-0.750640\pi\)
−0.708526 + 0.705684i \(0.750640\pi\)
\(108\) 0 0
\(109\) 9.22262e8 0.625799 0.312900 0.949786i \(-0.398700\pi\)
0.312900 + 0.949786i \(0.398700\pi\)
\(110\) 0 0
\(111\) 1.76814e8 0.110551
\(112\) 0 0
\(113\) 1.35214e9 0.780133 0.390066 0.920787i \(-0.372452\pi\)
0.390066 + 0.920787i \(0.372452\pi\)
\(114\) 0 0
\(115\) −3.01357e9 −1.60672
\(116\) 0 0
\(117\) −5.58508e8 −0.275545
\(118\) 0 0
\(119\) −1.97635e9 −0.903446
\(120\) 0 0
\(121\) −1.27068e9 −0.538892
\(122\) 0 0
\(123\) 3.24651e8 0.127892
\(124\) 0 0
\(125\) 3.85163e9 1.41107
\(126\) 0 0
\(127\) −1.38052e9 −0.470898 −0.235449 0.971887i \(-0.575656\pi\)
−0.235449 + 0.971887i \(0.575656\pi\)
\(128\) 0 0
\(129\) 2.48205e8 0.0789144
\(130\) 0 0
\(131\) 5.66550e9 1.68081 0.840403 0.541963i \(-0.182319\pi\)
0.840403 + 0.541963i \(0.182319\pi\)
\(132\) 0 0
\(133\) −3.78682e9 −1.04940
\(134\) 0 0
\(135\) −1.04540e9 −0.270882
\(136\) 0 0
\(137\) 5.86061e9 1.42135 0.710674 0.703521i \(-0.248390\pi\)
0.710674 + 0.703521i \(0.248390\pi\)
\(138\) 0 0
\(139\) −3.84126e9 −0.872784 −0.436392 0.899757i \(-0.643744\pi\)
−0.436392 + 0.899757i \(0.643744\pi\)
\(140\) 0 0
\(141\) 5.60256e8 0.119372
\(142\) 0 0
\(143\) 9.41763e8 0.188334
\(144\) 0 0
\(145\) −8.84076e9 −1.66086
\(146\) 0 0
\(147\) −2.17432e8 −0.0384057
\(148\) 0 0
\(149\) 3.50642e9 0.582809 0.291404 0.956600i \(-0.405877\pi\)
0.291404 + 0.956600i \(0.405877\pi\)
\(150\) 0 0
\(151\) 2.70489e9 0.423403 0.211701 0.977334i \(-0.432100\pi\)
0.211701 + 0.977334i \(0.432100\pi\)
\(152\) 0 0
\(153\) −8.40542e9 −1.24007
\(154\) 0 0
\(155\) −2.26658e10 −3.15412
\(156\) 0 0
\(157\) 3.50966e9 0.461017 0.230509 0.973070i \(-0.425961\pi\)
0.230509 + 0.973070i \(0.425961\pi\)
\(158\) 0 0
\(159\) 1.11170e9 0.137944
\(160\) 0 0
\(161\) 5.88567e9 0.690366
\(162\) 0 0
\(163\) −1.32974e8 −0.0147545 −0.00737723 0.999973i \(-0.502348\pi\)
−0.00737723 + 0.999973i \(0.502348\pi\)
\(164\) 0 0
\(165\) 8.78506e8 0.0922714
\(166\) 0 0
\(167\) 3.47780e9 0.346003 0.173002 0.984922i \(-0.444653\pi\)
0.173002 + 0.984922i \(0.444653\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −1.61054e10 −1.44042
\(172\) 0 0
\(173\) −7.02978e9 −0.596670 −0.298335 0.954461i \(-0.596431\pi\)
−0.298335 + 0.954461i \(0.596431\pi\)
\(174\) 0 0
\(175\) −1.65027e10 −1.33010
\(176\) 0 0
\(177\) −2.94218e8 −0.0225315
\(178\) 0 0
\(179\) −1.86437e10 −1.35736 −0.678678 0.734436i \(-0.737447\pi\)
−0.678678 + 0.734436i \(0.737447\pi\)
\(180\) 0 0
\(181\) −3.40723e9 −0.235965 −0.117983 0.993016i \(-0.537643\pi\)
−0.117983 + 0.993016i \(0.537643\pi\)
\(182\) 0 0
\(183\) −9.55914e8 −0.0630070
\(184\) 0 0
\(185\) 3.67817e10 2.30865
\(186\) 0 0
\(187\) 1.41733e10 0.847587
\(188\) 0 0
\(189\) 2.04173e9 0.116391
\(190\) 0 0
\(191\) −2.23903e10 −1.21733 −0.608666 0.793427i \(-0.708295\pi\)
−0.608666 + 0.793427i \(0.708295\pi\)
\(192\) 0 0
\(193\) −1.22087e10 −0.633376 −0.316688 0.948530i \(-0.602571\pi\)
−0.316688 + 0.948530i \(0.602571\pi\)
\(194\) 0 0
\(195\) 7.60939e8 0.0376872
\(196\) 0 0
\(197\) −2.49114e10 −1.17842 −0.589211 0.807979i \(-0.700561\pi\)
−0.589211 + 0.807979i \(0.700561\pi\)
\(198\) 0 0
\(199\) −3.21750e10 −1.45439 −0.727194 0.686432i \(-0.759176\pi\)
−0.727194 + 0.686432i \(0.759176\pi\)
\(200\) 0 0
\(201\) −1.83280e9 −0.0792012
\(202\) 0 0
\(203\) 1.72665e10 0.713628
\(204\) 0 0
\(205\) 6.75353e10 2.67078
\(206\) 0 0
\(207\) 2.50318e10 0.947600
\(208\) 0 0
\(209\) 2.71571e10 0.984520
\(210\) 0 0
\(211\) −4.16591e10 −1.44690 −0.723451 0.690376i \(-0.757445\pi\)
−0.723451 + 0.690376i \(0.757445\pi\)
\(212\) 0 0
\(213\) 3.92323e9 0.130598
\(214\) 0 0
\(215\) 5.16326e10 1.64798
\(216\) 0 0
\(217\) 4.42676e10 1.35524
\(218\) 0 0
\(219\) 3.34052e8 0.00981332
\(220\) 0 0
\(221\) 1.22766e10 0.346187
\(222\) 0 0
\(223\) −4.98678e10 −1.35036 −0.675178 0.737655i \(-0.735933\pi\)
−0.675178 + 0.737655i \(0.735933\pi\)
\(224\) 0 0
\(225\) −7.01862e10 −1.82570
\(226\) 0 0
\(227\) 5.43841e10 1.35943 0.679713 0.733478i \(-0.262104\pi\)
0.679713 + 0.733478i \(0.262104\pi\)
\(228\) 0 0
\(229\) 2.27487e10 0.546634 0.273317 0.961924i \(-0.411879\pi\)
0.273317 + 0.961924i \(0.411879\pi\)
\(230\) 0 0
\(231\) −1.71577e9 −0.0396466
\(232\) 0 0
\(233\) −7.65100e10 −1.70066 −0.850328 0.526253i \(-0.823597\pi\)
−0.850328 + 0.526253i \(0.823597\pi\)
\(234\) 0 0
\(235\) 1.16547e11 2.49285
\(236\) 0 0
\(237\) −2.17997e9 −0.0448830
\(238\) 0 0
\(239\) 7.77408e9 0.154120 0.0770599 0.997026i \(-0.475447\pi\)
0.0770599 + 0.997026i \(0.475447\pi\)
\(240\) 0 0
\(241\) 4.56052e9 0.0870838 0.0435419 0.999052i \(-0.486136\pi\)
0.0435419 + 0.999052i \(0.486136\pi\)
\(242\) 0 0
\(243\) 1.30394e10 0.239899
\(244\) 0 0
\(245\) −4.52311e10 −0.802028
\(246\) 0 0
\(247\) 2.35227e10 0.402116
\(248\) 0 0
\(249\) 2.67526e9 0.0441032
\(250\) 0 0
\(251\) 3.43672e10 0.546527 0.273264 0.961939i \(-0.411897\pi\)
0.273264 + 0.961939i \(0.411897\pi\)
\(252\) 0 0
\(253\) −4.22089e10 −0.647681
\(254\) 0 0
\(255\) 1.14520e10 0.169609
\(256\) 0 0
\(257\) −1.10777e9 −0.0158398 −0.00791989 0.999969i \(-0.502521\pi\)
−0.00791989 + 0.999969i \(0.502521\pi\)
\(258\) 0 0
\(259\) −7.18368e10 −0.991968
\(260\) 0 0
\(261\) 7.34345e10 0.979530
\(262\) 0 0
\(263\) −1.40811e11 −1.81483 −0.907414 0.420237i \(-0.861947\pi\)
−0.907414 + 0.420237i \(0.861947\pi\)
\(264\) 0 0
\(265\) 2.31261e11 2.88069
\(266\) 0 0
\(267\) 1.22602e10 0.147638
\(268\) 0 0
\(269\) 5.53340e8 0.00644328 0.00322164 0.999995i \(-0.498975\pi\)
0.00322164 + 0.999995i \(0.498975\pi\)
\(270\) 0 0
\(271\) 3.70252e10 0.417000 0.208500 0.978022i \(-0.433142\pi\)
0.208500 + 0.978022i \(0.433142\pi\)
\(272\) 0 0
\(273\) −1.48616e9 −0.0161932
\(274\) 0 0
\(275\) 1.18349e11 1.24786
\(276\) 0 0
\(277\) −1.39159e10 −0.142020 −0.0710102 0.997476i \(-0.522622\pi\)
−0.0710102 + 0.997476i \(0.522622\pi\)
\(278\) 0 0
\(279\) 1.88271e11 1.86022
\(280\) 0 0
\(281\) 3.03696e10 0.290577 0.145288 0.989389i \(-0.453589\pi\)
0.145288 + 0.989389i \(0.453589\pi\)
\(282\) 0 0
\(283\) 6.56957e10 0.608833 0.304416 0.952539i \(-0.401539\pi\)
0.304416 + 0.952539i \(0.401539\pi\)
\(284\) 0 0
\(285\) 2.19427e10 0.197010
\(286\) 0 0
\(287\) −1.31900e11 −1.14756
\(288\) 0 0
\(289\) 6.61714e10 0.557995
\(290\) 0 0
\(291\) 6.61786e9 0.0541002
\(292\) 0 0
\(293\) −1.35679e10 −0.107549 −0.0537746 0.998553i \(-0.517125\pi\)
−0.0537746 + 0.998553i \(0.517125\pi\)
\(294\) 0 0
\(295\) −6.12045e10 −0.470527
\(296\) 0 0
\(297\) −1.46422e10 −0.109195
\(298\) 0 0
\(299\) −3.65602e10 −0.264538
\(300\) 0 0
\(301\) −1.00841e11 −0.708092
\(302\) 0 0
\(303\) −5.85353e9 −0.0398957
\(304\) 0 0
\(305\) −1.98853e11 −1.31578
\(306\) 0 0
\(307\) −7.65194e10 −0.491642 −0.245821 0.969315i \(-0.579058\pi\)
−0.245821 + 0.969315i \(0.579058\pi\)
\(308\) 0 0
\(309\) 2.75031e9 0.0171621
\(310\) 0 0
\(311\) −7.77688e10 −0.471394 −0.235697 0.971827i \(-0.575737\pi\)
−0.235697 + 0.971827i \(0.575737\pi\)
\(312\) 0 0
\(313\) −2.55951e11 −1.50733 −0.753664 0.657260i \(-0.771715\pi\)
−0.753664 + 0.657260i \(0.771715\pi\)
\(314\) 0 0
\(315\) 2.11671e11 1.21134
\(316\) 0 0
\(317\) −2.81795e11 −1.56735 −0.783675 0.621171i \(-0.786657\pi\)
−0.783675 + 0.621171i \(0.786657\pi\)
\(318\) 0 0
\(319\) −1.23826e11 −0.669506
\(320\) 0 0
\(321\) −2.17442e10 −0.114307
\(322\) 0 0
\(323\) 3.54012e11 1.80970
\(324\) 0 0
\(325\) 1.02511e11 0.509676
\(326\) 0 0
\(327\) 1.04372e10 0.0504802
\(328\) 0 0
\(329\) −2.27623e11 −1.07111
\(330\) 0 0
\(331\) −1.74585e11 −0.799433 −0.399716 0.916639i \(-0.630891\pi\)
−0.399716 + 0.916639i \(0.630891\pi\)
\(332\) 0 0
\(333\) −3.05522e11 −1.36158
\(334\) 0 0
\(335\) −3.81266e11 −1.65397
\(336\) 0 0
\(337\) 3.50642e10 0.148091 0.0740456 0.997255i \(-0.476409\pi\)
0.0740456 + 0.997255i \(0.476409\pi\)
\(338\) 0 0
\(339\) 1.53022e10 0.0629295
\(340\) 0 0
\(341\) −3.17464e11 −1.27145
\(342\) 0 0
\(343\) 2.73881e11 1.06841
\(344\) 0 0
\(345\) −3.41045e10 −0.129606
\(346\) 0 0
\(347\) −9.21912e10 −0.341355 −0.170678 0.985327i \(-0.554596\pi\)
−0.170678 + 0.985327i \(0.554596\pi\)
\(348\) 0 0
\(349\) −8.25046e10 −0.297690 −0.148845 0.988861i \(-0.547556\pi\)
−0.148845 + 0.988861i \(0.547556\pi\)
\(350\) 0 0
\(351\) −1.26827e10 −0.0445994
\(352\) 0 0
\(353\) 1.49140e11 0.511220 0.255610 0.966780i \(-0.417724\pi\)
0.255610 + 0.966780i \(0.417724\pi\)
\(354\) 0 0
\(355\) 8.16126e11 2.72728
\(356\) 0 0
\(357\) −2.23663e10 −0.0728765
\(358\) 0 0
\(359\) 5.95504e11 1.89217 0.946084 0.323922i \(-0.105002\pi\)
0.946084 + 0.323922i \(0.105002\pi\)
\(360\) 0 0
\(361\) 3.55623e11 1.10207
\(362\) 0 0
\(363\) −1.43803e10 −0.0434698
\(364\) 0 0
\(365\) 6.94910e10 0.204932
\(366\) 0 0
\(367\) −1.92484e11 −0.553858 −0.276929 0.960890i \(-0.589317\pi\)
−0.276929 + 0.960890i \(0.589317\pi\)
\(368\) 0 0
\(369\) −5.60972e11 −1.57515
\(370\) 0 0
\(371\) −4.51667e11 −1.23776
\(372\) 0 0
\(373\) −7.99931e10 −0.213975 −0.106987 0.994260i \(-0.534120\pi\)
−0.106987 + 0.994260i \(0.534120\pi\)
\(374\) 0 0
\(375\) 4.35888e10 0.113824
\(376\) 0 0
\(377\) −1.07255e11 −0.273452
\(378\) 0 0
\(379\) −7.76615e11 −1.93343 −0.966717 0.255847i \(-0.917646\pi\)
−0.966717 + 0.255847i \(0.917646\pi\)
\(380\) 0 0
\(381\) −1.56234e10 −0.0379850
\(382\) 0 0
\(383\) 5.69019e11 1.35124 0.675619 0.737251i \(-0.263876\pi\)
0.675619 + 0.737251i \(0.263876\pi\)
\(384\) 0 0
\(385\) −3.56922e11 −0.827943
\(386\) 0 0
\(387\) −4.28879e11 −0.971931
\(388\) 0 0
\(389\) 8.19337e11 1.81422 0.907109 0.420895i \(-0.138284\pi\)
0.907109 + 0.420895i \(0.138284\pi\)
\(390\) 0 0
\(391\) −5.50223e11 −1.19054
\(392\) 0 0
\(393\) 6.41165e10 0.135582
\(394\) 0 0
\(395\) −4.53486e11 −0.937296
\(396\) 0 0
\(397\) −8.93359e10 −0.180496 −0.0902482 0.995919i \(-0.528766\pi\)
−0.0902482 + 0.995919i \(0.528766\pi\)
\(398\) 0 0
\(399\) −4.28554e10 −0.0846502
\(400\) 0 0
\(401\) −7.57949e11 −1.46383 −0.731915 0.681396i \(-0.761373\pi\)
−0.731915 + 0.681396i \(0.761373\pi\)
\(402\) 0 0
\(403\) −2.74979e11 −0.519310
\(404\) 0 0
\(405\) 8.94304e11 1.65172
\(406\) 0 0
\(407\) 5.15175e11 0.930636
\(408\) 0 0
\(409\) −3.05185e10 −0.0539273 −0.0269637 0.999636i \(-0.508584\pi\)
−0.0269637 + 0.999636i \(0.508584\pi\)
\(410\) 0 0
\(411\) 6.63246e10 0.114653
\(412\) 0 0
\(413\) 1.19536e11 0.202173
\(414\) 0 0
\(415\) 5.56520e11 0.921010
\(416\) 0 0
\(417\) −4.34715e10 −0.0704032
\(418\) 0 0
\(419\) 2.18779e11 0.346771 0.173386 0.984854i \(-0.444529\pi\)
0.173386 + 0.984854i \(0.444529\pi\)
\(420\) 0 0
\(421\) −2.83336e11 −0.439574 −0.219787 0.975548i \(-0.570536\pi\)
−0.219787 + 0.975548i \(0.570536\pi\)
\(422\) 0 0
\(423\) −9.68081e11 −1.47021
\(424\) 0 0
\(425\) 1.54276e12 2.29376
\(426\) 0 0
\(427\) 3.88372e11 0.565356
\(428\) 0 0
\(429\) 1.06579e10 0.0151920
\(430\) 0 0
\(431\) 8.86220e11 1.23707 0.618534 0.785758i \(-0.287727\pi\)
0.618534 + 0.785758i \(0.287727\pi\)
\(432\) 0 0
\(433\) −2.20953e11 −0.302068 −0.151034 0.988529i \(-0.548260\pi\)
−0.151034 + 0.988529i \(0.548260\pi\)
\(434\) 0 0
\(435\) −1.00051e11 −0.133974
\(436\) 0 0
\(437\) −1.05426e12 −1.38288
\(438\) 0 0
\(439\) −3.29471e11 −0.423376 −0.211688 0.977337i \(-0.567896\pi\)
−0.211688 + 0.977337i \(0.567896\pi\)
\(440\) 0 0
\(441\) 3.75706e11 0.473014
\(442\) 0 0
\(443\) −3.03581e11 −0.374505 −0.187253 0.982312i \(-0.559958\pi\)
−0.187253 + 0.982312i \(0.559958\pi\)
\(444\) 0 0
\(445\) 2.55042e12 3.08313
\(446\) 0 0
\(447\) 3.96822e10 0.0470123
\(448\) 0 0
\(449\) 4.98242e10 0.0578538 0.0289269 0.999582i \(-0.490791\pi\)
0.0289269 + 0.999582i \(0.490791\pi\)
\(450\) 0 0
\(451\) 9.45918e11 1.07661
\(452\) 0 0
\(453\) 3.06113e10 0.0341538
\(454\) 0 0
\(455\) −3.09157e11 −0.338164
\(456\) 0 0
\(457\) 1.80697e12 1.93788 0.968941 0.247292i \(-0.0795408\pi\)
0.968941 + 0.247292i \(0.0795408\pi\)
\(458\) 0 0
\(459\) −1.90871e11 −0.200717
\(460\) 0 0
\(461\) −4.46003e11 −0.459921 −0.229961 0.973200i \(-0.573860\pi\)
−0.229961 + 0.973200i \(0.573860\pi\)
\(462\) 0 0
\(463\) −6.27698e11 −0.634799 −0.317399 0.948292i \(-0.602810\pi\)
−0.317399 + 0.948292i \(0.602810\pi\)
\(464\) 0 0
\(465\) −2.56509e11 −0.254428
\(466\) 0 0
\(467\) 1.24133e12 1.20770 0.603852 0.797096i \(-0.293632\pi\)
0.603852 + 0.797096i \(0.293632\pi\)
\(468\) 0 0
\(469\) 7.44634e11 0.710666
\(470\) 0 0
\(471\) 3.97189e10 0.0371880
\(472\) 0 0
\(473\) 7.23181e11 0.664312
\(474\) 0 0
\(475\) 2.95604e12 2.66433
\(476\) 0 0
\(477\) −1.92094e12 −1.69895
\(478\) 0 0
\(479\) −4.80660e11 −0.417184 −0.208592 0.978003i \(-0.566888\pi\)
−0.208592 + 0.978003i \(0.566888\pi\)
\(480\) 0 0
\(481\) 4.46231e11 0.380108
\(482\) 0 0
\(483\) 6.66081e10 0.0556884
\(484\) 0 0
\(485\) 1.37668e12 1.12978
\(486\) 0 0
\(487\) −7.76883e11 −0.625857 −0.312929 0.949777i \(-0.601310\pi\)
−0.312929 + 0.949777i \(0.601310\pi\)
\(488\) 0 0
\(489\) −1.50487e9 −0.00119017
\(490\) 0 0
\(491\) −1.13450e12 −0.880926 −0.440463 0.897771i \(-0.645186\pi\)
−0.440463 + 0.897771i \(0.645186\pi\)
\(492\) 0 0
\(493\) −1.61416e12 −1.23065
\(494\) 0 0
\(495\) −1.51799e12 −1.13644
\(496\) 0 0
\(497\) −1.59394e12 −1.17184
\(498\) 0 0
\(499\) 1.86224e11 0.134457 0.0672286 0.997738i \(-0.478584\pi\)
0.0672286 + 0.997738i \(0.478584\pi\)
\(500\) 0 0
\(501\) 3.93583e10 0.0279104
\(502\) 0 0
\(503\) −7.93901e10 −0.0552981 −0.0276491 0.999618i \(-0.508802\pi\)
−0.0276491 + 0.999618i \(0.508802\pi\)
\(504\) 0 0
\(505\) −1.21768e12 −0.833146
\(506\) 0 0
\(507\) 9.23163e9 0.00620501
\(508\) 0 0
\(509\) 2.83749e11 0.187372 0.0936858 0.995602i \(-0.470135\pi\)
0.0936858 + 0.995602i \(0.470135\pi\)
\(510\) 0 0
\(511\) −1.35720e11 −0.0880541
\(512\) 0 0
\(513\) −3.65723e11 −0.233144
\(514\) 0 0
\(515\) 5.72132e11 0.358397
\(516\) 0 0
\(517\) 1.63239e12 1.00489
\(518\) 0 0
\(519\) −7.95560e10 −0.0481305
\(520\) 0 0
\(521\) 2.72237e12 1.61874 0.809371 0.587298i \(-0.199808\pi\)
0.809371 + 0.587298i \(0.199808\pi\)
\(522\) 0 0
\(523\) 8.68410e11 0.507536 0.253768 0.967265i \(-0.418330\pi\)
0.253768 + 0.967265i \(0.418330\pi\)
\(524\) 0 0
\(525\) −1.86761e11 −0.107293
\(526\) 0 0
\(527\) −4.13837e12 −2.33712
\(528\) 0 0
\(529\) −1.62562e11 −0.0902542
\(530\) 0 0
\(531\) 5.08387e11 0.277504
\(532\) 0 0
\(533\) 8.19330e11 0.439730
\(534\) 0 0
\(535\) −4.52333e12 −2.38708
\(536\) 0 0
\(537\) −2.10991e11 −0.109491
\(538\) 0 0
\(539\) −6.33520e11 −0.323304
\(540\) 0 0
\(541\) −1.26830e12 −0.636552 −0.318276 0.947998i \(-0.603104\pi\)
−0.318276 + 0.947998i \(0.603104\pi\)
\(542\) 0 0
\(543\) −3.85596e10 −0.0190341
\(544\) 0 0
\(545\) 2.17120e12 1.05418
\(546\) 0 0
\(547\) 2.42623e12 1.15875 0.579375 0.815061i \(-0.303297\pi\)
0.579375 + 0.815061i \(0.303297\pi\)
\(548\) 0 0
\(549\) 1.65175e12 0.776011
\(550\) 0 0
\(551\) −3.09285e12 −1.42947
\(552\) 0 0
\(553\) 8.85684e11 0.402732
\(554\) 0 0
\(555\) 4.16259e11 0.186228
\(556\) 0 0
\(557\) −8.75783e11 −0.385521 −0.192761 0.981246i \(-0.561744\pi\)
−0.192761 + 0.981246i \(0.561744\pi\)
\(558\) 0 0
\(559\) 6.26401e11 0.271331
\(560\) 0 0
\(561\) 1.60399e11 0.0683707
\(562\) 0 0
\(563\) 1.17721e12 0.493818 0.246909 0.969039i \(-0.420585\pi\)
0.246909 + 0.969039i \(0.420585\pi\)
\(564\) 0 0
\(565\) 3.18322e12 1.31416
\(566\) 0 0
\(567\) −1.74663e12 −0.709702
\(568\) 0 0
\(569\) −5.76718e11 −0.230652 −0.115326 0.993328i \(-0.536791\pi\)
−0.115326 + 0.993328i \(0.536791\pi\)
\(570\) 0 0
\(571\) −3.78604e10 −0.0149047 −0.00745234 0.999972i \(-0.502372\pi\)
−0.00745234 + 0.999972i \(0.502372\pi\)
\(572\) 0 0
\(573\) −2.53391e11 −0.0981962
\(574\) 0 0
\(575\) −4.59442e12 −1.75277
\(576\) 0 0
\(577\) 2.34089e12 0.879204 0.439602 0.898193i \(-0.355119\pi\)
0.439602 + 0.898193i \(0.355119\pi\)
\(578\) 0 0
\(579\) −1.38166e11 −0.0510914
\(580\) 0 0
\(581\) −1.08692e12 −0.395734
\(582\) 0 0
\(583\) 3.23911e12 1.16123
\(584\) 0 0
\(585\) −1.31485e12 −0.464166
\(586\) 0 0
\(587\) 1.28235e12 0.445794 0.222897 0.974842i \(-0.428449\pi\)
0.222897 + 0.974842i \(0.428449\pi\)
\(588\) 0 0
\(589\) −7.92940e12 −2.71470
\(590\) 0 0
\(591\) −2.81923e11 −0.0950575
\(592\) 0 0
\(593\) −4.04369e12 −1.34286 −0.671431 0.741067i \(-0.734320\pi\)
−0.671431 + 0.741067i \(0.734320\pi\)
\(594\) 0 0
\(595\) −4.65274e12 −1.52189
\(596\) 0 0
\(597\) −3.64125e11 −0.117318
\(598\) 0 0
\(599\) −2.36350e12 −0.750128 −0.375064 0.926999i \(-0.622379\pi\)
−0.375064 + 0.926999i \(0.622379\pi\)
\(600\) 0 0
\(601\) −2.49710e12 −0.780730 −0.390365 0.920660i \(-0.627651\pi\)
−0.390365 + 0.920660i \(0.627651\pi\)
\(602\) 0 0
\(603\) 3.16693e12 0.975464
\(604\) 0 0
\(605\) −2.99145e12 −0.907783
\(606\) 0 0
\(607\) 2.07460e11 0.0620277 0.0310139 0.999519i \(-0.490126\pi\)
0.0310139 + 0.999519i \(0.490126\pi\)
\(608\) 0 0
\(609\) 1.95405e11 0.0575649
\(610\) 0 0
\(611\) 1.41393e12 0.410434
\(612\) 0 0
\(613\) −3.52577e12 −1.00851 −0.504257 0.863554i \(-0.668234\pi\)
−0.504257 + 0.863554i \(0.668234\pi\)
\(614\) 0 0
\(615\) 7.64297e11 0.215439
\(616\) 0 0
\(617\) −1.94143e12 −0.539309 −0.269654 0.962957i \(-0.586909\pi\)
−0.269654 + 0.962957i \(0.586909\pi\)
\(618\) 0 0
\(619\) 5.94875e12 1.62861 0.814306 0.580436i \(-0.197118\pi\)
0.814306 + 0.580436i \(0.197118\pi\)
\(620\) 0 0
\(621\) 5.68424e11 0.153377
\(622\) 0 0
\(623\) −4.98112e12 −1.32474
\(624\) 0 0
\(625\) 2.05741e12 0.539339
\(626\) 0 0
\(627\) 3.07336e11 0.0794164
\(628\) 0 0
\(629\) 6.71567e12 1.71065
\(630\) 0 0
\(631\) 4.40472e12 1.10608 0.553040 0.833155i \(-0.313468\pi\)
0.553040 + 0.833155i \(0.313468\pi\)
\(632\) 0 0
\(633\) −4.71456e11 −0.116714
\(634\) 0 0
\(635\) −3.25004e12 −0.793244
\(636\) 0 0
\(637\) −5.48738e11 −0.132050
\(638\) 0 0
\(639\) −6.77904e12 −1.60848
\(640\) 0 0
\(641\) −2.30805e12 −0.539989 −0.269995 0.962862i \(-0.587022\pi\)
−0.269995 + 0.962862i \(0.587022\pi\)
\(642\) 0 0
\(643\) 6.27875e12 1.44852 0.724259 0.689528i \(-0.242182\pi\)
0.724259 + 0.689528i \(0.242182\pi\)
\(644\) 0 0
\(645\) 5.84326e11 0.132934
\(646\) 0 0
\(647\) 3.44904e12 0.773800 0.386900 0.922122i \(-0.373546\pi\)
0.386900 + 0.922122i \(0.373546\pi\)
\(648\) 0 0
\(649\) −8.57248e11 −0.189673
\(650\) 0 0
\(651\) 5.00977e11 0.109321
\(652\) 0 0
\(653\) −4.76677e12 −1.02592 −0.512962 0.858411i \(-0.671452\pi\)
−0.512962 + 0.858411i \(0.671452\pi\)
\(654\) 0 0
\(655\) 1.33378e13 2.83138
\(656\) 0 0
\(657\) −5.77217e11 −0.120864
\(658\) 0 0
\(659\) 1.92345e12 0.397280 0.198640 0.980073i \(-0.436348\pi\)
0.198640 + 0.980073i \(0.436348\pi\)
\(660\) 0 0
\(661\) 7.20926e12 1.46887 0.734436 0.678678i \(-0.237447\pi\)
0.734436 + 0.678678i \(0.237447\pi\)
\(662\) 0 0
\(663\) 1.38934e11 0.0279252
\(664\) 0 0
\(665\) −8.91497e12 −1.76776
\(666\) 0 0
\(667\) 4.80706e12 0.940401
\(668\) 0 0
\(669\) −5.64354e11 −0.108927
\(670\) 0 0
\(671\) −2.78520e12 −0.530401
\(672\) 0 0
\(673\) −8.70236e12 −1.63519 −0.817597 0.575791i \(-0.804694\pi\)
−0.817597 + 0.575791i \(0.804694\pi\)
\(674\) 0 0
\(675\) −1.59380e12 −0.295506
\(676\) 0 0
\(677\) 1.94340e12 0.355561 0.177780 0.984070i \(-0.443108\pi\)
0.177780 + 0.984070i \(0.443108\pi\)
\(678\) 0 0
\(679\) −2.68873e12 −0.485436
\(680\) 0 0
\(681\) 6.15465e11 0.109658
\(682\) 0 0
\(683\) 2.36069e12 0.415094 0.207547 0.978225i \(-0.433452\pi\)
0.207547 + 0.978225i \(0.433452\pi\)
\(684\) 0 0
\(685\) 1.37971e13 2.39431
\(686\) 0 0
\(687\) 2.57447e11 0.0440943
\(688\) 0 0
\(689\) 2.80564e12 0.474291
\(690\) 0 0
\(691\) 1.34208e12 0.223937 0.111968 0.993712i \(-0.464284\pi\)
0.111968 + 0.993712i \(0.464284\pi\)
\(692\) 0 0
\(693\) 2.96473e12 0.488298
\(694\) 0 0
\(695\) −9.04313e12 −1.47024
\(696\) 0 0
\(697\) 1.23307e13 1.97898
\(698\) 0 0
\(699\) −8.65864e11 −0.137184
\(700\) 0 0
\(701\) −1.25069e12 −0.195622 −0.0978112 0.995205i \(-0.531184\pi\)
−0.0978112 + 0.995205i \(0.531184\pi\)
\(702\) 0 0
\(703\) 1.28677e13 1.98702
\(704\) 0 0
\(705\) 1.31896e12 0.201086
\(706\) 0 0
\(707\) 2.37819e12 0.357981
\(708\) 0 0
\(709\) −1.00959e13 −1.50050 −0.750252 0.661152i \(-0.770068\pi\)
−0.750252 + 0.661152i \(0.770068\pi\)
\(710\) 0 0
\(711\) 3.76682e12 0.552792
\(712\) 0 0
\(713\) 1.23243e13 1.78591
\(714\) 0 0
\(715\) 2.21711e12 0.317256
\(716\) 0 0
\(717\) 8.79792e10 0.0124321
\(718\) 0 0
\(719\) −1.07531e13 −1.50057 −0.750284 0.661116i \(-0.770083\pi\)
−0.750284 + 0.661116i \(0.770083\pi\)
\(720\) 0 0
\(721\) −1.11741e12 −0.153994
\(722\) 0 0
\(723\) 5.16114e10 0.00702462
\(724\) 0 0
\(725\) −1.34784e13 −1.81183
\(726\) 0 0
\(727\) 9.11374e12 1.21002 0.605009 0.796219i \(-0.293169\pi\)
0.605009 + 0.796219i \(0.293169\pi\)
\(728\) 0 0
\(729\) −7.32950e12 −0.961170
\(730\) 0 0
\(731\) 9.42718e12 1.22111
\(732\) 0 0
\(733\) −6.10729e12 −0.781414 −0.390707 0.920515i \(-0.627769\pi\)
−0.390707 + 0.920515i \(0.627769\pi\)
\(734\) 0 0
\(735\) −5.11880e11 −0.0646957
\(736\) 0 0
\(737\) −5.34012e12 −0.666726
\(738\) 0 0
\(739\) −1.63744e12 −0.201960 −0.100980 0.994888i \(-0.532198\pi\)
−0.100980 + 0.994888i \(0.532198\pi\)
\(740\) 0 0
\(741\) 2.66207e11 0.0324367
\(742\) 0 0
\(743\) 5.53753e12 0.666601 0.333301 0.942821i \(-0.391838\pi\)
0.333301 + 0.942821i \(0.391838\pi\)
\(744\) 0 0
\(745\) 8.25486e12 0.981762
\(746\) 0 0
\(747\) −4.62266e12 −0.543186
\(748\) 0 0
\(749\) 8.83432e12 1.02566
\(750\) 0 0
\(751\) 5.42187e12 0.621970 0.310985 0.950415i \(-0.399341\pi\)
0.310985 + 0.950415i \(0.399341\pi\)
\(752\) 0 0
\(753\) 3.88933e11 0.0440857
\(754\) 0 0
\(755\) 6.36788e12 0.713237
\(756\) 0 0
\(757\) 1.11572e12 0.123487 0.0617437 0.998092i \(-0.480334\pi\)
0.0617437 + 0.998092i \(0.480334\pi\)
\(758\) 0 0
\(759\) −4.77678e11 −0.0522453
\(760\) 0 0
\(761\) 1.63908e12 0.177162 0.0885809 0.996069i \(-0.471767\pi\)
0.0885809 + 0.996069i \(0.471767\pi\)
\(762\) 0 0
\(763\) −4.24048e12 −0.452954
\(764\) 0 0
\(765\) −1.97881e13 −2.08895
\(766\) 0 0
\(767\) −7.42526e11 −0.0774698
\(768\) 0 0
\(769\) 3.81852e12 0.393756 0.196878 0.980428i \(-0.436920\pi\)
0.196878 + 0.980428i \(0.436920\pi\)
\(770\) 0 0
\(771\) −1.25366e10 −0.00127772
\(772\) 0 0
\(773\) 3.33890e12 0.336354 0.168177 0.985757i \(-0.446212\pi\)
0.168177 + 0.985757i \(0.446212\pi\)
\(774\) 0 0
\(775\) −3.45559e13 −3.44084
\(776\) 0 0
\(777\) −8.12977e11 −0.0800172
\(778\) 0 0
\(779\) 2.36265e13 2.29869
\(780\) 0 0
\(781\) 1.14309e13 1.09939
\(782\) 0 0
\(783\) 1.66756e12 0.158545
\(784\) 0 0
\(785\) 8.26249e12 0.776600
\(786\) 0 0
\(787\) −9.82101e12 −0.912577 −0.456289 0.889832i \(-0.650822\pi\)
−0.456289 + 0.889832i \(0.650822\pi\)
\(788\) 0 0
\(789\) −1.59356e12 −0.146393
\(790\) 0 0
\(791\) −6.21701e12 −0.564661
\(792\) 0 0
\(793\) −2.41246e12 −0.216636
\(794\) 0 0
\(795\) 2.61719e12 0.232371
\(796\) 0 0
\(797\) 7.91721e12 0.695040 0.347520 0.937673i \(-0.387024\pi\)
0.347520 + 0.937673i \(0.387024\pi\)
\(798\) 0 0
\(799\) 2.12794e13 1.84713
\(800\) 0 0
\(801\) −2.11847e13 −1.81835
\(802\) 0 0
\(803\) 9.73311e11 0.0826098
\(804\) 0 0
\(805\) 1.38561e13 1.16295
\(806\) 0 0
\(807\) 6.26215e9 0.000519748 0
\(808\) 0 0
\(809\) −1.31850e12 −0.108221 −0.0541105 0.998535i \(-0.517232\pi\)
−0.0541105 + 0.998535i \(0.517232\pi\)
\(810\) 0 0
\(811\) 8.40957e12 0.682622 0.341311 0.939950i \(-0.389129\pi\)
0.341311 + 0.939950i \(0.389129\pi\)
\(812\) 0 0
\(813\) 4.19015e11 0.0336374
\(814\) 0 0
\(815\) −3.13049e11 −0.0248544
\(816\) 0 0
\(817\) 1.80631e13 1.41838
\(818\) 0 0
\(819\) 2.56797e12 0.199440
\(820\) 0 0
\(821\) −2.21766e13 −1.70354 −0.851768 0.523919i \(-0.824470\pi\)
−0.851768 + 0.523919i \(0.824470\pi\)
\(822\) 0 0
\(823\) −5.30516e12 −0.403087 −0.201544 0.979480i \(-0.564596\pi\)
−0.201544 + 0.979480i \(0.564596\pi\)
\(824\) 0 0
\(825\) 1.33935e12 0.100659
\(826\) 0 0
\(827\) −1.76310e13 −1.31069 −0.655347 0.755328i \(-0.727478\pi\)
−0.655347 + 0.755328i \(0.727478\pi\)
\(828\) 0 0
\(829\) −5.12521e12 −0.376892 −0.188446 0.982084i \(-0.560345\pi\)
−0.188446 + 0.982084i \(0.560345\pi\)
\(830\) 0 0
\(831\) −1.57486e11 −0.0114561
\(832\) 0 0
\(833\) −8.25838e12 −0.594282
\(834\) 0 0
\(835\) 8.18747e12 0.582855
\(836\) 0 0
\(837\) 4.27527e12 0.301092
\(838\) 0 0
\(839\) −3.75310e12 −0.261494 −0.130747 0.991416i \(-0.541737\pi\)
−0.130747 + 0.991416i \(0.541737\pi\)
\(840\) 0 0
\(841\) −4.04905e11 −0.0279107
\(842\) 0 0
\(843\) 3.43693e11 0.0234394
\(844\) 0 0
\(845\) 1.92040e12 0.129580
\(846\) 0 0
\(847\) 5.84247e12 0.390051
\(848\) 0 0
\(849\) 7.43479e11 0.0491116
\(850\) 0 0
\(851\) −1.99996e13 −1.30719
\(852\) 0 0
\(853\) −2.38455e13 −1.54218 −0.771092 0.636724i \(-0.780289\pi\)
−0.771092 + 0.636724i \(0.780289\pi\)
\(854\) 0 0
\(855\) −3.79154e13 −2.42643
\(856\) 0 0
\(857\) 1.02524e13 0.649249 0.324625 0.945843i \(-0.394762\pi\)
0.324625 + 0.945843i \(0.394762\pi\)
\(858\) 0 0
\(859\) 4.68549e12 0.293620 0.146810 0.989165i \(-0.453099\pi\)
0.146810 + 0.989165i \(0.453099\pi\)
\(860\) 0 0
\(861\) −1.49271e12 −0.0925684
\(862\) 0 0
\(863\) −3.22907e13 −1.98166 −0.990830 0.135116i \(-0.956859\pi\)
−0.990830 + 0.135116i \(0.956859\pi\)
\(864\) 0 0
\(865\) −1.65496e13 −1.00511
\(866\) 0 0
\(867\) 7.48862e11 0.0450107
\(868\) 0 0
\(869\) −6.35165e12 −0.377831
\(870\) 0 0
\(871\) −4.62547e12 −0.272317
\(872\) 0 0
\(873\) −1.14352e13 −0.666313
\(874\) 0 0
\(875\) −1.77094e13 −1.02133
\(876\) 0 0
\(877\) −1.82002e13 −1.03891 −0.519456 0.854497i \(-0.673865\pi\)
−0.519456 + 0.854497i \(0.673865\pi\)
\(878\) 0 0
\(879\) −1.53548e11 −0.00867547
\(880\) 0 0
\(881\) −1.19126e13 −0.666217 −0.333108 0.942889i \(-0.608098\pi\)
−0.333108 + 0.942889i \(0.608098\pi\)
\(882\) 0 0
\(883\) −6.99095e11 −0.0387002 −0.0193501 0.999813i \(-0.506160\pi\)
−0.0193501 + 0.999813i \(0.506160\pi\)
\(884\) 0 0
\(885\) −6.92652e11 −0.0379551
\(886\) 0 0
\(887\) 1.03675e13 0.562363 0.281181 0.959655i \(-0.409274\pi\)
0.281181 + 0.959655i \(0.409274\pi\)
\(888\) 0 0
\(889\) 6.34751e12 0.340836
\(890\) 0 0
\(891\) 1.25259e13 0.665822
\(892\) 0 0
\(893\) 4.07727e13 2.14555
\(894\) 0 0
\(895\) −4.38912e13 −2.28652
\(896\) 0 0
\(897\) −4.13752e11 −0.0213390
\(898\) 0 0
\(899\) 3.61552e13 1.84608
\(900\) 0 0
\(901\) 4.22242e13 2.13452
\(902\) 0 0
\(903\) −1.14122e12 −0.0571183
\(904\) 0 0
\(905\) −8.02133e12 −0.397492
\(906\) 0 0
\(907\) −1.58620e13 −0.778261 −0.389131 0.921183i \(-0.627225\pi\)
−0.389131 + 0.921183i \(0.627225\pi\)
\(908\) 0 0
\(909\) 1.01145e13 0.491367
\(910\) 0 0
\(911\) −2.05101e13 −0.986586 −0.493293 0.869863i \(-0.664207\pi\)
−0.493293 + 0.869863i \(0.664207\pi\)
\(912\) 0 0
\(913\) 7.79478e12 0.371266
\(914\) 0 0
\(915\) −2.25042e12 −0.106138
\(916\) 0 0
\(917\) −2.60494e13 −1.21657
\(918\) 0 0
\(919\) 1.41684e13 0.655241 0.327620 0.944809i \(-0.393753\pi\)
0.327620 + 0.944809i \(0.393753\pi\)
\(920\) 0 0
\(921\) −8.65970e11 −0.0396584
\(922\) 0 0
\(923\) 9.90115e12 0.449033
\(924\) 0 0
\(925\) 5.60766e13 2.51851
\(926\) 0 0
\(927\) −4.75234e12 −0.211372
\(928\) 0 0
\(929\) 1.80998e13 0.797265 0.398632 0.917111i \(-0.369485\pi\)
0.398632 + 0.917111i \(0.369485\pi\)
\(930\) 0 0
\(931\) −1.58236e13 −0.690292
\(932\) 0 0
\(933\) −8.80110e11 −0.0380250
\(934\) 0 0
\(935\) 3.33670e13 1.42779
\(936\) 0 0
\(937\) −2.22382e12 −0.0942477 −0.0471239 0.998889i \(-0.515006\pi\)
−0.0471239 + 0.998889i \(0.515006\pi\)
\(938\) 0 0
\(939\) −2.89660e12 −0.121589
\(940\) 0 0
\(941\) 6.13618e12 0.255120 0.127560 0.991831i \(-0.459285\pi\)
0.127560 + 0.991831i \(0.459285\pi\)
\(942\) 0 0
\(943\) −3.67215e13 −1.51223
\(944\) 0 0
\(945\) 4.80666e12 0.196065
\(946\) 0 0
\(947\) 9.33151e12 0.377031 0.188516 0.982070i \(-0.439632\pi\)
0.188516 + 0.982070i \(0.439632\pi\)
\(948\) 0 0
\(949\) 8.43056e11 0.0337411
\(950\) 0 0
\(951\) −3.18907e12 −0.126430
\(952\) 0 0
\(953\) 4.28393e13 1.68238 0.841190 0.540740i \(-0.181856\pi\)
0.841190 + 0.540740i \(0.181856\pi\)
\(954\) 0 0
\(955\) −5.27114e13 −2.05064
\(956\) 0 0
\(957\) −1.40134e12 −0.0540057
\(958\) 0 0
\(959\) −2.69466e13 −1.02877
\(960\) 0 0
\(961\) 6.62545e13 2.50588
\(962\) 0 0
\(963\) 3.75724e13 1.40783
\(964\) 0 0
\(965\) −2.87419e13 −1.06695
\(966\) 0 0
\(967\) 2.77098e13 1.01910 0.509548 0.860442i \(-0.329813\pi\)
0.509548 + 0.860442i \(0.329813\pi\)
\(968\) 0 0
\(969\) 4.00635e12 0.145980
\(970\) 0 0
\(971\) 2.01303e13 0.726715 0.363357 0.931650i \(-0.381630\pi\)
0.363357 + 0.931650i \(0.381630\pi\)
\(972\) 0 0
\(973\) 1.76618e13 0.631722
\(974\) 0 0
\(975\) 1.16011e12 0.0411130
\(976\) 0 0
\(977\) −2.93311e13 −1.02992 −0.514959 0.857215i \(-0.672193\pi\)
−0.514959 + 0.857215i \(0.672193\pi\)
\(978\) 0 0
\(979\) 3.57220e13 1.24283
\(980\) 0 0
\(981\) −1.80348e13 −0.621728
\(982\) 0 0
\(983\) −4.03013e13 −1.37667 −0.688333 0.725395i \(-0.741657\pi\)
−0.688333 + 0.725395i \(0.741657\pi\)
\(984\) 0 0
\(985\) −5.86468e13 −1.98509
\(986\) 0 0
\(987\) −2.57601e12 −0.0864012
\(988\) 0 0
\(989\) −2.80746e13 −0.933105
\(990\) 0 0
\(991\) 5.56880e13 1.83413 0.917064 0.398739i \(-0.130552\pi\)
0.917064 + 0.398739i \(0.130552\pi\)
\(992\) 0 0
\(993\) −1.97578e12 −0.0644863
\(994\) 0 0
\(995\) −7.57468e13 −2.44997
\(996\) 0 0
\(997\) −7.91253e12 −0.253622 −0.126811 0.991927i \(-0.540474\pi\)
−0.126811 + 0.991927i \(0.540474\pi\)
\(998\) 0 0
\(999\) −6.93783e12 −0.220384
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 104.10.a.d.1.4 8
4.3 odd 2 208.10.a.m.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.a.d.1.4 8 1.1 even 1 trivial
208.10.a.m.1.5 8 4.3 odd 2