Properties

Label 104.10.a.d.1.3
Level $104$
Weight $10$
Character 104.1
Self dual yes
Analytic conductor $53.564$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [104,10,Mod(1,104)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(104, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("104.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 104.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,141] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.5637269610\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3 x^{7} - 135356 x^{6} - 24398 x^{5} + 5213582205 x^{4} + 598076469 x^{3} + \cdots + 15\!\cdots\!64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{25}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(106.986\) of defining polynomial
Character \(\chi\) \(=\) 104.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-88.9864 q^{3} -1188.35 q^{5} +3819.67 q^{7} -11764.4 q^{9} -44508.8 q^{11} +28561.0 q^{13} +105747. q^{15} -333157. q^{17} +62901.0 q^{19} -339899. q^{21} -2.12366e6 q^{23} -540958. q^{25} +2.79839e6 q^{27} -7.05902e6 q^{29} +8.97951e6 q^{31} +3.96068e6 q^{33} -4.53909e6 q^{35} +1.61465e7 q^{37} -2.54154e6 q^{39} +3.64237e6 q^{41} -3.21697e7 q^{43} +1.39802e7 q^{45} +1.39318e7 q^{47} -2.57637e7 q^{49} +2.96465e7 q^{51} +7.19727e7 q^{53} +5.28918e7 q^{55} -5.59733e6 q^{57} -7.52616e7 q^{59} +2.09407e8 q^{61} -4.49362e7 q^{63} -3.39404e7 q^{65} +2.66714e8 q^{67} +1.88977e8 q^{69} +1.43915e8 q^{71} +3.49049e8 q^{73} +4.81380e7 q^{75} -1.70009e8 q^{77} -5.57499e8 q^{79} -1.74600e7 q^{81} -1.21402e8 q^{83} +3.95906e8 q^{85} +6.28157e8 q^{87} +4.63605e8 q^{89} +1.09094e8 q^{91} -7.99054e8 q^{93} -7.47481e7 q^{95} -3.61385e8 q^{97} +5.23620e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 141 q^{3} + 2051 q^{5} - 2417 q^{7} + 115741 q^{9} - 53118 q^{11} + 228488 q^{13} - 464555 q^{15} + 433095 q^{17} - 434954 q^{19} + 906875 q^{21} - 1124296 q^{23} + 5966065 q^{25} + 7820643 q^{27}+ \cdots - 641626736 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −88.9864 −0.634276 −0.317138 0.948379i \(-0.602722\pi\)
−0.317138 + 0.948379i \(0.602722\pi\)
\(4\) 0 0
\(5\) −1188.35 −0.850311 −0.425156 0.905120i \(-0.639781\pi\)
−0.425156 + 0.905120i \(0.639781\pi\)
\(6\) 0 0
\(7\) 3819.67 0.601291 0.300645 0.953736i \(-0.402798\pi\)
0.300645 + 0.953736i \(0.402798\pi\)
\(8\) 0 0
\(9\) −11764.4 −0.597694
\(10\) 0 0
\(11\) −44508.8 −0.916597 −0.458299 0.888798i \(-0.651541\pi\)
−0.458299 + 0.888798i \(0.651541\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) 0 0
\(15\) 105747. 0.539332
\(16\) 0 0
\(17\) −333157. −0.967451 −0.483726 0.875220i \(-0.660717\pi\)
−0.483726 + 0.875220i \(0.660717\pi\)
\(18\) 0 0
\(19\) 62901.0 0.110730 0.0553651 0.998466i \(-0.482368\pi\)
0.0553651 + 0.998466i \(0.482368\pi\)
\(20\) 0 0
\(21\) −339899. −0.381384
\(22\) 0 0
\(23\) −2.12366e6 −1.58238 −0.791190 0.611571i \(-0.790538\pi\)
−0.791190 + 0.611571i \(0.790538\pi\)
\(24\) 0 0
\(25\) −540958. −0.276971
\(26\) 0 0
\(27\) 2.79839e6 1.01338
\(28\) 0 0
\(29\) −7.05902e6 −1.85333 −0.926667 0.375884i \(-0.877339\pi\)
−0.926667 + 0.375884i \(0.877339\pi\)
\(30\) 0 0
\(31\) 8.97951e6 1.74632 0.873162 0.487430i \(-0.162066\pi\)
0.873162 + 0.487430i \(0.162066\pi\)
\(32\) 0 0
\(33\) 3.96068e6 0.581375
\(34\) 0 0
\(35\) −4.53909e6 −0.511284
\(36\) 0 0
\(37\) 1.61465e7 1.41635 0.708173 0.706039i \(-0.249520\pi\)
0.708173 + 0.706039i \(0.249520\pi\)
\(38\) 0 0
\(39\) −2.54154e6 −0.175916
\(40\) 0 0
\(41\) 3.64237e6 0.201306 0.100653 0.994922i \(-0.467907\pi\)
0.100653 + 0.994922i \(0.467907\pi\)
\(42\) 0 0
\(43\) −3.21697e7 −1.43496 −0.717479 0.696580i \(-0.754704\pi\)
−0.717479 + 0.696580i \(0.754704\pi\)
\(44\) 0 0
\(45\) 1.39802e7 0.508226
\(46\) 0 0
\(47\) 1.39318e7 0.416453 0.208226 0.978081i \(-0.433231\pi\)
0.208226 + 0.978081i \(0.433231\pi\)
\(48\) 0 0
\(49\) −2.57637e7 −0.638449
\(50\) 0 0
\(51\) 2.96465e7 0.613631
\(52\) 0 0
\(53\) 7.19727e7 1.25293 0.626464 0.779450i \(-0.284501\pi\)
0.626464 + 0.779450i \(0.284501\pi\)
\(54\) 0 0
\(55\) 5.28918e7 0.779393
\(56\) 0 0
\(57\) −5.59733e6 −0.0702335
\(58\) 0 0
\(59\) −7.52616e7 −0.808610 −0.404305 0.914624i \(-0.632487\pi\)
−0.404305 + 0.914624i \(0.632487\pi\)
\(60\) 0 0
\(61\) 2.09407e8 1.93646 0.968228 0.250068i \(-0.0804529\pi\)
0.968228 + 0.250068i \(0.0804529\pi\)
\(62\) 0 0
\(63\) −4.49362e7 −0.359388
\(64\) 0 0
\(65\) −3.39404e7 −0.235834
\(66\) 0 0
\(67\) 2.66714e8 1.61700 0.808500 0.588497i \(-0.200280\pi\)
0.808500 + 0.588497i \(0.200280\pi\)
\(68\) 0 0
\(69\) 1.88977e8 1.00366
\(70\) 0 0
\(71\) 1.43915e8 0.672117 0.336058 0.941841i \(-0.390906\pi\)
0.336058 + 0.941841i \(0.390906\pi\)
\(72\) 0 0
\(73\) 3.49049e8 1.43858 0.719290 0.694710i \(-0.244467\pi\)
0.719290 + 0.694710i \(0.244467\pi\)
\(74\) 0 0
\(75\) 4.81380e7 0.175676
\(76\) 0 0
\(77\) −1.70009e8 −0.551142
\(78\) 0 0
\(79\) −5.57499e8 −1.61036 −0.805178 0.593033i \(-0.797930\pi\)
−0.805178 + 0.593033i \(0.797930\pi\)
\(80\) 0 0
\(81\) −1.74600e7 −0.0450673
\(82\) 0 0
\(83\) −1.21402e8 −0.280786 −0.140393 0.990096i \(-0.544837\pi\)
−0.140393 + 0.990096i \(0.544837\pi\)
\(84\) 0 0
\(85\) 3.95906e8 0.822635
\(86\) 0 0
\(87\) 6.28157e8 1.17552
\(88\) 0 0
\(89\) 4.63605e8 0.783236 0.391618 0.920128i \(-0.371915\pi\)
0.391618 + 0.920128i \(0.371915\pi\)
\(90\) 0 0
\(91\) 1.09094e8 0.166768
\(92\) 0 0
\(93\) −7.99054e8 −1.10765
\(94\) 0 0
\(95\) −7.47481e7 −0.0941551
\(96\) 0 0
\(97\) −3.61385e8 −0.414474 −0.207237 0.978291i \(-0.566447\pi\)
−0.207237 + 0.978291i \(0.566447\pi\)
\(98\) 0 0
\(99\) 5.23620e8 0.547845
\(100\) 0 0
\(101\) 9.77607e8 0.934799 0.467399 0.884046i \(-0.345191\pi\)
0.467399 + 0.884046i \(0.345191\pi\)
\(102\) 0 0
\(103\) 1.62927e9 1.42635 0.713175 0.700986i \(-0.247257\pi\)
0.713175 + 0.700986i \(0.247257\pi\)
\(104\) 0 0
\(105\) 4.03917e8 0.324295
\(106\) 0 0
\(107\) 2.81592e8 0.207679 0.103840 0.994594i \(-0.466887\pi\)
0.103840 + 0.994594i \(0.466887\pi\)
\(108\) 0 0
\(109\) 1.87886e9 1.27490 0.637449 0.770493i \(-0.279990\pi\)
0.637449 + 0.770493i \(0.279990\pi\)
\(110\) 0 0
\(111\) −1.43682e9 −0.898354
\(112\) 0 0
\(113\) −2.70805e8 −0.156244 −0.0781220 0.996944i \(-0.524892\pi\)
−0.0781220 + 0.996944i \(0.524892\pi\)
\(114\) 0 0
\(115\) 2.52365e9 1.34551
\(116\) 0 0
\(117\) −3.36003e8 −0.165771
\(118\) 0 0
\(119\) −1.27255e9 −0.581720
\(120\) 0 0
\(121\) −3.76916e8 −0.159849
\(122\) 0 0
\(123\) −3.24122e8 −0.127684
\(124\) 0 0
\(125\) 2.96383e9 1.08582
\(126\) 0 0
\(127\) −2.88479e9 −0.984004 −0.492002 0.870594i \(-0.663735\pi\)
−0.492002 + 0.870594i \(0.663735\pi\)
\(128\) 0 0
\(129\) 2.86267e9 0.910160
\(130\) 0 0
\(131\) −2.52604e9 −0.749410 −0.374705 0.927144i \(-0.622256\pi\)
−0.374705 + 0.927144i \(0.622256\pi\)
\(132\) 0 0
\(133\) 2.40261e8 0.0665811
\(134\) 0 0
\(135\) −3.32546e9 −0.861687
\(136\) 0 0
\(137\) −7.12497e9 −1.72799 −0.863993 0.503503i \(-0.832044\pi\)
−0.863993 + 0.503503i \(0.832044\pi\)
\(138\) 0 0
\(139\) −3.00490e9 −0.682753 −0.341376 0.939927i \(-0.610893\pi\)
−0.341376 + 0.939927i \(0.610893\pi\)
\(140\) 0 0
\(141\) −1.23974e9 −0.264146
\(142\) 0 0
\(143\) −1.27122e9 −0.254218
\(144\) 0 0
\(145\) 8.38856e9 1.57591
\(146\) 0 0
\(147\) 2.29262e9 0.404953
\(148\) 0 0
\(149\) 7.81131e8 0.129833 0.0649166 0.997891i \(-0.479322\pi\)
0.0649166 + 0.997891i \(0.479322\pi\)
\(150\) 0 0
\(151\) −1.23384e10 −1.93136 −0.965679 0.259738i \(-0.916364\pi\)
−0.965679 + 0.259738i \(0.916364\pi\)
\(152\) 0 0
\(153\) 3.91940e9 0.578240
\(154\) 0 0
\(155\) −1.06708e10 −1.48492
\(156\) 0 0
\(157\) −4.82363e9 −0.633615 −0.316807 0.948490i \(-0.602611\pi\)
−0.316807 + 0.948490i \(0.602611\pi\)
\(158\) 0 0
\(159\) −6.40459e9 −0.794702
\(160\) 0 0
\(161\) −8.11170e9 −0.951470
\(162\) 0 0
\(163\) −4.92519e9 −0.546486 −0.273243 0.961945i \(-0.588096\pi\)
−0.273243 + 0.961945i \(0.588096\pi\)
\(164\) 0 0
\(165\) −4.70666e9 −0.494350
\(166\) 0 0
\(167\) 1.02301e8 0.0101778 0.00508891 0.999987i \(-0.498380\pi\)
0.00508891 + 0.999987i \(0.498380\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −7.39993e8 −0.0661828
\(172\) 0 0
\(173\) 1.54869e10 1.31449 0.657245 0.753677i \(-0.271722\pi\)
0.657245 + 0.753677i \(0.271722\pi\)
\(174\) 0 0
\(175\) −2.06628e9 −0.166540
\(176\) 0 0
\(177\) 6.69726e9 0.512882
\(178\) 0 0
\(179\) −1.04266e9 −0.0759112 −0.0379556 0.999279i \(-0.512085\pi\)
−0.0379556 + 0.999279i \(0.512085\pi\)
\(180\) 0 0
\(181\) 1.20656e10 0.835594 0.417797 0.908540i \(-0.362802\pi\)
0.417797 + 0.908540i \(0.362802\pi\)
\(182\) 0 0
\(183\) −1.86344e10 −1.22825
\(184\) 0 0
\(185\) −1.91876e10 −1.20434
\(186\) 0 0
\(187\) 1.48284e10 0.886763
\(188\) 0 0
\(189\) 1.06889e10 0.609335
\(190\) 0 0
\(191\) 1.59078e9 0.0864887 0.0432443 0.999065i \(-0.486231\pi\)
0.0432443 + 0.999065i \(0.486231\pi\)
\(192\) 0 0
\(193\) 1.50731e10 0.781979 0.390990 0.920395i \(-0.372133\pi\)
0.390990 + 0.920395i \(0.372133\pi\)
\(194\) 0 0
\(195\) 3.02023e9 0.149584
\(196\) 0 0
\(197\) 1.84500e10 0.872766 0.436383 0.899761i \(-0.356259\pi\)
0.436383 + 0.899761i \(0.356259\pi\)
\(198\) 0 0
\(199\) −3.53832e10 −1.59940 −0.799701 0.600398i \(-0.795009\pi\)
−0.799701 + 0.600398i \(0.795009\pi\)
\(200\) 0 0
\(201\) −2.37340e10 −1.02562
\(202\) 0 0
\(203\) −2.69631e10 −1.11439
\(204\) 0 0
\(205\) −4.32840e9 −0.171173
\(206\) 0 0
\(207\) 2.49837e10 0.945779
\(208\) 0 0
\(209\) −2.79964e9 −0.101495
\(210\) 0 0
\(211\) 5.60226e9 0.194577 0.0972887 0.995256i \(-0.468983\pi\)
0.0972887 + 0.995256i \(0.468983\pi\)
\(212\) 0 0
\(213\) −1.28065e10 −0.426307
\(214\) 0 0
\(215\) 3.82288e10 1.22016
\(216\) 0 0
\(217\) 3.42988e10 1.05005
\(218\) 0 0
\(219\) −3.10606e10 −0.912456
\(220\) 0 0
\(221\) −9.51531e9 −0.268323
\(222\) 0 0
\(223\) 6.34802e10 1.71896 0.859481 0.511168i \(-0.170787\pi\)
0.859481 + 0.511168i \(0.170787\pi\)
\(224\) 0 0
\(225\) 6.36406e9 0.165544
\(226\) 0 0
\(227\) −5.82160e8 −0.0145521 −0.00727606 0.999974i \(-0.502316\pi\)
−0.00727606 + 0.999974i \(0.502316\pi\)
\(228\) 0 0
\(229\) −2.38821e10 −0.573869 −0.286935 0.957950i \(-0.592636\pi\)
−0.286935 + 0.957950i \(0.592636\pi\)
\(230\) 0 0
\(231\) 1.51285e10 0.349576
\(232\) 0 0
\(233\) 6.06514e10 1.34815 0.674076 0.738662i \(-0.264542\pi\)
0.674076 + 0.738662i \(0.264542\pi\)
\(234\) 0 0
\(235\) −1.65557e10 −0.354114
\(236\) 0 0
\(237\) 4.96098e10 1.02141
\(238\) 0 0
\(239\) −1.82283e10 −0.361374 −0.180687 0.983541i \(-0.557832\pi\)
−0.180687 + 0.983541i \(0.557832\pi\)
\(240\) 0 0
\(241\) −5.23842e10 −1.00028 −0.500142 0.865943i \(-0.666719\pi\)
−0.500142 + 0.865943i \(0.666719\pi\)
\(242\) 0 0
\(243\) −5.35271e10 −0.984794
\(244\) 0 0
\(245\) 3.06162e10 0.542881
\(246\) 0 0
\(247\) 1.79651e9 0.0307110
\(248\) 0 0
\(249\) 1.08031e10 0.178095
\(250\) 0 0
\(251\) 1.08399e11 1.72383 0.861917 0.507050i \(-0.169264\pi\)
0.861917 + 0.507050i \(0.169264\pi\)
\(252\) 0 0
\(253\) 9.45217e10 1.45040
\(254\) 0 0
\(255\) −3.52303e10 −0.521777
\(256\) 0 0
\(257\) −4.77652e10 −0.682987 −0.341493 0.939884i \(-0.610933\pi\)
−0.341493 + 0.939884i \(0.610933\pi\)
\(258\) 0 0
\(259\) 6.16741e10 0.851636
\(260\) 0 0
\(261\) 8.30453e10 1.10773
\(262\) 0 0
\(263\) 5.81856e10 0.749919 0.374960 0.927041i \(-0.377657\pi\)
0.374960 + 0.927041i \(0.377657\pi\)
\(264\) 0 0
\(265\) −8.55285e10 −1.06538
\(266\) 0 0
\(267\) −4.12545e10 −0.496788
\(268\) 0 0
\(269\) −4.87140e10 −0.567242 −0.283621 0.958936i \(-0.591536\pi\)
−0.283621 + 0.958936i \(0.591536\pi\)
\(270\) 0 0
\(271\) 8.84431e10 0.996098 0.498049 0.867149i \(-0.334050\pi\)
0.498049 + 0.867149i \(0.334050\pi\)
\(272\) 0 0
\(273\) −9.70785e9 −0.105777
\(274\) 0 0
\(275\) 2.40774e10 0.253871
\(276\) 0 0
\(277\) −1.60500e11 −1.63801 −0.819005 0.573786i \(-0.805474\pi\)
−0.819005 + 0.573786i \(0.805474\pi\)
\(278\) 0 0
\(279\) −1.05639e11 −1.04377
\(280\) 0 0
\(281\) 1.72141e11 1.64705 0.823524 0.567281i \(-0.192005\pi\)
0.823524 + 0.567281i \(0.192005\pi\)
\(282\) 0 0
\(283\) 1.66637e11 1.54430 0.772150 0.635440i \(-0.219181\pi\)
0.772150 + 0.635440i \(0.219181\pi\)
\(284\) 0 0
\(285\) 6.65157e9 0.0597203
\(286\) 0 0
\(287\) 1.39127e10 0.121043
\(288\) 0 0
\(289\) −7.59410e9 −0.0640378
\(290\) 0 0
\(291\) 3.21584e10 0.262891
\(292\) 0 0
\(293\) 1.04433e11 0.827813 0.413906 0.910319i \(-0.364164\pi\)
0.413906 + 0.910319i \(0.364164\pi\)
\(294\) 0 0
\(295\) 8.94368e10 0.687570
\(296\) 0 0
\(297\) −1.24553e11 −0.928860
\(298\) 0 0
\(299\) −6.06540e10 −0.438873
\(300\) 0 0
\(301\) −1.22878e11 −0.862828
\(302\) 0 0
\(303\) −8.69937e10 −0.592920
\(304\) 0 0
\(305\) −2.48848e11 −1.64659
\(306\) 0 0
\(307\) 5.73512e9 0.0368485 0.0184242 0.999830i \(-0.494135\pi\)
0.0184242 + 0.999830i \(0.494135\pi\)
\(308\) 0 0
\(309\) −1.44983e11 −0.904699
\(310\) 0 0
\(311\) 7.23401e10 0.438488 0.219244 0.975670i \(-0.429641\pi\)
0.219244 + 0.975670i \(0.429641\pi\)
\(312\) 0 0
\(313\) −9.44626e10 −0.556302 −0.278151 0.960537i \(-0.589722\pi\)
−0.278151 + 0.960537i \(0.589722\pi\)
\(314\) 0 0
\(315\) 5.33997e10 0.305592
\(316\) 0 0
\(317\) 3.09934e11 1.72386 0.861930 0.507027i \(-0.169255\pi\)
0.861930 + 0.507027i \(0.169255\pi\)
\(318\) 0 0
\(319\) 3.14188e11 1.69876
\(320\) 0 0
\(321\) −2.50578e10 −0.131726
\(322\) 0 0
\(323\) −2.09559e10 −0.107126
\(324\) 0 0
\(325\) −1.54503e10 −0.0768178
\(326\) 0 0
\(327\) −1.67193e11 −0.808637
\(328\) 0 0
\(329\) 5.32147e10 0.250409
\(330\) 0 0
\(331\) −2.18235e11 −0.999304 −0.499652 0.866226i \(-0.666539\pi\)
−0.499652 + 0.866226i \(0.666539\pi\)
\(332\) 0 0
\(333\) −1.89954e11 −0.846542
\(334\) 0 0
\(335\) −3.16949e11 −1.37495
\(336\) 0 0
\(337\) 2.05459e11 0.867740 0.433870 0.900975i \(-0.357148\pi\)
0.433870 + 0.900975i \(0.357148\pi\)
\(338\) 0 0
\(339\) 2.40980e10 0.0991018
\(340\) 0 0
\(341\) −3.99667e11 −1.60068
\(342\) 0 0
\(343\) −2.52546e11 −0.985185
\(344\) 0 0
\(345\) −2.24570e11 −0.853428
\(346\) 0 0
\(347\) 1.25071e11 0.463098 0.231549 0.972823i \(-0.425621\pi\)
0.231549 + 0.972823i \(0.425621\pi\)
\(348\) 0 0
\(349\) 2.54795e11 0.919339 0.459670 0.888090i \(-0.347968\pi\)
0.459670 + 0.888090i \(0.347968\pi\)
\(350\) 0 0
\(351\) 7.99249e10 0.281061
\(352\) 0 0
\(353\) −1.54721e11 −0.530349 −0.265175 0.964200i \(-0.585430\pi\)
−0.265175 + 0.964200i \(0.585430\pi\)
\(354\) 0 0
\(355\) −1.71021e11 −0.571508
\(356\) 0 0
\(357\) 1.13240e11 0.368971
\(358\) 0 0
\(359\) −2.45696e11 −0.780680 −0.390340 0.920671i \(-0.627643\pi\)
−0.390340 + 0.920671i \(0.627643\pi\)
\(360\) 0 0
\(361\) −3.18731e11 −0.987739
\(362\) 0 0
\(363\) 3.35404e10 0.101389
\(364\) 0 0
\(365\) −4.14791e11 −1.22324
\(366\) 0 0
\(367\) −2.32120e11 −0.667906 −0.333953 0.942590i \(-0.608383\pi\)
−0.333953 + 0.942590i \(0.608383\pi\)
\(368\) 0 0
\(369\) −4.28504e10 −0.120319
\(370\) 0 0
\(371\) 2.74912e11 0.753375
\(372\) 0 0
\(373\) −6.16163e11 −1.64818 −0.824092 0.566456i \(-0.808314\pi\)
−0.824092 + 0.566456i \(0.808314\pi\)
\(374\) 0 0
\(375\) −2.63741e11 −0.688711
\(376\) 0 0
\(377\) −2.01613e11 −0.514022
\(378\) 0 0
\(379\) 2.57145e11 0.640180 0.320090 0.947387i \(-0.396287\pi\)
0.320090 + 0.947387i \(0.396287\pi\)
\(380\) 0 0
\(381\) 2.56707e11 0.624130
\(382\) 0 0
\(383\) 2.69852e11 0.640812 0.320406 0.947280i \(-0.396181\pi\)
0.320406 + 0.947280i \(0.396181\pi\)
\(384\) 0 0
\(385\) 2.02029e11 0.468642
\(386\) 0 0
\(387\) 3.78458e11 0.857667
\(388\) 0 0
\(389\) −5.78186e11 −1.28025 −0.640125 0.768271i \(-0.721117\pi\)
−0.640125 + 0.768271i \(0.721117\pi\)
\(390\) 0 0
\(391\) 7.07514e11 1.53088
\(392\) 0 0
\(393\) 2.24783e11 0.475333
\(394\) 0 0
\(395\) 6.62501e11 1.36930
\(396\) 0 0
\(397\) 2.51591e11 0.508320 0.254160 0.967162i \(-0.418201\pi\)
0.254160 + 0.967162i \(0.418201\pi\)
\(398\) 0 0
\(399\) −2.13800e10 −0.0422308
\(400\) 0 0
\(401\) 4.38439e11 0.846758 0.423379 0.905953i \(-0.360844\pi\)
0.423379 + 0.905953i \(0.360844\pi\)
\(402\) 0 0
\(403\) 2.56464e11 0.484343
\(404\) 0 0
\(405\) 2.07485e10 0.0383212
\(406\) 0 0
\(407\) −7.18659e11 −1.29822
\(408\) 0 0
\(409\) 5.90446e11 1.04334 0.521669 0.853148i \(-0.325310\pi\)
0.521669 + 0.853148i \(0.325310\pi\)
\(410\) 0 0
\(411\) 6.34026e11 1.09602
\(412\) 0 0
\(413\) −2.87474e11 −0.486210
\(414\) 0 0
\(415\) 1.44268e11 0.238755
\(416\) 0 0
\(417\) 2.67395e11 0.433054
\(418\) 0 0
\(419\) −7.05394e11 −1.11807 −0.559034 0.829144i \(-0.688828\pi\)
−0.559034 + 0.829144i \(0.688828\pi\)
\(420\) 0 0
\(421\) 3.20094e11 0.496602 0.248301 0.968683i \(-0.420128\pi\)
0.248301 + 0.968683i \(0.420128\pi\)
\(422\) 0 0
\(423\) −1.63899e11 −0.248911
\(424\) 0 0
\(425\) 1.80224e11 0.267956
\(426\) 0 0
\(427\) 7.99867e11 1.16437
\(428\) 0 0
\(429\) 1.13121e11 0.161245
\(430\) 0 0
\(431\) −5.88766e11 −0.821854 −0.410927 0.911668i \(-0.634795\pi\)
−0.410927 + 0.911668i \(0.634795\pi\)
\(432\) 0 0
\(433\) −2.61673e11 −0.357737 −0.178868 0.983873i \(-0.557244\pi\)
−0.178868 + 0.983873i \(0.557244\pi\)
\(434\) 0 0
\(435\) −7.46468e11 −0.999562
\(436\) 0 0
\(437\) −1.33581e11 −0.175217
\(438\) 0 0
\(439\) 3.44746e11 0.443005 0.221503 0.975160i \(-0.428904\pi\)
0.221503 + 0.975160i \(0.428904\pi\)
\(440\) 0 0
\(441\) 3.03095e11 0.381597
\(442\) 0 0
\(443\) 2.57699e11 0.317904 0.158952 0.987286i \(-0.449189\pi\)
0.158952 + 0.987286i \(0.449189\pi\)
\(444\) 0 0
\(445\) −5.50923e11 −0.665995
\(446\) 0 0
\(447\) −6.95101e10 −0.0823500
\(448\) 0 0
\(449\) 1.08978e12 1.26541 0.632703 0.774395i \(-0.281946\pi\)
0.632703 + 0.774395i \(0.281946\pi\)
\(450\) 0 0
\(451\) −1.62117e11 −0.184517
\(452\) 0 0
\(453\) 1.09795e12 1.22501
\(454\) 0 0
\(455\) −1.29641e11 −0.141805
\(456\) 0 0
\(457\) −6.12189e11 −0.656542 −0.328271 0.944584i \(-0.606466\pi\)
−0.328271 + 0.944584i \(0.606466\pi\)
\(458\) 0 0
\(459\) −9.32305e11 −0.980395
\(460\) 0 0
\(461\) −3.17379e10 −0.0327284 −0.0163642 0.999866i \(-0.505209\pi\)
−0.0163642 + 0.999866i \(0.505209\pi\)
\(462\) 0 0
\(463\) −1.07320e12 −1.08535 −0.542673 0.839944i \(-0.682588\pi\)
−0.542673 + 0.839944i \(0.682588\pi\)
\(464\) 0 0
\(465\) 9.49553e11 0.941848
\(466\) 0 0
\(467\) 5.58614e11 0.543483 0.271741 0.962370i \(-0.412400\pi\)
0.271741 + 0.962370i \(0.412400\pi\)
\(468\) 0 0
\(469\) 1.01876e12 0.972287
\(470\) 0 0
\(471\) 4.29237e11 0.401887
\(472\) 0 0
\(473\) 1.43184e12 1.31528
\(474\) 0 0
\(475\) −3.40268e10 −0.0306690
\(476\) 0 0
\(477\) −8.46717e11 −0.748868
\(478\) 0 0
\(479\) −7.52934e11 −0.653502 −0.326751 0.945110i \(-0.605954\pi\)
−0.326751 + 0.945110i \(0.605954\pi\)
\(480\) 0 0
\(481\) 4.61159e11 0.392824
\(482\) 0 0
\(483\) 7.21831e11 0.603495
\(484\) 0 0
\(485\) 4.29451e11 0.352432
\(486\) 0 0
\(487\) −1.60784e12 −1.29527 −0.647637 0.761949i \(-0.724243\pi\)
−0.647637 + 0.761949i \(0.724243\pi\)
\(488\) 0 0
\(489\) 4.38275e11 0.346623
\(490\) 0 0
\(491\) 2.94134e10 0.0228391 0.0114195 0.999935i \(-0.496365\pi\)
0.0114195 + 0.999935i \(0.496365\pi\)
\(492\) 0 0
\(493\) 2.35176e12 1.79301
\(494\) 0 0
\(495\) −6.22242e11 −0.465839
\(496\) 0 0
\(497\) 5.49709e11 0.404138
\(498\) 0 0
\(499\) 5.23368e11 0.377881 0.188940 0.981989i \(-0.439495\pi\)
0.188940 + 0.981989i \(0.439495\pi\)
\(500\) 0 0
\(501\) −9.10338e9 −0.00645555
\(502\) 0 0
\(503\) 9.64150e11 0.671566 0.335783 0.941939i \(-0.390999\pi\)
0.335783 + 0.941939i \(0.390999\pi\)
\(504\) 0 0
\(505\) −1.16174e12 −0.794870
\(506\) 0 0
\(507\) −7.25890e10 −0.0487904
\(508\) 0 0
\(509\) 6.80583e11 0.449419 0.224709 0.974426i \(-0.427857\pi\)
0.224709 + 0.974426i \(0.427857\pi\)
\(510\) 0 0
\(511\) 1.33325e12 0.865005
\(512\) 0 0
\(513\) 1.76022e11 0.112212
\(514\) 0 0
\(515\) −1.93614e12 −1.21284
\(516\) 0 0
\(517\) −6.20085e11 −0.381719
\(518\) 0 0
\(519\) −1.37812e12 −0.833749
\(520\) 0 0
\(521\) −2.31132e12 −1.37433 −0.687164 0.726502i \(-0.741145\pi\)
−0.687164 + 0.726502i \(0.741145\pi\)
\(522\) 0 0
\(523\) 1.61100e12 0.941537 0.470768 0.882257i \(-0.343977\pi\)
0.470768 + 0.882257i \(0.343977\pi\)
\(524\) 0 0
\(525\) 1.83871e11 0.105632
\(526\) 0 0
\(527\) −2.99159e12 −1.68948
\(528\) 0 0
\(529\) 2.70880e12 1.50392
\(530\) 0 0
\(531\) 8.85408e11 0.483302
\(532\) 0 0
\(533\) 1.04030e11 0.0558322
\(534\) 0 0
\(535\) −3.34628e11 −0.176592
\(536\) 0 0
\(537\) 9.27830e10 0.0481486
\(538\) 0 0
\(539\) 1.14671e12 0.585201
\(540\) 0 0
\(541\) 3.08968e12 1.55070 0.775348 0.631535i \(-0.217575\pi\)
0.775348 + 0.631535i \(0.217575\pi\)
\(542\) 0 0
\(543\) −1.07367e12 −0.529997
\(544\) 0 0
\(545\) −2.23274e12 −1.08406
\(546\) 0 0
\(547\) 1.99321e12 0.951941 0.475971 0.879461i \(-0.342097\pi\)
0.475971 + 0.879461i \(0.342097\pi\)
\(548\) 0 0
\(549\) −2.46356e12 −1.15741
\(550\) 0 0
\(551\) −4.44019e11 −0.205220
\(552\) 0 0
\(553\) −2.12946e12 −0.968292
\(554\) 0 0
\(555\) 1.70743e12 0.763881
\(556\) 0 0
\(557\) −2.70768e12 −1.19192 −0.595962 0.803013i \(-0.703229\pi\)
−0.595962 + 0.803013i \(0.703229\pi\)
\(558\) 0 0
\(559\) −9.18800e11 −0.397986
\(560\) 0 0
\(561\) −1.31953e12 −0.562453
\(562\) 0 0
\(563\) −4.11657e12 −1.72682 −0.863412 0.504500i \(-0.831677\pi\)
−0.863412 + 0.504500i \(0.831677\pi\)
\(564\) 0 0
\(565\) 3.21810e11 0.132856
\(566\) 0 0
\(567\) −6.66914e10 −0.0270986
\(568\) 0 0
\(569\) −2.54412e12 −1.01749 −0.508747 0.860916i \(-0.669891\pi\)
−0.508747 + 0.860916i \(0.669891\pi\)
\(570\) 0 0
\(571\) −5.37420e10 −0.0211569 −0.0105784 0.999944i \(-0.503367\pi\)
−0.0105784 + 0.999944i \(0.503367\pi\)
\(572\) 0 0
\(573\) −1.41558e11 −0.0548577
\(574\) 0 0
\(575\) 1.14881e12 0.438273
\(576\) 0 0
\(577\) 8.17074e11 0.306881 0.153441 0.988158i \(-0.450965\pi\)
0.153441 + 0.988158i \(0.450965\pi\)
\(578\) 0 0
\(579\) −1.34130e12 −0.495991
\(580\) 0 0
\(581\) −4.63716e11 −0.168834
\(582\) 0 0
\(583\) −3.20342e12 −1.14843
\(584\) 0 0
\(585\) 3.99288e11 0.140957
\(586\) 0 0
\(587\) 1.52642e12 0.530642 0.265321 0.964160i \(-0.414522\pi\)
0.265321 + 0.964160i \(0.414522\pi\)
\(588\) 0 0
\(589\) 5.64820e11 0.193371
\(590\) 0 0
\(591\) −1.64180e12 −0.553574
\(592\) 0 0
\(593\) −3.70454e12 −1.23023 −0.615117 0.788435i \(-0.710891\pi\)
−0.615117 + 0.788435i \(0.710891\pi\)
\(594\) 0 0
\(595\) 1.51223e12 0.494643
\(596\) 0 0
\(597\) 3.14862e12 1.01446
\(598\) 0 0
\(599\) 3.57840e12 1.13571 0.567856 0.823128i \(-0.307773\pi\)
0.567856 + 0.823128i \(0.307773\pi\)
\(600\) 0 0
\(601\) −4.78400e10 −0.0149574 −0.00747869 0.999972i \(-0.502381\pi\)
−0.00747869 + 0.999972i \(0.502381\pi\)
\(602\) 0 0
\(603\) −3.13774e12 −0.966471
\(604\) 0 0
\(605\) 4.47907e11 0.135922
\(606\) 0 0
\(607\) −5.17180e12 −1.54629 −0.773147 0.634226i \(-0.781319\pi\)
−0.773147 + 0.634226i \(0.781319\pi\)
\(608\) 0 0
\(609\) 2.39935e12 0.706832
\(610\) 0 0
\(611\) 3.97905e11 0.115503
\(612\) 0 0
\(613\) −9.86282e11 −0.282117 −0.141058 0.990001i \(-0.545051\pi\)
−0.141058 + 0.990001i \(0.545051\pi\)
\(614\) 0 0
\(615\) 3.85169e11 0.108571
\(616\) 0 0
\(617\) 2.26657e11 0.0629631 0.0314816 0.999504i \(-0.489977\pi\)
0.0314816 + 0.999504i \(0.489977\pi\)
\(618\) 0 0
\(619\) −1.10516e12 −0.302565 −0.151283 0.988491i \(-0.548340\pi\)
−0.151283 + 0.988491i \(0.548340\pi\)
\(620\) 0 0
\(621\) −5.94285e12 −1.60355
\(622\) 0 0
\(623\) 1.77082e12 0.470953
\(624\) 0 0
\(625\) −2.46550e12 −0.646317
\(626\) 0 0
\(627\) 2.49130e11 0.0643758
\(628\) 0 0
\(629\) −5.37931e12 −1.37025
\(630\) 0 0
\(631\) 2.66054e12 0.668094 0.334047 0.942556i \(-0.391586\pi\)
0.334047 + 0.942556i \(0.391586\pi\)
\(632\) 0 0
\(633\) −4.98525e11 −0.123416
\(634\) 0 0
\(635\) 3.42812e12 0.836710
\(636\) 0 0
\(637\) −7.35838e11 −0.177074
\(638\) 0 0
\(639\) −1.69308e12 −0.401720
\(640\) 0 0
\(641\) 7.19055e12 1.68229 0.841145 0.540810i \(-0.181882\pi\)
0.841145 + 0.540810i \(0.181882\pi\)
\(642\) 0 0
\(643\) 6.05637e12 1.39722 0.698608 0.715505i \(-0.253803\pi\)
0.698608 + 0.715505i \(0.253803\pi\)
\(644\) 0 0
\(645\) −3.40184e12 −0.773919
\(646\) 0 0
\(647\) −5.07119e12 −1.13773 −0.568867 0.822430i \(-0.692618\pi\)
−0.568867 + 0.822430i \(0.692618\pi\)
\(648\) 0 0
\(649\) 3.34980e12 0.741170
\(650\) 0 0
\(651\) −3.05212e12 −0.666021
\(652\) 0 0
\(653\) 6.51831e12 1.40290 0.701448 0.712721i \(-0.252537\pi\)
0.701448 + 0.712721i \(0.252537\pi\)
\(654\) 0 0
\(655\) 3.00181e12 0.637232
\(656\) 0 0
\(657\) −4.10636e12 −0.859831
\(658\) 0 0
\(659\) 6.49661e12 1.34184 0.670922 0.741528i \(-0.265898\pi\)
0.670922 + 0.741528i \(0.265898\pi\)
\(660\) 0 0
\(661\) 1.39396e12 0.284016 0.142008 0.989866i \(-0.454644\pi\)
0.142008 + 0.989866i \(0.454644\pi\)
\(662\) 0 0
\(663\) 8.46733e11 0.170191
\(664\) 0 0
\(665\) −2.85513e11 −0.0566146
\(666\) 0 0
\(667\) 1.49910e13 2.93268
\(668\) 0 0
\(669\) −5.64887e12 −1.09030
\(670\) 0 0
\(671\) −9.32047e12 −1.77495
\(672\) 0 0
\(673\) 1.53979e12 0.289330 0.144665 0.989481i \(-0.453790\pi\)
0.144665 + 0.989481i \(0.453790\pi\)
\(674\) 0 0
\(675\) −1.51381e12 −0.280676
\(676\) 0 0
\(677\) −8.58172e11 −0.157009 −0.0785047 0.996914i \(-0.525015\pi\)
−0.0785047 + 0.996914i \(0.525015\pi\)
\(678\) 0 0
\(679\) −1.38037e12 −0.249220
\(680\) 0 0
\(681\) 5.18044e10 0.00923005
\(682\) 0 0
\(683\) −2.08873e12 −0.367273 −0.183636 0.982994i \(-0.558787\pi\)
−0.183636 + 0.982994i \(0.558787\pi\)
\(684\) 0 0
\(685\) 8.46693e12 1.46933
\(686\) 0 0
\(687\) 2.12518e12 0.363991
\(688\) 0 0
\(689\) 2.05561e12 0.347500
\(690\) 0 0
\(691\) 4.11077e12 0.685918 0.342959 0.939350i \(-0.388571\pi\)
0.342959 + 0.939350i \(0.388571\pi\)
\(692\) 0 0
\(693\) 2.00005e12 0.329414
\(694\) 0 0
\(695\) 3.57086e12 0.580552
\(696\) 0 0
\(697\) −1.21348e12 −0.194754
\(698\) 0 0
\(699\) −5.39715e12 −0.855101
\(700\) 0 0
\(701\) 7.95355e12 1.24403 0.622013 0.783007i \(-0.286315\pi\)
0.622013 + 0.783007i \(0.286315\pi\)
\(702\) 0 0
\(703\) 1.01563e12 0.156832
\(704\) 0 0
\(705\) 1.47324e12 0.224606
\(706\) 0 0
\(707\) 3.73414e12 0.562086
\(708\) 0 0
\(709\) −8.62653e12 −1.28212 −0.641059 0.767492i \(-0.721505\pi\)
−0.641059 + 0.767492i \(0.721505\pi\)
\(710\) 0 0
\(711\) 6.55865e12 0.962500
\(712\) 0 0
\(713\) −1.90695e13 −2.76335
\(714\) 0 0
\(715\) 1.51064e12 0.216165
\(716\) 0 0
\(717\) 1.62208e12 0.229211
\(718\) 0 0
\(719\) 4.92453e11 0.0687203 0.0343601 0.999410i \(-0.489061\pi\)
0.0343601 + 0.999410i \(0.489061\pi\)
\(720\) 0 0
\(721\) 6.22328e12 0.857651
\(722\) 0 0
\(723\) 4.66148e12 0.634456
\(724\) 0 0
\(725\) 3.81864e12 0.513319
\(726\) 0 0
\(727\) −2.20983e12 −0.293396 −0.146698 0.989181i \(-0.546865\pi\)
−0.146698 + 0.989181i \(0.546865\pi\)
\(728\) 0 0
\(729\) 5.10685e12 0.669698
\(730\) 0 0
\(731\) 1.07176e13 1.38825
\(732\) 0 0
\(733\) 1.26204e13 1.61476 0.807378 0.590034i \(-0.200886\pi\)
0.807378 + 0.590034i \(0.200886\pi\)
\(734\) 0 0
\(735\) −2.72443e12 −0.344336
\(736\) 0 0
\(737\) −1.18711e13 −1.48214
\(738\) 0 0
\(739\) 1.41478e13 1.74498 0.872489 0.488633i \(-0.162504\pi\)
0.872489 + 0.488633i \(0.162504\pi\)
\(740\) 0 0
\(741\) −1.59865e11 −0.0194793
\(742\) 0 0
\(743\) −9.72293e12 −1.17044 −0.585218 0.810876i \(-0.698991\pi\)
−0.585218 + 0.810876i \(0.698991\pi\)
\(744\) 0 0
\(745\) −9.28254e11 −0.110399
\(746\) 0 0
\(747\) 1.42822e12 0.167824
\(748\) 0 0
\(749\) 1.07559e12 0.124876
\(750\) 0 0
\(751\) −1.77678e11 −0.0203823 −0.0101911 0.999948i \(-0.503244\pi\)
−0.0101911 + 0.999948i \(0.503244\pi\)
\(752\) 0 0
\(753\) −9.64608e12 −1.09339
\(754\) 0 0
\(755\) 1.46623e13 1.64226
\(756\) 0 0
\(757\) −1.67323e11 −0.0185193 −0.00925963 0.999957i \(-0.502947\pi\)
−0.00925963 + 0.999957i \(0.502947\pi\)
\(758\) 0 0
\(759\) −8.41115e12 −0.919956
\(760\) 0 0
\(761\) 2.92101e12 0.315720 0.157860 0.987462i \(-0.449541\pi\)
0.157860 + 0.987462i \(0.449541\pi\)
\(762\) 0 0
\(763\) 7.17663e12 0.766584
\(764\) 0 0
\(765\) −4.65761e12 −0.491684
\(766\) 0 0
\(767\) −2.14955e12 −0.224268
\(768\) 0 0
\(769\) 3.68762e12 0.380258 0.190129 0.981759i \(-0.439109\pi\)
0.190129 + 0.981759i \(0.439109\pi\)
\(770\) 0 0
\(771\) 4.25045e12 0.433202
\(772\) 0 0
\(773\) 5.57994e12 0.562110 0.281055 0.959692i \(-0.409316\pi\)
0.281055 + 0.959692i \(0.409316\pi\)
\(774\) 0 0
\(775\) −4.85754e12 −0.483681
\(776\) 0 0
\(777\) −5.48816e12 −0.540172
\(778\) 0 0
\(779\) 2.29109e11 0.0222907
\(780\) 0 0
\(781\) −6.40550e12 −0.616060
\(782\) 0 0
\(783\) −1.97539e13 −1.87813
\(784\) 0 0
\(785\) 5.73214e12 0.538770
\(786\) 0 0
\(787\) −7.85517e12 −0.729910 −0.364955 0.931025i \(-0.618916\pi\)
−0.364955 + 0.931025i \(0.618916\pi\)
\(788\) 0 0
\(789\) −5.17773e12 −0.475656
\(790\) 0 0
\(791\) −1.03439e12 −0.0939481
\(792\) 0 0
\(793\) 5.98089e12 0.537076
\(794\) 0 0
\(795\) 7.61087e12 0.675744
\(796\) 0 0
\(797\) −1.92020e13 −1.68572 −0.842859 0.538134i \(-0.819129\pi\)
−0.842859 + 0.538134i \(0.819129\pi\)
\(798\) 0 0
\(799\) −4.64147e12 −0.402898
\(800\) 0 0
\(801\) −5.45404e12 −0.468136
\(802\) 0 0
\(803\) −1.55358e13 −1.31860
\(804\) 0 0
\(805\) 9.63950e12 0.809046
\(806\) 0 0
\(807\) 4.33488e12 0.359788
\(808\) 0 0
\(809\) 3.61312e12 0.296561 0.148281 0.988945i \(-0.452626\pi\)
0.148281 + 0.988945i \(0.452626\pi\)
\(810\) 0 0
\(811\) 1.93239e13 1.56856 0.784279 0.620409i \(-0.213033\pi\)
0.784279 + 0.620409i \(0.213033\pi\)
\(812\) 0 0
\(813\) −7.87023e12 −0.631801
\(814\) 0 0
\(815\) 5.85283e12 0.464683
\(816\) 0 0
\(817\) −2.02351e12 −0.158893
\(818\) 0 0
\(819\) −1.28342e12 −0.0996763
\(820\) 0 0
\(821\) −1.20242e13 −0.923661 −0.461831 0.886968i \(-0.652807\pi\)
−0.461831 + 0.886968i \(0.652807\pi\)
\(822\) 0 0
\(823\) 2.25098e12 0.171030 0.0855150 0.996337i \(-0.472746\pi\)
0.0855150 + 0.996337i \(0.472746\pi\)
\(824\) 0 0
\(825\) −2.14256e12 −0.161024
\(826\) 0 0
\(827\) −1.64682e13 −1.22425 −0.612127 0.790760i \(-0.709686\pi\)
−0.612127 + 0.790760i \(0.709686\pi\)
\(828\) 0 0
\(829\) −1.22802e13 −0.903048 −0.451524 0.892259i \(-0.649119\pi\)
−0.451524 + 0.892259i \(0.649119\pi\)
\(830\) 0 0
\(831\) 1.42823e13 1.03895
\(832\) 0 0
\(833\) 8.58337e12 0.617669
\(834\) 0 0
\(835\) −1.21569e11 −0.00865432
\(836\) 0 0
\(837\) 2.51282e13 1.76969
\(838\) 0 0
\(839\) −1.84244e13 −1.28370 −0.641850 0.766830i \(-0.721833\pi\)
−0.641850 + 0.766830i \(0.721833\pi\)
\(840\) 0 0
\(841\) 3.53226e13 2.43484
\(842\) 0 0
\(843\) −1.53182e13 −1.04468
\(844\) 0 0
\(845\) −9.69370e11 −0.0654086
\(846\) 0 0
\(847\) −1.43970e12 −0.0961160
\(848\) 0 0
\(849\) −1.48284e13 −0.979512
\(850\) 0 0
\(851\) −3.42897e13 −2.24120
\(852\) 0 0
\(853\) 2.10694e12 0.136264 0.0681320 0.997676i \(-0.478296\pi\)
0.0681320 + 0.997676i \(0.478296\pi\)
\(854\) 0 0
\(855\) 8.79368e11 0.0562760
\(856\) 0 0
\(857\) 5.50650e12 0.348708 0.174354 0.984683i \(-0.444216\pi\)
0.174354 + 0.984683i \(0.444216\pi\)
\(858\) 0 0
\(859\) 1.14504e13 0.717550 0.358775 0.933424i \(-0.383194\pi\)
0.358775 + 0.933424i \(0.383194\pi\)
\(860\) 0 0
\(861\) −1.23804e12 −0.0767750
\(862\) 0 0
\(863\) −1.95971e13 −1.20266 −0.601329 0.799001i \(-0.705362\pi\)
−0.601329 + 0.799001i \(0.705362\pi\)
\(864\) 0 0
\(865\) −1.84038e13 −1.11773
\(866\) 0 0
\(867\) 6.75772e11 0.0406176
\(868\) 0 0
\(869\) 2.48136e13 1.47605
\(870\) 0 0
\(871\) 7.61763e12 0.448475
\(872\) 0 0
\(873\) 4.25149e12 0.247729
\(874\) 0 0
\(875\) 1.13209e13 0.652895
\(876\) 0 0
\(877\) 1.21365e13 0.692783 0.346391 0.938090i \(-0.387407\pi\)
0.346391 + 0.938090i \(0.387407\pi\)
\(878\) 0 0
\(879\) −9.29309e12 −0.525062
\(880\) 0 0
\(881\) −5.07297e11 −0.0283708 −0.0141854 0.999899i \(-0.504515\pi\)
−0.0141854 + 0.999899i \(0.504515\pi\)
\(882\) 0 0
\(883\) 7.97430e12 0.441438 0.220719 0.975337i \(-0.429160\pi\)
0.220719 + 0.975337i \(0.429160\pi\)
\(884\) 0 0
\(885\) −7.95866e12 −0.436109
\(886\) 0 0
\(887\) 3.08847e12 0.167528 0.0837639 0.996486i \(-0.473306\pi\)
0.0837639 + 0.996486i \(0.473306\pi\)
\(888\) 0 0
\(889\) −1.10189e13 −0.591673
\(890\) 0 0
\(891\) 7.77123e11 0.0413086
\(892\) 0 0
\(893\) 8.76321e11 0.0461139
\(894\) 0 0
\(895\) 1.23905e12 0.0645481
\(896\) 0 0
\(897\) 5.39738e12 0.278367
\(898\) 0 0
\(899\) −6.33865e13 −3.23652
\(900\) 0 0
\(901\) −2.39782e13 −1.21215
\(902\) 0 0
\(903\) 1.09345e13 0.547271
\(904\) 0 0
\(905\) −1.43381e13 −0.710515
\(906\) 0 0
\(907\) −1.65177e13 −0.810430 −0.405215 0.914221i \(-0.632803\pi\)
−0.405215 + 0.914221i \(0.632803\pi\)
\(908\) 0 0
\(909\) −1.15010e13 −0.558724
\(910\) 0 0
\(911\) −1.30186e13 −0.626226 −0.313113 0.949716i \(-0.601372\pi\)
−0.313113 + 0.949716i \(0.601372\pi\)
\(912\) 0 0
\(913\) 5.40346e12 0.257367
\(914\) 0 0
\(915\) 2.21441e13 1.04439
\(916\) 0 0
\(917\) −9.64865e12 −0.450614
\(918\) 0 0
\(919\) 1.74711e13 0.807978 0.403989 0.914764i \(-0.367623\pi\)
0.403989 + 0.914764i \(0.367623\pi\)
\(920\) 0 0
\(921\) −5.10347e11 −0.0233721
\(922\) 0 0
\(923\) 4.11037e12 0.186412
\(924\) 0 0
\(925\) −8.73456e12 −0.392286
\(926\) 0 0
\(927\) −1.91674e13 −0.852521
\(928\) 0 0
\(929\) 3.53491e12 0.155707 0.0778534 0.996965i \(-0.475193\pi\)
0.0778534 + 0.996965i \(0.475193\pi\)
\(930\) 0 0
\(931\) −1.62056e12 −0.0706956
\(932\) 0 0
\(933\) −6.43729e12 −0.278122
\(934\) 0 0
\(935\) −1.76213e13 −0.754025
\(936\) 0 0
\(937\) 2.75317e13 1.16682 0.583411 0.812177i \(-0.301718\pi\)
0.583411 + 0.812177i \(0.301718\pi\)
\(938\) 0 0
\(939\) 8.40589e12 0.352849
\(940\) 0 0
\(941\) 3.18537e13 1.32436 0.662180 0.749345i \(-0.269631\pi\)
0.662180 + 0.749345i \(0.269631\pi\)
\(942\) 0 0
\(943\) −7.73517e12 −0.318542
\(944\) 0 0
\(945\) −1.27022e13 −0.518125
\(946\) 0 0
\(947\) 8.57276e12 0.346374 0.173187 0.984889i \(-0.444593\pi\)
0.173187 + 0.984889i \(0.444593\pi\)
\(948\) 0 0
\(949\) 9.96920e12 0.398990
\(950\) 0 0
\(951\) −2.75799e13 −1.09340
\(952\) 0 0
\(953\) 3.85246e13 1.51294 0.756468 0.654031i \(-0.226923\pi\)
0.756468 + 0.654031i \(0.226923\pi\)
\(954\) 0 0
\(955\) −1.89039e12 −0.0735423
\(956\) 0 0
\(957\) −2.79585e13 −1.07748
\(958\) 0 0
\(959\) −2.72150e13 −1.03902
\(960\) 0 0
\(961\) 5.41919e13 2.04965
\(962\) 0 0
\(963\) −3.31276e12 −0.124129
\(964\) 0 0
\(965\) −1.79121e13 −0.664926
\(966\) 0 0
\(967\) 4.40785e13 1.62109 0.810547 0.585674i \(-0.199170\pi\)
0.810547 + 0.585674i \(0.199170\pi\)
\(968\) 0 0
\(969\) 1.86479e12 0.0679475
\(970\) 0 0
\(971\) −2.16995e13 −0.783364 −0.391682 0.920101i \(-0.628107\pi\)
−0.391682 + 0.920101i \(0.628107\pi\)
\(972\) 0 0
\(973\) −1.14777e13 −0.410533
\(974\) 0 0
\(975\) 1.37487e12 0.0487237
\(976\) 0 0
\(977\) 2.73543e13 0.960507 0.480253 0.877130i \(-0.340545\pi\)
0.480253 + 0.877130i \(0.340545\pi\)
\(978\) 0 0
\(979\) −2.06345e13 −0.717912
\(980\) 0 0
\(981\) −2.21037e13 −0.761999
\(982\) 0 0
\(983\) 7.93965e12 0.271213 0.135607 0.990763i \(-0.456702\pi\)
0.135607 + 0.990763i \(0.456702\pi\)
\(984\) 0 0
\(985\) −2.19250e13 −0.742123
\(986\) 0 0
\(987\) −4.73539e12 −0.158828
\(988\) 0 0
\(989\) 6.83177e13 2.27065
\(990\) 0 0
\(991\) −2.57860e13 −0.849282 −0.424641 0.905362i \(-0.639600\pi\)
−0.424641 + 0.905362i \(0.639600\pi\)
\(992\) 0 0
\(993\) 1.94199e13 0.633834
\(994\) 0 0
\(995\) 4.20474e13 1.35999
\(996\) 0 0
\(997\) −2.22466e13 −0.713075 −0.356538 0.934281i \(-0.616043\pi\)
−0.356538 + 0.934281i \(0.616043\pi\)
\(998\) 0 0
\(999\) 4.51841e13 1.43530
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 104.10.a.d.1.3 8
4.3 odd 2 208.10.a.m.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.a.d.1.3 8 1.1 even 1 trivial
208.10.a.m.1.6 8 4.3 odd 2