Properties

Label 1024.2.a.f.1.1
Level $1024$
Weight $2$
Character 1024.1
Self dual yes
Analytic conductor $8.177$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1024,2,Mod(1,1024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1024, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1024.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1024 = 2^{10} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1024.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,8,0,10,0,0,0,0,0,-8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.17668116698\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 512)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 1024.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.82843 q^{3} +1.41421 q^{5} +4.00000 q^{7} +5.00000 q^{9} -2.82843 q^{11} +4.24264 q^{13} -4.00000 q^{15} -2.82843 q^{19} -11.3137 q^{21} +4.00000 q^{23} -3.00000 q^{25} -5.65685 q^{27} +4.24264 q^{29} -8.00000 q^{31} +8.00000 q^{33} +5.65685 q^{35} -1.41421 q^{37} -12.0000 q^{39} +8.00000 q^{41} +2.82843 q^{43} +7.07107 q^{45} +8.00000 q^{47} +9.00000 q^{49} +1.41421 q^{53} -4.00000 q^{55} +8.00000 q^{57} +8.48528 q^{59} -4.24264 q^{61} +20.0000 q^{63} +6.00000 q^{65} +2.82843 q^{67} -11.3137 q^{69} +12.0000 q^{71} -2.00000 q^{73} +8.48528 q^{75} -11.3137 q^{77} +1.00000 q^{81} +14.1421 q^{83} -12.0000 q^{87} +14.0000 q^{89} +16.9706 q^{91} +22.6274 q^{93} -4.00000 q^{95} -16.0000 q^{97} -14.1421 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{7} + 10 q^{9} - 8 q^{15} + 8 q^{23} - 6 q^{25} - 16 q^{31} + 16 q^{33} - 24 q^{39} + 16 q^{41} + 16 q^{47} + 18 q^{49} - 8 q^{55} + 16 q^{57} + 40 q^{63} + 12 q^{65} + 24 q^{71} - 4 q^{73} + 2 q^{81}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.82843 −1.63299 −0.816497 0.577350i \(-0.804087\pi\)
−0.816497 + 0.577350i \(0.804087\pi\)
\(4\) 0 0
\(5\) 1.41421 0.632456 0.316228 0.948683i \(-0.397584\pi\)
0.316228 + 0.948683i \(0.397584\pi\)
\(6\) 0 0
\(7\) 4.00000 1.51186 0.755929 0.654654i \(-0.227186\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 0 0
\(9\) 5.00000 1.66667
\(10\) 0 0
\(11\) −2.82843 −0.852803 −0.426401 0.904534i \(-0.640219\pi\)
−0.426401 + 0.904534i \(0.640219\pi\)
\(12\) 0 0
\(13\) 4.24264 1.17670 0.588348 0.808608i \(-0.299778\pi\)
0.588348 + 0.808608i \(0.299778\pi\)
\(14\) 0 0
\(15\) −4.00000 −1.03280
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −2.82843 −0.648886 −0.324443 0.945905i \(-0.605177\pi\)
−0.324443 + 0.945905i \(0.605177\pi\)
\(20\) 0 0
\(21\) −11.3137 −2.46885
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −3.00000 −0.600000
\(26\) 0 0
\(27\) −5.65685 −1.08866
\(28\) 0 0
\(29\) 4.24264 0.787839 0.393919 0.919145i \(-0.371119\pi\)
0.393919 + 0.919145i \(0.371119\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) 8.00000 1.39262
\(34\) 0 0
\(35\) 5.65685 0.956183
\(36\) 0 0
\(37\) −1.41421 −0.232495 −0.116248 0.993220i \(-0.537087\pi\)
−0.116248 + 0.993220i \(0.537087\pi\)
\(38\) 0 0
\(39\) −12.0000 −1.92154
\(40\) 0 0
\(41\) 8.00000 1.24939 0.624695 0.780869i \(-0.285223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) 0 0
\(43\) 2.82843 0.431331 0.215666 0.976467i \(-0.430808\pi\)
0.215666 + 0.976467i \(0.430808\pi\)
\(44\) 0 0
\(45\) 7.07107 1.05409
\(46\) 0 0
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.41421 0.194257 0.0971286 0.995272i \(-0.469034\pi\)
0.0971286 + 0.995272i \(0.469034\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) 0 0
\(57\) 8.00000 1.05963
\(58\) 0 0
\(59\) 8.48528 1.10469 0.552345 0.833616i \(-0.313733\pi\)
0.552345 + 0.833616i \(0.313733\pi\)
\(60\) 0 0
\(61\) −4.24264 −0.543214 −0.271607 0.962408i \(-0.587555\pi\)
−0.271607 + 0.962408i \(0.587555\pi\)
\(62\) 0 0
\(63\) 20.0000 2.51976
\(64\) 0 0
\(65\) 6.00000 0.744208
\(66\) 0 0
\(67\) 2.82843 0.345547 0.172774 0.984962i \(-0.444727\pi\)
0.172774 + 0.984962i \(0.444727\pi\)
\(68\) 0 0
\(69\) −11.3137 −1.36201
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) 8.48528 0.979796
\(76\) 0 0
\(77\) −11.3137 −1.28932
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 14.1421 1.55230 0.776151 0.630548i \(-0.217170\pi\)
0.776151 + 0.630548i \(0.217170\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −12.0000 −1.28654
\(88\) 0 0
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) 0 0
\(91\) 16.9706 1.77900
\(92\) 0 0
\(93\) 22.6274 2.34635
\(94\) 0 0
\(95\) −4.00000 −0.410391
\(96\) 0 0
\(97\) −16.0000 −1.62455 −0.812277 0.583272i \(-0.801772\pi\)
−0.812277 + 0.583272i \(0.801772\pi\)
\(98\) 0 0
\(99\) −14.1421 −1.42134
\(100\) 0 0
\(101\) −1.41421 −0.140720 −0.0703598 0.997522i \(-0.522415\pi\)
−0.0703598 + 0.997522i \(0.522415\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) −16.0000 −1.56144
\(106\) 0 0
\(107\) −2.82843 −0.273434 −0.136717 0.990610i \(-0.543655\pi\)
−0.136717 + 0.990610i \(0.543655\pi\)
\(108\) 0 0
\(109\) 18.3848 1.76094 0.880471 0.474100i \(-0.157226\pi\)
0.880471 + 0.474100i \(0.157226\pi\)
\(110\) 0 0
\(111\) 4.00000 0.379663
\(112\) 0 0
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) 5.65685 0.527504
\(116\) 0 0
\(117\) 21.2132 1.96116
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −3.00000 −0.272727
\(122\) 0 0
\(123\) −22.6274 −2.04025
\(124\) 0 0
\(125\) −11.3137 −1.01193
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) 14.1421 1.23560 0.617802 0.786334i \(-0.288023\pi\)
0.617802 + 0.786334i \(0.288023\pi\)
\(132\) 0 0
\(133\) −11.3137 −0.981023
\(134\) 0 0
\(135\) −8.00000 −0.688530
\(136\) 0 0
\(137\) −8.00000 −0.683486 −0.341743 0.939793i \(-0.611017\pi\)
−0.341743 + 0.939793i \(0.611017\pi\)
\(138\) 0 0
\(139\) −8.48528 −0.719712 −0.359856 0.933008i \(-0.617174\pi\)
−0.359856 + 0.933008i \(0.617174\pi\)
\(140\) 0 0
\(141\) −22.6274 −1.90557
\(142\) 0 0
\(143\) −12.0000 −1.00349
\(144\) 0 0
\(145\) 6.00000 0.498273
\(146\) 0 0
\(147\) −25.4558 −2.09956
\(148\) 0 0
\(149\) −1.41421 −0.115857 −0.0579284 0.998321i \(-0.518450\pi\)
−0.0579284 + 0.998321i \(0.518450\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −11.3137 −0.908739
\(156\) 0 0
\(157\) −4.24264 −0.338600 −0.169300 0.985565i \(-0.554151\pi\)
−0.169300 + 0.985565i \(0.554151\pi\)
\(158\) 0 0
\(159\) −4.00000 −0.317221
\(160\) 0 0
\(161\) 16.0000 1.26098
\(162\) 0 0
\(163\) 8.48528 0.664619 0.332309 0.943170i \(-0.392172\pi\)
0.332309 + 0.943170i \(0.392172\pi\)
\(164\) 0 0
\(165\) 11.3137 0.880771
\(166\) 0 0
\(167\) 4.00000 0.309529 0.154765 0.987951i \(-0.450538\pi\)
0.154765 + 0.987951i \(0.450538\pi\)
\(168\) 0 0
\(169\) 5.00000 0.384615
\(170\) 0 0
\(171\) −14.1421 −1.08148
\(172\) 0 0
\(173\) −18.3848 −1.39777 −0.698884 0.715235i \(-0.746320\pi\)
−0.698884 + 0.715235i \(0.746320\pi\)
\(174\) 0 0
\(175\) −12.0000 −0.907115
\(176\) 0 0
\(177\) −24.0000 −1.80395
\(178\) 0 0
\(179\) −19.7990 −1.47985 −0.739923 0.672692i \(-0.765138\pi\)
−0.739923 + 0.672692i \(0.765138\pi\)
\(180\) 0 0
\(181\) 21.2132 1.57676 0.788382 0.615185i \(-0.210919\pi\)
0.788382 + 0.615185i \(0.210919\pi\)
\(182\) 0 0
\(183\) 12.0000 0.887066
\(184\) 0 0
\(185\) −2.00000 −0.147043
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −22.6274 −1.64590
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) −16.0000 −1.15171 −0.575853 0.817554i \(-0.695330\pi\)
−0.575853 + 0.817554i \(0.695330\pi\)
\(194\) 0 0
\(195\) −16.9706 −1.21529
\(196\) 0 0
\(197\) 24.0416 1.71290 0.856448 0.516234i \(-0.172666\pi\)
0.856448 + 0.516234i \(0.172666\pi\)
\(198\) 0 0
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) 0 0
\(203\) 16.9706 1.19110
\(204\) 0 0
\(205\) 11.3137 0.790184
\(206\) 0 0
\(207\) 20.0000 1.39010
\(208\) 0 0
\(209\) 8.00000 0.553372
\(210\) 0 0
\(211\) 14.1421 0.973585 0.486792 0.873518i \(-0.338167\pi\)
0.486792 + 0.873518i \(0.338167\pi\)
\(212\) 0 0
\(213\) −33.9411 −2.32561
\(214\) 0 0
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) −32.0000 −2.17230
\(218\) 0 0
\(219\) 5.65685 0.382255
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 24.0000 1.60716 0.803579 0.595198i \(-0.202926\pi\)
0.803579 + 0.595198i \(0.202926\pi\)
\(224\) 0 0
\(225\) −15.0000 −1.00000
\(226\) 0 0
\(227\) −25.4558 −1.68956 −0.844782 0.535111i \(-0.820270\pi\)
−0.844782 + 0.535111i \(0.820270\pi\)
\(228\) 0 0
\(229\) 1.41421 0.0934539 0.0467269 0.998908i \(-0.485121\pi\)
0.0467269 + 0.998908i \(0.485121\pi\)
\(230\) 0 0
\(231\) 32.0000 2.10545
\(232\) 0 0
\(233\) −2.00000 −0.131024 −0.0655122 0.997852i \(-0.520868\pi\)
−0.0655122 + 0.997852i \(0.520868\pi\)
\(234\) 0 0
\(235\) 11.3137 0.738025
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) 14.1421 0.907218
\(244\) 0 0
\(245\) 12.7279 0.813157
\(246\) 0 0
\(247\) −12.0000 −0.763542
\(248\) 0 0
\(249\) −40.0000 −2.53490
\(250\) 0 0
\(251\) 19.7990 1.24970 0.624851 0.780744i \(-0.285160\pi\)
0.624851 + 0.780744i \(0.285160\pi\)
\(252\) 0 0
\(253\) −11.3137 −0.711287
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) −5.65685 −0.351500
\(260\) 0 0
\(261\) 21.2132 1.31306
\(262\) 0 0
\(263\) −20.0000 −1.23325 −0.616626 0.787256i \(-0.711501\pi\)
−0.616626 + 0.787256i \(0.711501\pi\)
\(264\) 0 0
\(265\) 2.00000 0.122859
\(266\) 0 0
\(267\) −39.5980 −2.42336
\(268\) 0 0
\(269\) −4.24264 −0.258678 −0.129339 0.991600i \(-0.541286\pi\)
−0.129339 + 0.991600i \(0.541286\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) −48.0000 −2.90509
\(274\) 0 0
\(275\) 8.48528 0.511682
\(276\) 0 0
\(277\) −21.2132 −1.27458 −0.637289 0.770625i \(-0.719944\pi\)
−0.637289 + 0.770625i \(0.719944\pi\)
\(278\) 0 0
\(279\) −40.0000 −2.39474
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) −19.7990 −1.17693 −0.588464 0.808523i \(-0.700267\pi\)
−0.588464 + 0.808523i \(0.700267\pi\)
\(284\) 0 0
\(285\) 11.3137 0.670166
\(286\) 0 0
\(287\) 32.0000 1.88890
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 45.2548 2.65289
\(292\) 0 0
\(293\) 24.0416 1.40453 0.702264 0.711917i \(-0.252173\pi\)
0.702264 + 0.711917i \(0.252173\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 0 0
\(297\) 16.0000 0.928414
\(298\) 0 0
\(299\) 16.9706 0.981433
\(300\) 0 0
\(301\) 11.3137 0.652111
\(302\) 0 0
\(303\) 4.00000 0.229794
\(304\) 0 0
\(305\) −6.00000 −0.343559
\(306\) 0 0
\(307\) 8.48528 0.484281 0.242140 0.970241i \(-0.422151\pi\)
0.242140 + 0.970241i \(0.422151\pi\)
\(308\) 0 0
\(309\) 11.3137 0.643614
\(310\) 0 0
\(311\) −4.00000 −0.226819 −0.113410 0.993548i \(-0.536177\pi\)
−0.113410 + 0.993548i \(0.536177\pi\)
\(312\) 0 0
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) 0 0
\(315\) 28.2843 1.59364
\(316\) 0 0
\(317\) −18.3848 −1.03259 −0.516296 0.856410i \(-0.672690\pi\)
−0.516296 + 0.856410i \(0.672690\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) 8.00000 0.446516
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −12.7279 −0.706018
\(326\) 0 0
\(327\) −52.0000 −2.87561
\(328\) 0 0
\(329\) 32.0000 1.76422
\(330\) 0 0
\(331\) 31.1127 1.71011 0.855054 0.518538i \(-0.173524\pi\)
0.855054 + 0.518538i \(0.173524\pi\)
\(332\) 0 0
\(333\) −7.07107 −0.387492
\(334\) 0 0
\(335\) 4.00000 0.218543
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 0 0
\(339\) 5.65685 0.307238
\(340\) 0 0
\(341\) 22.6274 1.22534
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 0 0
\(345\) −16.0000 −0.861411
\(346\) 0 0
\(347\) −2.82843 −0.151838 −0.0759190 0.997114i \(-0.524189\pi\)
−0.0759190 + 0.997114i \(0.524189\pi\)
\(348\) 0 0
\(349\) −18.3848 −0.984115 −0.492057 0.870563i \(-0.663755\pi\)
−0.492057 + 0.870563i \(0.663755\pi\)
\(350\) 0 0
\(351\) −24.0000 −1.28103
\(352\) 0 0
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 0 0
\(355\) 16.9706 0.900704
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −20.0000 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(360\) 0 0
\(361\) −11.0000 −0.578947
\(362\) 0 0
\(363\) 8.48528 0.445362
\(364\) 0 0
\(365\) −2.82843 −0.148047
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) 40.0000 2.08232
\(370\) 0 0
\(371\) 5.65685 0.293689
\(372\) 0 0
\(373\) −21.2132 −1.09838 −0.549189 0.835698i \(-0.685063\pi\)
−0.549189 + 0.835698i \(0.685063\pi\)
\(374\) 0 0
\(375\) 32.0000 1.65247
\(376\) 0 0
\(377\) 18.0000 0.927047
\(378\) 0 0
\(379\) −25.4558 −1.30758 −0.653789 0.756677i \(-0.726822\pi\)
−0.653789 + 0.756677i \(0.726822\pi\)
\(380\) 0 0
\(381\) 22.6274 1.15924
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) −16.0000 −0.815436
\(386\) 0 0
\(387\) 14.1421 0.718885
\(388\) 0 0
\(389\) −1.41421 −0.0717035 −0.0358517 0.999357i \(-0.511414\pi\)
−0.0358517 + 0.999357i \(0.511414\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −40.0000 −2.01773
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −4.24264 −0.212932 −0.106466 0.994316i \(-0.533954\pi\)
−0.106466 + 0.994316i \(0.533954\pi\)
\(398\) 0 0
\(399\) 32.0000 1.60200
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) −33.9411 −1.69073
\(404\) 0 0
\(405\) 1.41421 0.0702728
\(406\) 0 0
\(407\) 4.00000 0.198273
\(408\) 0 0
\(409\) 8.00000 0.395575 0.197787 0.980245i \(-0.436624\pi\)
0.197787 + 0.980245i \(0.436624\pi\)
\(410\) 0 0
\(411\) 22.6274 1.11613
\(412\) 0 0
\(413\) 33.9411 1.67013
\(414\) 0 0
\(415\) 20.0000 0.981761
\(416\) 0 0
\(417\) 24.0000 1.17529
\(418\) 0 0
\(419\) −8.48528 −0.414533 −0.207267 0.978285i \(-0.566457\pi\)
−0.207267 + 0.978285i \(0.566457\pi\)
\(420\) 0 0
\(421\) −21.2132 −1.03387 −0.516934 0.856025i \(-0.672927\pi\)
−0.516934 + 0.856025i \(0.672927\pi\)
\(422\) 0 0
\(423\) 40.0000 1.94487
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −16.9706 −0.821263
\(428\) 0 0
\(429\) 33.9411 1.63869
\(430\) 0 0
\(431\) −16.0000 −0.770693 −0.385346 0.922772i \(-0.625918\pi\)
−0.385346 + 0.922772i \(0.625918\pi\)
\(432\) 0 0
\(433\) −32.0000 −1.53782 −0.768911 0.639356i \(-0.779201\pi\)
−0.768911 + 0.639356i \(0.779201\pi\)
\(434\) 0 0
\(435\) −16.9706 −0.813676
\(436\) 0 0
\(437\) −11.3137 −0.541208
\(438\) 0 0
\(439\) −4.00000 −0.190910 −0.0954548 0.995434i \(-0.530431\pi\)
−0.0954548 + 0.995434i \(0.530431\pi\)
\(440\) 0 0
\(441\) 45.0000 2.14286
\(442\) 0 0
\(443\) −8.48528 −0.403148 −0.201574 0.979473i \(-0.564606\pi\)
−0.201574 + 0.979473i \(0.564606\pi\)
\(444\) 0 0
\(445\) 19.7990 0.938562
\(446\) 0 0
\(447\) 4.00000 0.189194
\(448\) 0 0
\(449\) −16.0000 −0.755087 −0.377543 0.925992i \(-0.623231\pi\)
−0.377543 + 0.925992i \(0.623231\pi\)
\(450\) 0 0
\(451\) −22.6274 −1.06548
\(452\) 0 0
\(453\) −56.5685 −2.65782
\(454\) 0 0
\(455\) 24.0000 1.12514
\(456\) 0 0
\(457\) 8.00000 0.374224 0.187112 0.982339i \(-0.440087\pi\)
0.187112 + 0.982339i \(0.440087\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −26.8701 −1.25146 −0.625732 0.780038i \(-0.715200\pi\)
−0.625732 + 0.780038i \(0.715200\pi\)
\(462\) 0 0
\(463\) −32.0000 −1.48717 −0.743583 0.668644i \(-0.766875\pi\)
−0.743583 + 0.668644i \(0.766875\pi\)
\(464\) 0 0
\(465\) 32.0000 1.48396
\(466\) 0 0
\(467\) −2.82843 −0.130884 −0.0654420 0.997856i \(-0.520846\pi\)
−0.0654420 + 0.997856i \(0.520846\pi\)
\(468\) 0 0
\(469\) 11.3137 0.522419
\(470\) 0 0
\(471\) 12.0000 0.552931
\(472\) 0 0
\(473\) −8.00000 −0.367840
\(474\) 0 0
\(475\) 8.48528 0.389331
\(476\) 0 0
\(477\) 7.07107 0.323762
\(478\) 0 0
\(479\) 8.00000 0.365529 0.182765 0.983157i \(-0.441495\pi\)
0.182765 + 0.983157i \(0.441495\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) 0 0
\(483\) −45.2548 −2.05917
\(484\) 0 0
\(485\) −22.6274 −1.02746
\(486\) 0 0
\(487\) −12.0000 −0.543772 −0.271886 0.962329i \(-0.587647\pi\)
−0.271886 + 0.962329i \(0.587647\pi\)
\(488\) 0 0
\(489\) −24.0000 −1.08532
\(490\) 0 0
\(491\) −19.7990 −0.893516 −0.446758 0.894655i \(-0.647421\pi\)
−0.446758 + 0.894655i \(0.647421\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −20.0000 −0.898933
\(496\) 0 0
\(497\) 48.0000 2.15309
\(498\) 0 0
\(499\) 2.82843 0.126618 0.0633089 0.997994i \(-0.479835\pi\)
0.0633089 + 0.997994i \(0.479835\pi\)
\(500\) 0 0
\(501\) −11.3137 −0.505459
\(502\) 0 0
\(503\) −28.0000 −1.24846 −0.624229 0.781241i \(-0.714587\pi\)
−0.624229 + 0.781241i \(0.714587\pi\)
\(504\) 0 0
\(505\) −2.00000 −0.0889988
\(506\) 0 0
\(507\) −14.1421 −0.628074
\(508\) 0 0
\(509\) −26.8701 −1.19099 −0.595497 0.803357i \(-0.703045\pi\)
−0.595497 + 0.803357i \(0.703045\pi\)
\(510\) 0 0
\(511\) −8.00000 −0.353899
\(512\) 0 0
\(513\) 16.0000 0.706417
\(514\) 0 0
\(515\) −5.65685 −0.249271
\(516\) 0 0
\(517\) −22.6274 −0.995153
\(518\) 0 0
\(519\) 52.0000 2.28255
\(520\) 0 0
\(521\) 24.0000 1.05146 0.525730 0.850652i \(-0.323792\pi\)
0.525730 + 0.850652i \(0.323792\pi\)
\(522\) 0 0
\(523\) −25.4558 −1.11311 −0.556553 0.830812i \(-0.687876\pi\)
−0.556553 + 0.830812i \(0.687876\pi\)
\(524\) 0 0
\(525\) 33.9411 1.48131
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 42.4264 1.84115
\(532\) 0 0
\(533\) 33.9411 1.47015
\(534\) 0 0
\(535\) −4.00000 −0.172935
\(536\) 0 0
\(537\) 56.0000 2.41658
\(538\) 0 0
\(539\) −25.4558 −1.09646
\(540\) 0 0
\(541\) −4.24264 −0.182405 −0.0912027 0.995832i \(-0.529071\pi\)
−0.0912027 + 0.995832i \(0.529071\pi\)
\(542\) 0 0
\(543\) −60.0000 −2.57485
\(544\) 0 0
\(545\) 26.0000 1.11372
\(546\) 0 0
\(547\) −42.4264 −1.81402 −0.907011 0.421107i \(-0.861642\pi\)
−0.907011 + 0.421107i \(0.861642\pi\)
\(548\) 0 0
\(549\) −21.2132 −0.905357
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 5.65685 0.240120
\(556\) 0 0
\(557\) −18.3848 −0.778988 −0.389494 0.921029i \(-0.627350\pi\)
−0.389494 + 0.921029i \(0.627350\pi\)
\(558\) 0 0
\(559\) 12.0000 0.507546
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.82843 −0.119204 −0.0596020 0.998222i \(-0.518983\pi\)
−0.0596020 + 0.998222i \(0.518983\pi\)
\(564\) 0 0
\(565\) −2.82843 −0.118993
\(566\) 0 0
\(567\) 4.00000 0.167984
\(568\) 0 0
\(569\) 24.0000 1.00613 0.503066 0.864248i \(-0.332205\pi\)
0.503066 + 0.864248i \(0.332205\pi\)
\(570\) 0 0
\(571\) −8.48528 −0.355098 −0.177549 0.984112i \(-0.556817\pi\)
−0.177549 + 0.984112i \(0.556817\pi\)
\(572\) 0 0
\(573\) 67.8823 2.83582
\(574\) 0 0
\(575\) −12.0000 −0.500435
\(576\) 0 0
\(577\) 30.0000 1.24892 0.624458 0.781058i \(-0.285320\pi\)
0.624458 + 0.781058i \(0.285320\pi\)
\(578\) 0 0
\(579\) 45.2548 1.88073
\(580\) 0 0
\(581\) 56.5685 2.34686
\(582\) 0 0
\(583\) −4.00000 −0.165663
\(584\) 0 0
\(585\) 30.0000 1.24035
\(586\) 0 0
\(587\) −14.1421 −0.583708 −0.291854 0.956463i \(-0.594272\pi\)
−0.291854 + 0.956463i \(0.594272\pi\)
\(588\) 0 0
\(589\) 22.6274 0.932346
\(590\) 0 0
\(591\) −68.0000 −2.79715
\(592\) 0 0
\(593\) 14.0000 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −11.3137 −0.463039
\(598\) 0 0
\(599\) 28.0000 1.14405 0.572024 0.820237i \(-0.306158\pi\)
0.572024 + 0.820237i \(0.306158\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 14.1421 0.575912
\(604\) 0 0
\(605\) −4.24264 −0.172488
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) −48.0000 −1.94506
\(610\) 0 0
\(611\) 33.9411 1.37311
\(612\) 0 0
\(613\) 24.0416 0.971032 0.485516 0.874228i \(-0.338632\pi\)
0.485516 + 0.874228i \(0.338632\pi\)
\(614\) 0 0
\(615\) −32.0000 −1.29036
\(616\) 0 0
\(617\) 2.00000 0.0805170 0.0402585 0.999189i \(-0.487182\pi\)
0.0402585 + 0.999189i \(0.487182\pi\)
\(618\) 0 0
\(619\) −25.4558 −1.02316 −0.511578 0.859237i \(-0.670939\pi\)
−0.511578 + 0.859237i \(0.670939\pi\)
\(620\) 0 0
\(621\) −22.6274 −0.908007
\(622\) 0 0
\(623\) 56.0000 2.24359
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) −22.6274 −0.903652
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 4.00000 0.159237 0.0796187 0.996825i \(-0.474630\pi\)
0.0796187 + 0.996825i \(0.474630\pi\)
\(632\) 0 0
\(633\) −40.0000 −1.58986
\(634\) 0 0
\(635\) −11.3137 −0.448971
\(636\) 0 0
\(637\) 38.1838 1.51290
\(638\) 0 0
\(639\) 60.0000 2.37356
\(640\) 0 0
\(641\) 16.0000 0.631962 0.315981 0.948766i \(-0.397666\pi\)
0.315981 + 0.948766i \(0.397666\pi\)
\(642\) 0 0
\(643\) 25.4558 1.00388 0.501940 0.864902i \(-0.332620\pi\)
0.501940 + 0.864902i \(0.332620\pi\)
\(644\) 0 0
\(645\) −11.3137 −0.445477
\(646\) 0 0
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 0 0
\(649\) −24.0000 −0.942082
\(650\) 0 0
\(651\) 90.5097 3.54735
\(652\) 0 0
\(653\) 41.0122 1.60493 0.802466 0.596698i \(-0.203521\pi\)
0.802466 + 0.596698i \(0.203521\pi\)
\(654\) 0 0
\(655\) 20.0000 0.781465
\(656\) 0 0
\(657\) −10.0000 −0.390137
\(658\) 0 0
\(659\) −31.1127 −1.21198 −0.605989 0.795473i \(-0.707223\pi\)
−0.605989 + 0.795473i \(0.707223\pi\)
\(660\) 0 0
\(661\) −24.0416 −0.935111 −0.467556 0.883964i \(-0.654865\pi\)
−0.467556 + 0.883964i \(0.654865\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −16.0000 −0.620453
\(666\) 0 0
\(667\) 16.9706 0.657103
\(668\) 0 0
\(669\) −67.8823 −2.62448
\(670\) 0 0
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) 16.0000 0.616755 0.308377 0.951264i \(-0.400214\pi\)
0.308377 + 0.951264i \(0.400214\pi\)
\(674\) 0 0
\(675\) 16.9706 0.653197
\(676\) 0 0
\(677\) −46.6690 −1.79364 −0.896819 0.442398i \(-0.854128\pi\)
−0.896819 + 0.442398i \(0.854128\pi\)
\(678\) 0 0
\(679\) −64.0000 −2.45609
\(680\) 0 0
\(681\) 72.0000 2.75905
\(682\) 0 0
\(683\) −8.48528 −0.324680 −0.162340 0.986735i \(-0.551904\pi\)
−0.162340 + 0.986735i \(0.551904\pi\)
\(684\) 0 0
\(685\) −11.3137 −0.432275
\(686\) 0 0
\(687\) −4.00000 −0.152610
\(688\) 0 0
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) −8.48528 −0.322795 −0.161398 0.986889i \(-0.551600\pi\)
−0.161398 + 0.986889i \(0.551600\pi\)
\(692\) 0 0
\(693\) −56.5685 −2.14886
\(694\) 0 0
\(695\) −12.0000 −0.455186
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 5.65685 0.213962
\(700\) 0 0
\(701\) −26.8701 −1.01487 −0.507434 0.861691i \(-0.669406\pi\)
−0.507434 + 0.861691i \(0.669406\pi\)
\(702\) 0 0
\(703\) 4.00000 0.150863
\(704\) 0 0
\(705\) −32.0000 −1.20519
\(706\) 0 0
\(707\) −5.65685 −0.212748
\(708\) 0 0
\(709\) 21.2132 0.796679 0.398339 0.917238i \(-0.369587\pi\)
0.398339 + 0.917238i \(0.369587\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −32.0000 −1.19841
\(714\) 0 0
\(715\) −16.9706 −0.634663
\(716\) 0 0
\(717\) 45.2548 1.69007
\(718\) 0 0
\(719\) 48.0000 1.79010 0.895049 0.445968i \(-0.147140\pi\)
0.895049 + 0.445968i \(0.147140\pi\)
\(720\) 0 0
\(721\) −16.0000 −0.595871
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −12.7279 −0.472703
\(726\) 0 0
\(727\) −20.0000 −0.741759 −0.370879 0.928681i \(-0.620944\pi\)
−0.370879 + 0.928681i \(0.620944\pi\)
\(728\) 0 0
\(729\) −43.0000 −1.59259
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 26.8701 0.992468 0.496234 0.868189i \(-0.334716\pi\)
0.496234 + 0.868189i \(0.334716\pi\)
\(734\) 0 0
\(735\) −36.0000 −1.32788
\(736\) 0 0
\(737\) −8.00000 −0.294684
\(738\) 0 0
\(739\) 8.48528 0.312136 0.156068 0.987746i \(-0.450118\pi\)
0.156068 + 0.987746i \(0.450118\pi\)
\(740\) 0 0
\(741\) 33.9411 1.24686
\(742\) 0 0
\(743\) −12.0000 −0.440237 −0.220119 0.975473i \(-0.570644\pi\)
−0.220119 + 0.975473i \(0.570644\pi\)
\(744\) 0 0
\(745\) −2.00000 −0.0732743
\(746\) 0 0
\(747\) 70.7107 2.58717
\(748\) 0 0
\(749\) −11.3137 −0.413394
\(750\) 0 0
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) 0 0
\(753\) −56.0000 −2.04075
\(754\) 0 0
\(755\) 28.2843 1.02937
\(756\) 0 0
\(757\) −1.41421 −0.0514005 −0.0257002 0.999670i \(-0.508182\pi\)
−0.0257002 + 0.999670i \(0.508182\pi\)
\(758\) 0 0
\(759\) 32.0000 1.16153
\(760\) 0 0
\(761\) −24.0000 −0.869999 −0.435000 0.900431i \(-0.643252\pi\)
−0.435000 + 0.900431i \(0.643252\pi\)
\(762\) 0 0
\(763\) 73.5391 2.66229
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 36.0000 1.29988
\(768\) 0 0
\(769\) 16.0000 0.576975 0.288487 0.957484i \(-0.406848\pi\)
0.288487 + 0.957484i \(0.406848\pi\)
\(770\) 0 0
\(771\) −50.9117 −1.83354
\(772\) 0 0
\(773\) 21.2132 0.762986 0.381493 0.924372i \(-0.375410\pi\)
0.381493 + 0.924372i \(0.375410\pi\)
\(774\) 0 0
\(775\) 24.0000 0.862105
\(776\) 0 0
\(777\) 16.0000 0.573997
\(778\) 0 0
\(779\) −22.6274 −0.810711
\(780\) 0 0
\(781\) −33.9411 −1.21451
\(782\) 0 0
\(783\) −24.0000 −0.857690
\(784\) 0 0
\(785\) −6.00000 −0.214149
\(786\) 0 0
\(787\) 25.4558 0.907403 0.453701 0.891154i \(-0.350103\pi\)
0.453701 + 0.891154i \(0.350103\pi\)
\(788\) 0 0
\(789\) 56.5685 2.01389
\(790\) 0 0
\(791\) −8.00000 −0.284447
\(792\) 0 0
\(793\) −18.0000 −0.639199
\(794\) 0 0
\(795\) −5.65685 −0.200628
\(796\) 0 0
\(797\) −26.8701 −0.951786 −0.475893 0.879503i \(-0.657875\pi\)
−0.475893 + 0.879503i \(0.657875\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 70.0000 2.47333
\(802\) 0 0
\(803\) 5.65685 0.199626
\(804\) 0 0
\(805\) 22.6274 0.797512
\(806\) 0 0
\(807\) 12.0000 0.422420
\(808\) 0 0
\(809\) 40.0000 1.40633 0.703163 0.711029i \(-0.251771\pi\)
0.703163 + 0.711029i \(0.251771\pi\)
\(810\) 0 0
\(811\) 31.1127 1.09251 0.546257 0.837617i \(-0.316052\pi\)
0.546257 + 0.837617i \(0.316052\pi\)
\(812\) 0 0
\(813\) −22.6274 −0.793578
\(814\) 0 0
\(815\) 12.0000 0.420342
\(816\) 0 0
\(817\) −8.00000 −0.279885
\(818\) 0 0
\(819\) 84.8528 2.96500
\(820\) 0 0
\(821\) −21.2132 −0.740346 −0.370173 0.928963i \(-0.620702\pi\)
−0.370173 + 0.928963i \(0.620702\pi\)
\(822\) 0 0
\(823\) −52.0000 −1.81261 −0.906303 0.422628i \(-0.861108\pi\)
−0.906303 + 0.422628i \(0.861108\pi\)
\(824\) 0 0
\(825\) −24.0000 −0.835573
\(826\) 0 0
\(827\) −19.7990 −0.688478 −0.344239 0.938882i \(-0.611863\pi\)
−0.344239 + 0.938882i \(0.611863\pi\)
\(828\) 0 0
\(829\) 18.3848 0.638530 0.319265 0.947666i \(-0.396564\pi\)
0.319265 + 0.947666i \(0.396564\pi\)
\(830\) 0 0
\(831\) 60.0000 2.08138
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 5.65685 0.195764
\(836\) 0 0
\(837\) 45.2548 1.56424
\(838\) 0 0
\(839\) 36.0000 1.24286 0.621429 0.783470i \(-0.286552\pi\)
0.621429 + 0.783470i \(0.286552\pi\)
\(840\) 0 0
\(841\) −11.0000 −0.379310
\(842\) 0 0
\(843\) −50.9117 −1.75349
\(844\) 0 0
\(845\) 7.07107 0.243252
\(846\) 0 0
\(847\) −12.0000 −0.412325
\(848\) 0 0
\(849\) 56.0000 1.92192
\(850\) 0 0
\(851\) −5.65685 −0.193914
\(852\) 0 0
\(853\) 1.41421 0.0484218 0.0242109 0.999707i \(-0.492293\pi\)
0.0242109 + 0.999707i \(0.492293\pi\)
\(854\) 0 0
\(855\) −20.0000 −0.683986
\(856\) 0 0
\(857\) 24.0000 0.819824 0.409912 0.912125i \(-0.365559\pi\)
0.409912 + 0.912125i \(0.365559\pi\)
\(858\) 0 0
\(859\) −25.4558 −0.868542 −0.434271 0.900782i \(-0.642994\pi\)
−0.434271 + 0.900782i \(0.642994\pi\)
\(860\) 0 0
\(861\) −90.5097 −3.08456
\(862\) 0 0
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) 0 0
\(865\) −26.0000 −0.884027
\(866\) 0 0
\(867\) 48.0833 1.63299
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 12.0000 0.406604
\(872\) 0 0
\(873\) −80.0000 −2.70759
\(874\) 0 0
\(875\) −45.2548 −1.52989
\(876\) 0 0
\(877\) −26.8701 −0.907337 −0.453669 0.891170i \(-0.649885\pi\)
−0.453669 + 0.891170i \(0.649885\pi\)
\(878\) 0 0
\(879\) −68.0000 −2.29358
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) −48.0833 −1.61813 −0.809065 0.587719i \(-0.800026\pi\)
−0.809065 + 0.587719i \(0.800026\pi\)
\(884\) 0 0
\(885\) −33.9411 −1.14092
\(886\) 0 0
\(887\) −36.0000 −1.20876 −0.604381 0.796696i \(-0.706579\pi\)
−0.604381 + 0.796696i \(0.706579\pi\)
\(888\) 0 0
\(889\) −32.0000 −1.07325
\(890\) 0 0
\(891\) −2.82843 −0.0947559
\(892\) 0 0
\(893\) −22.6274 −0.757198
\(894\) 0 0
\(895\) −28.0000 −0.935937
\(896\) 0 0
\(897\) −48.0000 −1.60267
\(898\) 0 0
\(899\) −33.9411 −1.13200
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −32.0000 −1.06489
\(904\) 0 0
\(905\) 30.0000 0.997234
\(906\) 0 0
\(907\) 14.1421 0.469582 0.234791 0.972046i \(-0.424559\pi\)
0.234791 + 0.972046i \(0.424559\pi\)
\(908\) 0 0
\(909\) −7.07107 −0.234533
\(910\) 0 0
\(911\) −56.0000 −1.85536 −0.927681 0.373373i \(-0.878201\pi\)
−0.927681 + 0.373373i \(0.878201\pi\)
\(912\) 0 0
\(913\) −40.0000 −1.32381
\(914\) 0 0
\(915\) 16.9706 0.561029
\(916\) 0 0
\(917\) 56.5685 1.86806
\(918\) 0 0
\(919\) 4.00000 0.131948 0.0659739 0.997821i \(-0.478985\pi\)
0.0659739 + 0.997821i \(0.478985\pi\)
\(920\) 0 0
\(921\) −24.0000 −0.790827
\(922\) 0 0
\(923\) 50.9117 1.67578
\(924\) 0 0
\(925\) 4.24264 0.139497
\(926\) 0 0
\(927\) −20.0000 −0.656886
\(928\) 0 0
\(929\) −48.0000 −1.57483 −0.787414 0.616424i \(-0.788581\pi\)
−0.787414 + 0.616424i \(0.788581\pi\)
\(930\) 0 0
\(931\) −25.4558 −0.834282
\(932\) 0 0
\(933\) 11.3137 0.370394
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) −22.6274 −0.738418
\(940\) 0 0
\(941\) 18.3848 0.599327 0.299663 0.954045i \(-0.403126\pi\)
0.299663 + 0.954045i \(0.403126\pi\)
\(942\) 0 0
\(943\) 32.0000 1.04206
\(944\) 0 0
\(945\) −32.0000 −1.04096
\(946\) 0 0
\(947\) −14.1421 −0.459558 −0.229779 0.973243i \(-0.573800\pi\)
−0.229779 + 0.973243i \(0.573800\pi\)
\(948\) 0 0
\(949\) −8.48528 −0.275444
\(950\) 0 0
\(951\) 52.0000 1.68622
\(952\) 0 0
\(953\) 24.0000 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(954\) 0 0
\(955\) −33.9411 −1.09831
\(956\) 0 0
\(957\) 33.9411 1.09716
\(958\) 0 0
\(959\) −32.0000 −1.03333
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) −14.1421 −0.455724
\(964\) 0 0
\(965\) −22.6274 −0.728402
\(966\) 0 0
\(967\) 20.0000 0.643157 0.321578 0.946883i \(-0.395787\pi\)
0.321578 + 0.946883i \(0.395787\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −19.7990 −0.635380 −0.317690 0.948195i \(-0.602907\pi\)
−0.317690 + 0.948195i \(0.602907\pi\)
\(972\) 0 0
\(973\) −33.9411 −1.08810
\(974\) 0 0
\(975\) 36.0000 1.15292
\(976\) 0 0
\(977\) −32.0000 −1.02377 −0.511885 0.859054i \(-0.671053\pi\)
−0.511885 + 0.859054i \(0.671053\pi\)
\(978\) 0 0
\(979\) −39.5980 −1.26556
\(980\) 0 0
\(981\) 91.9239 2.93490
\(982\) 0 0
\(983\) 28.0000 0.893061 0.446531 0.894768i \(-0.352659\pi\)
0.446531 + 0.894768i \(0.352659\pi\)
\(984\) 0 0
\(985\) 34.0000 1.08333
\(986\) 0 0
\(987\) −90.5097 −2.88095
\(988\) 0 0
\(989\) 11.3137 0.359755
\(990\) 0 0
\(991\) 16.0000 0.508257 0.254128 0.967170i \(-0.418211\pi\)
0.254128 + 0.967170i \(0.418211\pi\)
\(992\) 0 0
\(993\) −88.0000 −2.79260
\(994\) 0 0
\(995\) 5.65685 0.179334
\(996\) 0 0
\(997\) 21.2132 0.671829 0.335914 0.941893i \(-0.390955\pi\)
0.335914 + 0.941893i \(0.390955\pi\)
\(998\) 0 0
\(999\) 8.00000 0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1024.2.a.f.1.1 2
3.2 odd 2 9216.2.a.u.1.1 2
4.3 odd 2 1024.2.a.a.1.2 2
8.3 odd 2 1024.2.a.a.1.1 2
8.5 even 2 inner 1024.2.a.f.1.2 2
12.11 even 2 9216.2.a.b.1.1 2
16.3 odd 4 1024.2.b.f.513.2 2
16.5 even 4 1024.2.b.a.513.2 2
16.11 odd 4 1024.2.b.f.513.1 2
16.13 even 4 1024.2.b.a.513.1 2
24.5 odd 2 9216.2.a.u.1.2 2
24.11 even 2 9216.2.a.b.1.2 2
32.3 odd 8 512.2.e.g.129.1 yes 2
32.5 even 8 512.2.e.h.385.1 yes 2
32.11 odd 8 512.2.e.g.385.1 yes 2
32.13 even 8 512.2.e.h.129.1 yes 2
32.19 odd 8 512.2.e.b.129.1 yes 2
32.21 even 8 512.2.e.a.385.1 yes 2
32.27 odd 8 512.2.e.b.385.1 yes 2
32.29 even 8 512.2.e.a.129.1 2
96.5 odd 8 4608.2.k.f.3457.1 2
96.11 even 8 4608.2.k.o.3457.1 2
96.29 odd 8 4608.2.k.s.1153.1 2
96.35 even 8 4608.2.k.o.1153.1 2
96.53 odd 8 4608.2.k.s.3457.1 2
96.59 even 8 4608.2.k.j.3457.1 2
96.77 odd 8 4608.2.k.f.1153.1 2
96.83 even 8 4608.2.k.j.1153.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
512.2.e.a.129.1 2 32.29 even 8
512.2.e.a.385.1 yes 2 32.21 even 8
512.2.e.b.129.1 yes 2 32.19 odd 8
512.2.e.b.385.1 yes 2 32.27 odd 8
512.2.e.g.129.1 yes 2 32.3 odd 8
512.2.e.g.385.1 yes 2 32.11 odd 8
512.2.e.h.129.1 yes 2 32.13 even 8
512.2.e.h.385.1 yes 2 32.5 even 8
1024.2.a.a.1.1 2 8.3 odd 2
1024.2.a.a.1.2 2 4.3 odd 2
1024.2.a.f.1.1 2 1.1 even 1 trivial
1024.2.a.f.1.2 2 8.5 even 2 inner
1024.2.b.a.513.1 2 16.13 even 4
1024.2.b.a.513.2 2 16.5 even 4
1024.2.b.f.513.1 2 16.11 odd 4
1024.2.b.f.513.2 2 16.3 odd 4
4608.2.k.f.1153.1 2 96.77 odd 8
4608.2.k.f.3457.1 2 96.5 odd 8
4608.2.k.j.1153.1 2 96.83 even 8
4608.2.k.j.3457.1 2 96.59 even 8
4608.2.k.o.1153.1 2 96.35 even 8
4608.2.k.o.3457.1 2 96.11 even 8
4608.2.k.s.1153.1 2 96.29 odd 8
4608.2.k.s.3457.1 2 96.53 odd 8
9216.2.a.b.1.1 2 12.11 even 2
9216.2.a.b.1.2 2 24.11 even 2
9216.2.a.u.1.1 2 3.2 odd 2
9216.2.a.u.1.2 2 24.5 odd 2