Properties

Label 4608.2.k.f.3457.1
Level $4608$
Weight $2$
Character 4608.3457
Analytic conductor $36.795$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4608,2,Mod(1153,4608)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4608, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4608.1153"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4608 = 2^{9} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4608.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-2,0,0,0,0,0,-4,0,6,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7950652514\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 512)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 3457.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 4608.3457
Dual form 4608.2.k.f.1153.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{5} +4.00000i q^{7} +(-2.00000 - 2.00000i) q^{11} +(3.00000 - 3.00000i) q^{13} +(-2.00000 + 2.00000i) q^{19} +4.00000i q^{23} -3.00000i q^{25} +(3.00000 - 3.00000i) q^{29} -8.00000 q^{31} +(4.00000 - 4.00000i) q^{35} +(-1.00000 - 1.00000i) q^{37} +8.00000i q^{41} +(-2.00000 - 2.00000i) q^{43} +8.00000 q^{47} -9.00000 q^{49} +(1.00000 + 1.00000i) q^{53} +4.00000i q^{55} +(-6.00000 - 6.00000i) q^{59} +(3.00000 - 3.00000i) q^{61} -6.00000 q^{65} +(-2.00000 + 2.00000i) q^{67} -12.0000i q^{71} +2.00000i q^{73} +(8.00000 - 8.00000i) q^{77} +(-10.0000 + 10.0000i) q^{83} -14.0000i q^{89} +(12.0000 + 12.0000i) q^{91} +4.00000 q^{95} -16.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 4 q^{11} + 6 q^{13} - 4 q^{19} + 6 q^{29} - 16 q^{31} + 8 q^{35} - 2 q^{37} - 4 q^{43} + 16 q^{47} - 18 q^{49} + 2 q^{53} - 12 q^{59} + 6 q^{61} - 12 q^{65} - 4 q^{67} + 16 q^{77} - 20 q^{83}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4608\mathbb{Z}\right)^\times\).

\(n\) \(2053\) \(3583\) \(4097\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 1.00000i −0.447214 0.447214i 0.447214 0.894427i \(-0.352416\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) 4.00000i 1.51186i 0.654654 + 0.755929i \(0.272814\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 2.00000i −0.603023 0.603023i 0.338091 0.941113i \(-0.390219\pi\)
−0.941113 + 0.338091i \(0.890219\pi\)
\(12\) 0 0
\(13\) 3.00000 3.00000i 0.832050 0.832050i −0.155747 0.987797i \(-0.549778\pi\)
0.987797 + 0.155747i \(0.0497784\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −2.00000 + 2.00000i −0.458831 + 0.458831i −0.898272 0.439440i \(-0.855177\pi\)
0.439440 + 0.898272i \(0.355177\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 0 0
\(25\) 3.00000i 0.600000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.00000 3.00000i 0.557086 0.557086i −0.371391 0.928477i \(-0.621119\pi\)
0.928477 + 0.371391i \(0.121119\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.00000 4.00000i 0.676123 0.676123i
\(36\) 0 0
\(37\) −1.00000 1.00000i −0.164399 0.164399i 0.620113 0.784512i \(-0.287087\pi\)
−0.784512 + 0.620113i \(0.787087\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.00000i 1.24939i 0.780869 + 0.624695i \(0.214777\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) −2.00000 2.00000i −0.304997 0.304997i 0.537968 0.842965i \(-0.319192\pi\)
−0.842965 + 0.537968i \(0.819192\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.00000 + 1.00000i 0.137361 + 0.137361i 0.772444 0.635083i \(-0.219034\pi\)
−0.635083 + 0.772444i \(0.719034\pi\)
\(54\) 0 0
\(55\) 4.00000i 0.539360i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.00000 6.00000i −0.781133 0.781133i 0.198889 0.980022i \(-0.436267\pi\)
−0.980022 + 0.198889i \(0.936267\pi\)
\(60\) 0 0
\(61\) 3.00000 3.00000i 0.384111 0.384111i −0.488470 0.872581i \(-0.662445\pi\)
0.872581 + 0.488470i \(0.162445\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.00000 −0.744208
\(66\) 0 0
\(67\) −2.00000 + 2.00000i −0.244339 + 0.244339i −0.818642 0.574304i \(-0.805273\pi\)
0.574304 + 0.818642i \(0.305273\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000i 1.42414i −0.702109 0.712069i \(-0.747758\pi\)
0.702109 0.712069i \(-0.252242\pi\)
\(72\) 0 0
\(73\) 2.00000i 0.234082i 0.993127 + 0.117041i \(0.0373409\pi\)
−0.993127 + 0.117041i \(0.962659\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.00000 8.00000i 0.911685 0.911685i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −10.0000 + 10.0000i −1.09764 + 1.09764i −0.102957 + 0.994686i \(0.532830\pi\)
−0.994686 + 0.102957i \(0.967170\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14.0000i 1.48400i −0.670402 0.741999i \(-0.733878\pi\)
0.670402 0.741999i \(-0.266122\pi\)
\(90\) 0 0
\(91\) 12.0000 + 12.0000i 1.25794 + 1.25794i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) −16.0000 −1.62455 −0.812277 0.583272i \(-0.801772\pi\)
−0.812277 + 0.583272i \(0.801772\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.00000 + 1.00000i 0.0995037 + 0.0995037i 0.755106 0.655602i \(-0.227585\pi\)
−0.655602 + 0.755106i \(0.727585\pi\)
\(102\) 0 0
\(103\) 4.00000i 0.394132i −0.980390 0.197066i \(-0.936859\pi\)
0.980390 0.197066i \(-0.0631413\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.00000 2.00000i −0.193347 0.193347i 0.603793 0.797141i \(-0.293655\pi\)
−0.797141 + 0.603793i \(0.793655\pi\)
\(108\) 0 0
\(109\) 13.0000 13.0000i 1.24517 1.24517i 0.287348 0.957826i \(-0.407226\pi\)
0.957826 0.287348i \(-0.0927736\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) 4.00000 4.00000i 0.373002 0.373002i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.00000i 0.272727i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −8.00000 + 8.00000i −0.715542 + 0.715542i
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.0000 10.0000i 0.873704 0.873704i −0.119170 0.992874i \(-0.538023\pi\)
0.992874 + 0.119170i \(0.0380233\pi\)
\(132\) 0 0
\(133\) −8.00000 8.00000i −0.693688 0.693688i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.00000i 0.683486i −0.939793 0.341743i \(-0.888983\pi\)
0.939793 0.341743i \(-0.111017\pi\)
\(138\) 0 0
\(139\) 6.00000 + 6.00000i 0.508913 + 0.508913i 0.914193 0.405279i \(-0.132826\pi\)
−0.405279 + 0.914193i \(0.632826\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −12.0000 −1.00349
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.00000 1.00000i −0.0819232 0.0819232i 0.664958 0.746881i \(-0.268450\pi\)
−0.746881 + 0.664958i \(0.768450\pi\)
\(150\) 0 0
\(151\) 20.0000i 1.62758i −0.581161 0.813788i \(-0.697401\pi\)
0.581161 0.813788i \(-0.302599\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.00000 + 8.00000i 0.642575 + 0.642575i
\(156\) 0 0
\(157\) 3.00000 3.00000i 0.239426 0.239426i −0.577186 0.816612i \(-0.695849\pi\)
0.816612 + 0.577186i \(0.195849\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −16.0000 −1.26098
\(162\) 0 0
\(163\) −6.00000 + 6.00000i −0.469956 + 0.469956i −0.901900 0.431944i \(-0.857828\pi\)
0.431944 + 0.901900i \(0.357828\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.00000i 0.309529i −0.987951 0.154765i \(-0.950538\pi\)
0.987951 0.154765i \(-0.0494619\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.0000 13.0000i 0.988372 0.988372i −0.0115615 0.999933i \(-0.503680\pi\)
0.999933 + 0.0115615i \(0.00368021\pi\)
\(174\) 0 0
\(175\) 12.0000 0.907115
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 14.0000 14.0000i 1.04641 1.04641i 0.0475398 0.998869i \(-0.484862\pi\)
0.998869 0.0475398i \(-0.0151381\pi\)
\(180\) 0 0
\(181\) −15.0000 15.0000i −1.11494 1.11494i −0.992472 0.122469i \(-0.960919\pi\)
−0.122469 0.992472i \(-0.539081\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.00000i 0.147043i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 0 0
\(193\) −16.0000 −1.15171 −0.575853 0.817554i \(-0.695330\pi\)
−0.575853 + 0.817554i \(0.695330\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −17.0000 17.0000i −1.21120 1.21120i −0.970632 0.240567i \(-0.922666\pi\)
−0.240567 0.970632i \(-0.577334\pi\)
\(198\) 0 0
\(199\) 4.00000i 0.283552i 0.989899 + 0.141776i \(0.0452813\pi\)
−0.989899 + 0.141776i \(0.954719\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 12.0000 + 12.0000i 0.842235 + 0.842235i
\(204\) 0 0
\(205\) 8.00000 8.00000i 0.558744 0.558744i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.00000 0.553372
\(210\) 0 0
\(211\) 10.0000 10.0000i 0.688428 0.688428i −0.273456 0.961884i \(-0.588167\pi\)
0.961884 + 0.273456i \(0.0881668\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.00000i 0.272798i
\(216\) 0 0
\(217\) 32.0000i 2.17230i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 24.0000 1.60716 0.803579 0.595198i \(-0.202926\pi\)
0.803579 + 0.595198i \(0.202926\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −18.0000 + 18.0000i −1.19470 + 1.19470i −0.218970 + 0.975731i \(0.570270\pi\)
−0.975731 + 0.218970i \(0.929730\pi\)
\(228\) 0 0
\(229\) 1.00000 + 1.00000i 0.0660819 + 0.0660819i 0.739375 0.673293i \(-0.235121\pi\)
−0.673293 + 0.739375i \(0.735121\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.00000i 0.131024i −0.997852 0.0655122i \(-0.979132\pi\)
0.997852 0.0655122i \(-0.0208681\pi\)
\(234\) 0 0
\(235\) −8.00000 8.00000i −0.521862 0.521862i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 9.00000 + 9.00000i 0.574989 + 0.574989i
\(246\) 0 0
\(247\) 12.0000i 0.763542i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −14.0000 14.0000i −0.883672 0.883672i 0.110234 0.993906i \(-0.464840\pi\)
−0.993906 + 0.110234i \(0.964840\pi\)
\(252\) 0 0
\(253\) 8.00000 8.00000i 0.502956 0.502956i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) 4.00000 4.00000i 0.248548 0.248548i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 20.0000i 1.23325i 0.787256 + 0.616626i \(0.211501\pi\)
−0.787256 + 0.616626i \(0.788499\pi\)
\(264\) 0 0
\(265\) 2.00000i 0.122859i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.00000 3.00000i 0.182913 0.182913i −0.609711 0.792624i \(-0.708714\pi\)
0.792624 + 0.609711i \(0.208714\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.00000 + 6.00000i −0.361814 + 0.361814i
\(276\) 0 0
\(277\) 15.0000 + 15.0000i 0.901263 + 0.901263i 0.995545 0.0942828i \(-0.0300558\pi\)
−0.0942828 + 0.995545i \(0.530056\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.0000i 1.07379i −0.843649 0.536895i \(-0.819597\pi\)
0.843649 0.536895i \(-0.180403\pi\)
\(282\) 0 0
\(283\) −14.0000 14.0000i −0.832214 0.832214i 0.155606 0.987819i \(-0.450267\pi\)
−0.987819 + 0.155606i \(0.950267\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −32.0000 −1.88890
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −17.0000 17.0000i −0.993151 0.993151i 0.00682610 0.999977i \(-0.497827\pi\)
−0.999977 + 0.00682610i \(0.997827\pi\)
\(294\) 0 0
\(295\) 12.0000i 0.698667i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.0000 + 12.0000i 0.693978 + 0.693978i
\(300\) 0 0
\(301\) 8.00000 8.00000i 0.461112 0.461112i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −6.00000 −0.343559
\(306\) 0 0
\(307\) 6.00000 6.00000i 0.342438 0.342438i −0.514845 0.857283i \(-0.672151\pi\)
0.857283 + 0.514845i \(0.172151\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.00000i 0.226819i −0.993548 0.113410i \(-0.963823\pi\)
0.993548 0.113410i \(-0.0361772\pi\)
\(312\) 0 0
\(313\) 8.00000i 0.452187i 0.974106 + 0.226093i \(0.0725954\pi\)
−0.974106 + 0.226093i \(0.927405\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −13.0000 + 13.0000i −0.730153 + 0.730153i −0.970650 0.240497i \(-0.922690\pi\)
0.240497 + 0.970650i \(0.422690\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −9.00000 9.00000i −0.499230 0.499230i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 32.0000i 1.76422i
\(330\) 0 0
\(331\) −22.0000 22.0000i −1.20923 1.20923i −0.971277 0.237953i \(-0.923524\pi\)
−0.237953 0.971277i \(-0.576476\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.00000 0.218543
\(336\) 0 0
\(337\) −18.0000 −0.980522 −0.490261 0.871576i \(-0.663099\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 16.0000 + 16.0000i 0.866449 + 0.866449i
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.00000 + 2.00000i 0.107366 + 0.107366i 0.758749 0.651383i \(-0.225811\pi\)
−0.651383 + 0.758749i \(0.725811\pi\)
\(348\) 0 0
\(349\) 13.0000 13.0000i 0.695874 0.695874i −0.267644 0.963518i \(-0.586245\pi\)
0.963518 + 0.267644i \(0.0862451\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 0 0
\(355\) −12.0000 + 12.0000i −0.636894 + 0.636894i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.0000i 1.05556i 0.849381 + 0.527780i \(0.176975\pi\)
−0.849381 + 0.527780i \(0.823025\pi\)
\(360\) 0 0
\(361\) 11.0000i 0.578947i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.00000 2.00000i 0.104685 0.104685i
\(366\) 0 0
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.00000 + 4.00000i −0.207670 + 0.207670i
\(372\) 0 0
\(373\) 15.0000 + 15.0000i 0.776671 + 0.776671i 0.979263 0.202593i \(-0.0649367\pi\)
−0.202593 + 0.979263i \(0.564937\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18.0000i 0.927047i
\(378\) 0 0
\(379\) −18.0000 18.0000i −0.924598 0.924598i 0.0727522 0.997350i \(-0.476822\pi\)
−0.997350 + 0.0727522i \(0.976822\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) −16.0000 −0.815436
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.00000 + 1.00000i 0.0507020 + 0.0507020i 0.732003 0.681301i \(-0.238586\pi\)
−0.681301 + 0.732003i \(0.738586\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −3.00000 + 3.00000i −0.150566 + 0.150566i −0.778371 0.627805i \(-0.783954\pi\)
0.627805 + 0.778371i \(0.283954\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) −24.0000 + 24.0000i −1.19553 + 1.19553i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.00000i 0.198273i
\(408\) 0 0
\(409\) 8.00000i 0.395575i 0.980245 + 0.197787i \(0.0633755\pi\)
−0.980245 + 0.197787i \(0.936624\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 24.0000 24.0000i 1.18096 1.18096i
\(414\) 0 0
\(415\) 20.0000 0.981761
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6.00000 + 6.00000i −0.293119 + 0.293119i −0.838311 0.545192i \(-0.816457\pi\)
0.545192 + 0.838311i \(0.316457\pi\)
\(420\) 0 0
\(421\) −15.0000 15.0000i −0.731055 0.731055i 0.239774 0.970829i \(-0.422927\pi\)
−0.970829 + 0.239774i \(0.922927\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 12.0000 + 12.0000i 0.580721 + 0.580721i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −16.0000 −0.770693 −0.385346 0.922772i \(-0.625918\pi\)
−0.385346 + 0.922772i \(0.625918\pi\)
\(432\) 0 0
\(433\) 32.0000 1.53782 0.768911 0.639356i \(-0.220799\pi\)
0.768911 + 0.639356i \(0.220799\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8.00000 8.00000i −0.382692 0.382692i
\(438\) 0 0
\(439\) 4.00000i 0.190910i 0.995434 + 0.0954548i \(0.0304305\pi\)
−0.995434 + 0.0954548i \(0.969569\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.00000 + 6.00000i 0.285069 + 0.285069i 0.835127 0.550058i \(-0.185394\pi\)
−0.550058 + 0.835127i \(0.685394\pi\)
\(444\) 0 0
\(445\) −14.0000 + 14.0000i −0.663664 + 0.663664i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16.0000 0.755087 0.377543 0.925992i \(-0.376769\pi\)
0.377543 + 0.925992i \(0.376769\pi\)
\(450\) 0 0
\(451\) 16.0000 16.0000i 0.753411 0.753411i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 24.0000i 1.12514i
\(456\) 0 0
\(457\) 8.00000i 0.374224i −0.982339 0.187112i \(-0.940087\pi\)
0.982339 0.187112i \(-0.0599128\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 19.0000 19.0000i 0.884918 0.884918i −0.109111 0.994030i \(-0.534800\pi\)
0.994030 + 0.109111i \(0.0348005\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.00000 2.00000i 0.0925490 0.0925490i −0.659317 0.751865i \(-0.729154\pi\)
0.751865 + 0.659317i \(0.229154\pi\)
\(468\) 0 0
\(469\) −8.00000 8.00000i −0.369406 0.369406i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8.00000i 0.367840i
\(474\) 0 0
\(475\) 6.00000 + 6.00000i 0.275299 + 0.275299i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −8.00000 −0.365529 −0.182765 0.983157i \(-0.558505\pi\)
−0.182765 + 0.983157i \(0.558505\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 16.0000 + 16.0000i 0.726523 + 0.726523i
\(486\) 0 0
\(487\) 12.0000i 0.543772i −0.962329 0.271886i \(-0.912353\pi\)
0.962329 0.271886i \(-0.0876473\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −14.0000 14.0000i −0.631811 0.631811i 0.316711 0.948522i \(-0.397421\pi\)
−0.948522 + 0.316711i \(0.897421\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 48.0000 2.15309
\(498\) 0 0
\(499\) 2.00000 2.00000i 0.0895323 0.0895323i −0.660922 0.750454i \(-0.729835\pi\)
0.750454 + 0.660922i \(0.229835\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 28.0000i 1.24846i −0.781241 0.624229i \(-0.785413\pi\)
0.781241 0.624229i \(-0.214587\pi\)
\(504\) 0 0
\(505\) 2.00000i 0.0889988i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −19.0000 + 19.0000i −0.842160 + 0.842160i −0.989140 0.146979i \(-0.953045\pi\)
0.146979 + 0.989140i \(0.453045\pi\)
\(510\) 0 0
\(511\) −8.00000 −0.353899
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.00000 + 4.00000i −0.176261 + 0.176261i
\(516\) 0 0
\(517\) −16.0000 16.0000i −0.703679 0.703679i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 24.0000i 1.05146i 0.850652 + 0.525730i \(0.176208\pi\)
−0.850652 + 0.525730i \(0.823792\pi\)
\(522\) 0 0
\(523\) 18.0000 + 18.0000i 0.787085 + 0.787085i 0.981015 0.193930i \(-0.0621236\pi\)
−0.193930 + 0.981015i \(0.562124\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 24.0000 + 24.0000i 1.03956 + 1.03956i
\(534\) 0 0
\(535\) 4.00000i 0.172935i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 18.0000 + 18.0000i 0.775315 + 0.775315i
\(540\) 0 0
\(541\) 3.00000 3.00000i 0.128980 0.128980i −0.639670 0.768650i \(-0.720929\pi\)
0.768650 + 0.639670i \(0.220929\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −26.0000 −1.11372
\(546\) 0 0
\(547\) 30.0000 30.0000i 1.28271 1.28271i 0.343586 0.939121i \(-0.388358\pi\)
0.939121 0.343586i \(-0.111642\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.0000i 0.511217i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13.0000 13.0000i 0.550828 0.550828i −0.375852 0.926680i \(-0.622650\pi\)
0.926680 + 0.375852i \(0.122650\pi\)
\(558\) 0 0
\(559\) −12.0000 −0.507546
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.00000 2.00000i 0.0842900 0.0842900i −0.663705 0.747995i \(-0.731017\pi\)
0.747995 + 0.663705i \(0.231017\pi\)
\(564\) 0 0
\(565\) 2.00000 + 2.00000i 0.0841406 + 0.0841406i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 24.0000i 1.00613i −0.864248 0.503066i \(-0.832205\pi\)
0.864248 0.503066i \(-0.167795\pi\)
\(570\) 0 0
\(571\) −6.00000 6.00000i −0.251092 0.251092i 0.570326 0.821418i \(-0.306817\pi\)
−0.821418 + 0.570326i \(0.806817\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) 30.0000 1.24892 0.624458 0.781058i \(-0.285320\pi\)
0.624458 + 0.781058i \(0.285320\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −40.0000 40.0000i −1.65948 1.65948i
\(582\) 0 0
\(583\) 4.00000i 0.165663i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.0000 10.0000i −0.412744 0.412744i 0.469949 0.882693i \(-0.344272\pi\)
−0.882693 + 0.469949i \(0.844272\pi\)
\(588\) 0 0
\(589\) 16.0000 16.0000i 0.659269 0.659269i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.0000 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 28.0000i 1.14405i 0.820237 + 0.572024i \(0.193842\pi\)
−0.820237 + 0.572024i \(0.806158\pi\)
\(600\) 0 0
\(601\) 14.0000i 0.571072i 0.958368 + 0.285536i \(0.0921716\pi\)
−0.958368 + 0.285536i \(0.907828\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.00000 + 3.00000i −0.121967 + 0.121967i
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 24.0000 24.0000i 0.970936 0.970936i
\(612\) 0 0
\(613\) 17.0000 + 17.0000i 0.686624 + 0.686624i 0.961484 0.274861i \(-0.0886317\pi\)
−0.274861 + 0.961484i \(0.588632\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.00000i 0.0805170i 0.999189 + 0.0402585i \(0.0128181\pi\)
−0.999189 + 0.0402585i \(0.987182\pi\)
\(618\) 0 0
\(619\) 18.0000 + 18.0000i 0.723481 + 0.723481i 0.969313 0.245831i \(-0.0790610\pi\)
−0.245831 + 0.969313i \(0.579061\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 56.0000 2.24359
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 4.00000i 0.159237i −0.996825 0.0796187i \(-0.974630\pi\)
0.996825 0.0796187i \(-0.0253703\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.00000 + 8.00000i 0.317470 + 0.317470i
\(636\) 0 0
\(637\) −27.0000 + 27.0000i −1.06978 + 1.06978i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −16.0000 −0.631962 −0.315981 0.948766i \(-0.602334\pi\)
−0.315981 + 0.948766i \(0.602334\pi\)
\(642\) 0 0
\(643\) −18.0000 + 18.0000i −0.709851 + 0.709851i −0.966504 0.256653i \(-0.917380\pi\)
0.256653 + 0.966504i \(0.417380\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000i 0.471769i −0.971781 0.235884i \(-0.924201\pi\)
0.971781 0.235884i \(-0.0757987\pi\)
\(648\) 0 0
\(649\) 24.0000i 0.942082i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −29.0000 + 29.0000i −1.13486 + 1.13486i −0.145499 + 0.989358i \(0.546479\pi\)
−0.989358 + 0.145499i \(0.953521\pi\)
\(654\) 0 0
\(655\) −20.0000 −0.781465
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 22.0000 22.0000i 0.856998 0.856998i −0.133985 0.990983i \(-0.542777\pi\)
0.990983 + 0.133985i \(0.0427774\pi\)
\(660\) 0 0
\(661\) 17.0000 + 17.0000i 0.661223 + 0.661223i 0.955668 0.294445i \(-0.0951348\pi\)
−0.294445 + 0.955668i \(0.595135\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16.0000i 0.620453i
\(666\) 0 0
\(667\) 12.0000 + 12.0000i 0.464642 + 0.464642i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −12.0000 −0.463255
\(672\) 0 0
\(673\) 16.0000 0.616755 0.308377 0.951264i \(-0.400214\pi\)
0.308377 + 0.951264i \(0.400214\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 33.0000 + 33.0000i 1.26829 + 1.26829i 0.946969 + 0.321324i \(0.104128\pi\)
0.321324 + 0.946969i \(0.395872\pi\)
\(678\) 0 0
\(679\) 64.0000i 2.45609i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6.00000 6.00000i −0.229584 0.229584i 0.582935 0.812519i \(-0.301904\pi\)
−0.812519 + 0.582935i \(0.801904\pi\)
\(684\) 0 0
\(685\) −8.00000 + 8.00000i −0.305664 + 0.305664i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) −6.00000 + 6.00000i −0.228251 + 0.228251i −0.811962 0.583711i \(-0.801600\pi\)
0.583711 + 0.811962i \(0.301600\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 12.0000i 0.455186i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −19.0000 + 19.0000i −0.717620 + 0.717620i −0.968117 0.250497i \(-0.919406\pi\)
0.250497 + 0.968117i \(0.419406\pi\)
\(702\) 0 0
\(703\) 4.00000 0.150863
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.00000 + 4.00000i −0.150435 + 0.150435i
\(708\) 0 0
\(709\) 15.0000 + 15.0000i 0.563337 + 0.563337i 0.930254 0.366917i \(-0.119587\pi\)
−0.366917 + 0.930254i \(0.619587\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 32.0000i 1.19841i
\(714\) 0 0
\(715\) 12.0000 + 12.0000i 0.448775 + 0.448775i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 48.0000 1.79010 0.895049 0.445968i \(-0.147140\pi\)
0.895049 + 0.445968i \(0.147140\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −9.00000 9.00000i −0.334252 0.334252i
\(726\) 0 0
\(727\) 20.0000i 0.741759i 0.928681 + 0.370879i \(0.120944\pi\)
−0.928681 + 0.370879i \(0.879056\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −19.0000 + 19.0000i −0.701781 + 0.701781i −0.964793 0.263012i \(-0.915284\pi\)
0.263012 + 0.964793i \(0.415284\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.00000 0.294684
\(738\) 0 0
\(739\) −6.00000 + 6.00000i −0.220714 + 0.220714i −0.808799 0.588085i \(-0.799882\pi\)
0.588085 + 0.808799i \(0.299882\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 12.0000i 0.440237i 0.975473 + 0.220119i \(0.0706445\pi\)
−0.975473 + 0.220119i \(0.929356\pi\)
\(744\) 0 0
\(745\) 2.00000i 0.0732743i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8.00000 8.00000i 0.292314 0.292314i
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −20.0000 + 20.0000i −0.727875 + 0.727875i
\(756\) 0 0
\(757\) 1.00000 + 1.00000i 0.0363456 + 0.0363456i 0.725046 0.688700i \(-0.241818\pi\)
−0.688700 + 0.725046i \(0.741818\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 24.0000i 0.869999i 0.900431 + 0.435000i \(0.143252\pi\)
−0.900431 + 0.435000i \(0.856748\pi\)
\(762\) 0 0
\(763\) 52.0000 + 52.0000i 1.88253 + 1.88253i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −36.0000 −1.29988
\(768\) 0 0
\(769\) 16.0000 0.576975 0.288487 0.957484i \(-0.406848\pi\)
0.288487 + 0.957484i \(0.406848\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −15.0000 15.0000i −0.539513 0.539513i 0.383873 0.923386i \(-0.374590\pi\)
−0.923386 + 0.383873i \(0.874590\pi\)
\(774\) 0 0
\(775\) 24.0000i 0.862105i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −16.0000 16.0000i −0.573259 0.573259i
\(780\) 0 0
\(781\) −24.0000 + 24.0000i −0.858788 + 0.858788i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6.00000 −0.214149
\(786\) 0 0
\(787\) 18.0000 18.0000i 0.641631 0.641631i −0.309326 0.950956i \(-0.600103\pi\)
0.950956 + 0.309326i \(0.100103\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 8.00000i 0.284447i
\(792\) 0 0
\(793\) 18.0000i 0.639199i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −19.0000 + 19.0000i −0.673015 + 0.673015i −0.958410 0.285395i \(-0.907875\pi\)
0.285395 + 0.958410i \(0.407875\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.00000 4.00000i 0.141157 0.141157i
\(804\) 0 0
\(805\) 16.0000 + 16.0000i 0.563926 + 0.563926i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 40.0000i 1.40633i 0.711029 + 0.703163i \(0.248229\pi\)
−0.711029 + 0.703163i \(0.751771\pi\)
\(810\) 0 0
\(811\) −22.0000 22.0000i −0.772524 0.772524i 0.206023 0.978547i \(-0.433948\pi\)
−0.978547 + 0.206023i \(0.933948\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 12.0000 0.420342
\(816\) 0 0
\(817\) 8.00000 0.279885
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −15.0000 15.0000i −0.523504 0.523504i 0.395124 0.918628i \(-0.370702\pi\)
−0.918628 + 0.395124i \(0.870702\pi\)
\(822\) 0 0
\(823\) 52.0000i 1.81261i 0.422628 + 0.906303i \(0.361108\pi\)
−0.422628 + 0.906303i \(0.638892\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.0000 + 14.0000i 0.486828 + 0.486828i 0.907304 0.420476i \(-0.138137\pi\)
−0.420476 + 0.907304i \(0.638137\pi\)
\(828\) 0 0
\(829\) −13.0000 + 13.0000i −0.451509 + 0.451509i −0.895855 0.444346i \(-0.853436\pi\)
0.444346 + 0.895855i \(0.353436\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −4.00000 + 4.00000i −0.138426 + 0.138426i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 36.0000i 1.24286i −0.783470 0.621429i \(-0.786552\pi\)
0.783470 0.621429i \(-0.213448\pi\)
\(840\) 0 0
\(841\) 11.0000i 0.379310i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −5.00000 + 5.00000i −0.172005 + 0.172005i
\(846\) 0 0
\(847\) 12.0000 0.412325
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.00000 4.00000i 0.137118 0.137118i
\(852\) 0 0
\(853\) −1.00000 1.00000i −0.0342393 0.0342393i 0.689780 0.724019i \(-0.257707\pi\)
−0.724019 + 0.689780i \(0.757707\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 24.0000i 0.819824i −0.912125 0.409912i \(-0.865559\pi\)
0.912125 0.409912i \(-0.134441\pi\)
\(858\) 0 0
\(859\) −18.0000 18.0000i −0.614152 0.614152i 0.329873 0.944025i \(-0.392994\pi\)
−0.944025 + 0.329873i \(0.892994\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 0 0
\(865\) −26.0000 −0.884027
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 12.0000i 0.406604i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −32.0000 32.0000i −1.08180 1.08180i
\(876\) 0 0
\(877\) −19.0000 + 19.0000i −0.641584 + 0.641584i −0.950945 0.309360i \(-0.899885\pi\)
0.309360 + 0.950945i \(0.399885\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) −34.0000 + 34.0000i −1.14419 + 1.14419i −0.156516 + 0.987675i \(0.550026\pi\)
−0.987675 + 0.156516i \(0.949974\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 36.0000i 1.20876i −0.796696 0.604381i \(-0.793421\pi\)
0.796696 0.604381i \(-0.206579\pi\)
\(888\) 0 0
\(889\) 32.0000i 1.07325i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −16.0000 + 16.0000i −0.535420 + 0.535420i
\(894\) 0 0
\(895\) −28.0000 −0.935937
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −24.0000 + 24.0000i −0.800445 + 0.800445i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 30.0000i 0.997234i
\(906\) 0 0
\(907\) −10.0000 10.0000i −0.332045 0.332045i 0.521318 0.853363i \(-0.325441\pi\)
−0.853363 + 0.521318i \(0.825441\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −56.0000 −1.85536 −0.927681 0.373373i \(-0.878201\pi\)
−0.927681 + 0.373373i \(0.878201\pi\)
\(912\) 0 0
\(913\) 40.0000 1.32381
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 40.0000 + 40.0000i 1.32092 + 1.32092i
\(918\) 0 0
\(919\) 4.00000i 0.131948i −0.997821 0.0659739i \(-0.978985\pi\)
0.997821 0.0659739i \(-0.0210154\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −36.0000 36.0000i −1.18495 1.18495i
\(924\) 0 0
\(925\) −3.00000 + 3.00000i −0.0986394 + 0.0986394i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 48.0000 1.57483 0.787414 0.616424i \(-0.211419\pi\)
0.787414 + 0.616424i \(0.211419\pi\)
\(930\) 0 0
\(931\) 18.0000 18.0000i 0.589926 0.589926i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 2.00000i 0.0653372i 0.999466 + 0.0326686i \(0.0104006\pi\)
−0.999466 + 0.0326686i \(0.989599\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −13.0000 + 13.0000i −0.423788 + 0.423788i −0.886506 0.462718i \(-0.846874\pi\)
0.462718 + 0.886506i \(0.346874\pi\)
\(942\) 0 0
\(943\) −32.0000 −1.04206
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 10.0000 10.0000i 0.324956 0.324956i −0.525708 0.850665i \(-0.676200\pi\)
0.850665 + 0.525708i \(0.176200\pi\)
\(948\) 0 0
\(949\) 6.00000 + 6.00000i 0.194768 + 0.194768i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 24.0000i 0.777436i −0.921357 0.388718i \(-0.872918\pi\)
0.921357 0.388718i \(-0.127082\pi\)
\(954\) 0 0
\(955\) −24.0000 24.0000i −0.776622 0.776622i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 32.0000 1.03333
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16.0000 + 16.0000i 0.515058 + 0.515058i
\(966\) 0 0
\(967\) 20.0000i 0.643157i 0.946883 + 0.321578i \(0.104213\pi\)
−0.946883 + 0.321578i \(0.895787\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −14.0000 14.0000i −0.449281 0.449281i 0.445834 0.895116i \(-0.352907\pi\)
−0.895116 + 0.445834i \(0.852907\pi\)
\(972\) 0 0
\(973\) −24.0000 + 24.0000i −0.769405 + 0.769405i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −32.0000 −1.02377 −0.511885 0.859054i \(-0.671053\pi\)
−0.511885 + 0.859054i \(0.671053\pi\)
\(978\) 0 0
\(979\) −28.0000 + 28.0000i −0.894884 + 0.894884i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 28.0000i 0.893061i 0.894768 + 0.446531i \(0.147341\pi\)
−0.894768 + 0.446531i \(0.852659\pi\)
\(984\) 0 0
\(985\) 34.0000i 1.08333i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.00000 8.00000i 0.254385 0.254385i
\(990\) 0 0
\(991\) 16.0000 0.508257 0.254128 0.967170i \(-0.418211\pi\)
0.254128 + 0.967170i \(0.418211\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.00000 4.00000i 0.126809 0.126809i
\(996\) 0 0
\(997\) 15.0000 + 15.0000i 0.475055 + 0.475055i 0.903546 0.428491i \(-0.140955\pi\)
−0.428491 + 0.903546i \(0.640955\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4608.2.k.f.3457.1 2
3.2 odd 2 512.2.e.h.385.1 yes 2
4.3 odd 2 4608.2.k.j.3457.1 2
8.3 odd 2 4608.2.k.o.3457.1 2
8.5 even 2 4608.2.k.s.3457.1 2
12.11 even 2 512.2.e.b.385.1 yes 2
16.3 odd 4 4608.2.k.j.1153.1 2
16.5 even 4 4608.2.k.s.1153.1 2
16.11 odd 4 4608.2.k.o.1153.1 2
16.13 even 4 inner 4608.2.k.f.1153.1 2
24.5 odd 2 512.2.e.a.385.1 yes 2
24.11 even 2 512.2.e.g.385.1 yes 2
32.3 odd 8 9216.2.a.b.1.2 2
32.13 even 8 9216.2.a.u.1.1 2
32.19 odd 8 9216.2.a.b.1.1 2
32.29 even 8 9216.2.a.u.1.2 2
48.5 odd 4 512.2.e.a.129.1 2
48.11 even 4 512.2.e.g.129.1 yes 2
48.29 odd 4 512.2.e.h.129.1 yes 2
48.35 even 4 512.2.e.b.129.1 yes 2
96.5 odd 8 1024.2.b.a.513.2 2
96.11 even 8 1024.2.b.f.513.2 2
96.29 odd 8 1024.2.a.f.1.2 2
96.35 even 8 1024.2.a.a.1.1 2
96.53 odd 8 1024.2.b.a.513.1 2
96.59 even 8 1024.2.b.f.513.1 2
96.77 odd 8 1024.2.a.f.1.1 2
96.83 even 8 1024.2.a.a.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
512.2.e.a.129.1 2 48.5 odd 4
512.2.e.a.385.1 yes 2 24.5 odd 2
512.2.e.b.129.1 yes 2 48.35 even 4
512.2.e.b.385.1 yes 2 12.11 even 2
512.2.e.g.129.1 yes 2 48.11 even 4
512.2.e.g.385.1 yes 2 24.11 even 2
512.2.e.h.129.1 yes 2 48.29 odd 4
512.2.e.h.385.1 yes 2 3.2 odd 2
1024.2.a.a.1.1 2 96.35 even 8
1024.2.a.a.1.2 2 96.83 even 8
1024.2.a.f.1.1 2 96.77 odd 8
1024.2.a.f.1.2 2 96.29 odd 8
1024.2.b.a.513.1 2 96.53 odd 8
1024.2.b.a.513.2 2 96.5 odd 8
1024.2.b.f.513.1 2 96.59 even 8
1024.2.b.f.513.2 2 96.11 even 8
4608.2.k.f.1153.1 2 16.13 even 4 inner
4608.2.k.f.3457.1 2 1.1 even 1 trivial
4608.2.k.j.1153.1 2 16.3 odd 4
4608.2.k.j.3457.1 2 4.3 odd 2
4608.2.k.o.1153.1 2 16.11 odd 4
4608.2.k.o.3457.1 2 8.3 odd 2
4608.2.k.s.1153.1 2 16.5 even 4
4608.2.k.s.3457.1 2 8.5 even 2
9216.2.a.b.1.1 2 32.19 odd 8
9216.2.a.b.1.2 2 32.3 odd 8
9216.2.a.u.1.1 2 32.13 even 8
9216.2.a.u.1.2 2 32.29 even 8