Properties

Label 1011.4.a.c.1.10
Level $1011$
Weight $4$
Character 1011.1
Self dual yes
Analytic conductor $59.651$
Analytic rank $0$
Dimension $46$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1011,4,Mod(1,1011)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1011.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1011, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1011 = 3 \cdot 337 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1011.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [46] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.6509310158\)
Analytic rank: \(0\)
Dimension: \(46\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 1011.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.92365 q^{2} -3.00000 q^{3} +7.39501 q^{4} -14.7876 q^{5} +11.7709 q^{6} -6.54928 q^{7} +2.37377 q^{8} +9.00000 q^{9} +58.0213 q^{10} +46.3738 q^{11} -22.1850 q^{12} +23.3184 q^{13} +25.6971 q^{14} +44.3628 q^{15} -68.4739 q^{16} +85.8596 q^{17} -35.3128 q^{18} +117.556 q^{19} -109.354 q^{20} +19.6478 q^{21} -181.954 q^{22} +129.043 q^{23} -7.12130 q^{24} +93.6729 q^{25} -91.4934 q^{26} -27.0000 q^{27} -48.4320 q^{28} -230.128 q^{29} -174.064 q^{30} +54.5606 q^{31} +249.677 q^{32} -139.121 q^{33} -336.883 q^{34} +96.8481 q^{35} +66.5551 q^{36} +43.0375 q^{37} -461.247 q^{38} -69.9553 q^{39} -35.1023 q^{40} -198.894 q^{41} -77.0912 q^{42} +214.068 q^{43} +342.934 q^{44} -133.088 q^{45} -506.319 q^{46} +547.429 q^{47} +205.422 q^{48} -300.107 q^{49} -367.539 q^{50} -257.579 q^{51} +172.440 q^{52} -279.728 q^{53} +105.938 q^{54} -685.756 q^{55} -15.5465 q^{56} -352.667 q^{57} +902.939 q^{58} +678.355 q^{59} +328.063 q^{60} -163.613 q^{61} -214.077 q^{62} -58.9435 q^{63} -431.855 q^{64} -344.824 q^{65} +545.863 q^{66} -780.052 q^{67} +634.933 q^{68} -387.129 q^{69} -379.998 q^{70} +643.207 q^{71} +21.3639 q^{72} -566.903 q^{73} -168.864 q^{74} -281.019 q^{75} +869.326 q^{76} -303.715 q^{77} +274.480 q^{78} +76.9672 q^{79} +1012.56 q^{80} +81.0000 q^{81} +780.389 q^{82} +725.192 q^{83} +145.296 q^{84} -1269.66 q^{85} -839.926 q^{86} +690.383 q^{87} +110.081 q^{88} +984.294 q^{89} +522.192 q^{90} -152.719 q^{91} +954.273 q^{92} -163.682 q^{93} -2147.92 q^{94} -1738.37 q^{95} -749.032 q^{96} -760.823 q^{97} +1177.51 q^{98} +417.364 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 46 q + 7 q^{2} - 138 q^{3} + 207 q^{4} + 42 q^{5} - 21 q^{6} - 72 q^{7} + 105 q^{8} + 414 q^{9} - 32 q^{10} + 126 q^{11} - 621 q^{12} + 114 q^{13} + 111 q^{14} - 126 q^{15} + 915 q^{16} + 154 q^{17} + 63 q^{18}+ \cdots + 1134 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.92365 −1.38722 −0.693609 0.720351i \(-0.743981\pi\)
−0.693609 + 0.720351i \(0.743981\pi\)
\(3\) −3.00000 −0.577350
\(4\) 7.39501 0.924376
\(5\) −14.7876 −1.32264 −0.661321 0.750103i \(-0.730004\pi\)
−0.661321 + 0.750103i \(0.730004\pi\)
\(6\) 11.7709 0.800911
\(7\) −6.54928 −0.353628 −0.176814 0.984244i \(-0.556579\pi\)
−0.176814 + 0.984244i \(0.556579\pi\)
\(8\) 2.37377 0.104907
\(9\) 9.00000 0.333333
\(10\) 58.0213 1.83479
\(11\) 46.3738 1.27111 0.635555 0.772056i \(-0.280771\pi\)
0.635555 + 0.772056i \(0.280771\pi\)
\(12\) −22.1850 −0.533689
\(13\) 23.3184 0.497490 0.248745 0.968569i \(-0.419982\pi\)
0.248745 + 0.968569i \(0.419982\pi\)
\(14\) 25.6971 0.490559
\(15\) 44.3628 0.763628
\(16\) −68.4739 −1.06990
\(17\) 85.8596 1.22494 0.612471 0.790493i \(-0.290176\pi\)
0.612471 + 0.790493i \(0.290176\pi\)
\(18\) −35.3128 −0.462406
\(19\) 117.556 1.41943 0.709714 0.704490i \(-0.248824\pi\)
0.709714 + 0.704490i \(0.248824\pi\)
\(20\) −109.354 −1.22262
\(21\) 19.6478 0.204167
\(22\) −181.954 −1.76331
\(23\) 129.043 1.16988 0.584941 0.811076i \(-0.301118\pi\)
0.584941 + 0.811076i \(0.301118\pi\)
\(24\) −7.12130 −0.0605679
\(25\) 93.6729 0.749383
\(26\) −91.4934 −0.690128
\(27\) −27.0000 −0.192450
\(28\) −48.4320 −0.326885
\(29\) −230.128 −1.47357 −0.736787 0.676125i \(-0.763658\pi\)
−0.736787 + 0.676125i \(0.763658\pi\)
\(30\) −174.064 −1.05932
\(31\) 54.5606 0.316109 0.158054 0.987430i \(-0.449478\pi\)
0.158054 + 0.987430i \(0.449478\pi\)
\(32\) 249.677 1.37929
\(33\) −139.121 −0.733876
\(34\) −336.883 −1.69926
\(35\) 96.8481 0.467723
\(36\) 66.5551 0.308125
\(37\) 43.0375 0.191225 0.0956125 0.995419i \(-0.469519\pi\)
0.0956125 + 0.995419i \(0.469519\pi\)
\(38\) −461.247 −1.96906
\(39\) −69.9553 −0.287226
\(40\) −35.1023 −0.138754
\(41\) −198.894 −0.757610 −0.378805 0.925477i \(-0.623665\pi\)
−0.378805 + 0.925477i \(0.623665\pi\)
\(42\) −77.0912 −0.283225
\(43\) 214.068 0.759187 0.379593 0.925153i \(-0.376064\pi\)
0.379593 + 0.925153i \(0.376064\pi\)
\(44\) 342.934 1.17498
\(45\) −133.088 −0.440881
\(46\) −506.319 −1.62288
\(47\) 547.429 1.69895 0.849477 0.527626i \(-0.176918\pi\)
0.849477 + 0.527626i \(0.176918\pi\)
\(48\) 205.422 0.617710
\(49\) −300.107 −0.874947
\(50\) −367.539 −1.03956
\(51\) −257.579 −0.707221
\(52\) 172.440 0.459868
\(53\) −279.728 −0.724973 −0.362486 0.931989i \(-0.618072\pi\)
−0.362486 + 0.931989i \(0.618072\pi\)
\(54\) 105.938 0.266970
\(55\) −685.756 −1.68122
\(56\) −15.5465 −0.0370979
\(57\) −352.667 −0.819507
\(58\) 902.939 2.04417
\(59\) 678.355 1.49685 0.748426 0.663218i \(-0.230810\pi\)
0.748426 + 0.663218i \(0.230810\pi\)
\(60\) 328.063 0.705880
\(61\) −163.613 −0.343419 −0.171709 0.985148i \(-0.554929\pi\)
−0.171709 + 0.985148i \(0.554929\pi\)
\(62\) −214.077 −0.438512
\(63\) −58.9435 −0.117876
\(64\) −431.855 −0.843466
\(65\) −344.824 −0.658002
\(66\) 545.863 1.01805
\(67\) −780.052 −1.42237 −0.711183 0.703007i \(-0.751840\pi\)
−0.711183 + 0.703007i \(0.751840\pi\)
\(68\) 634.933 1.13231
\(69\) −387.129 −0.675432
\(70\) −379.998 −0.648834
\(71\) 643.207 1.07513 0.537567 0.843221i \(-0.319343\pi\)
0.537567 + 0.843221i \(0.319343\pi\)
\(72\) 21.3639 0.0349689
\(73\) −566.903 −0.908918 −0.454459 0.890768i \(-0.650167\pi\)
−0.454459 + 0.890768i \(0.650167\pi\)
\(74\) −168.864 −0.265271
\(75\) −281.019 −0.432656
\(76\) 869.326 1.31209
\(77\) −303.715 −0.449500
\(78\) 274.480 0.398446
\(79\) 76.9672 0.109614 0.0548069 0.998497i \(-0.482546\pi\)
0.0548069 + 0.998497i \(0.482546\pi\)
\(80\) 1012.56 1.41510
\(81\) 81.0000 0.111111
\(82\) 780.389 1.05097
\(83\) 725.192 0.959038 0.479519 0.877532i \(-0.340811\pi\)
0.479519 + 0.877532i \(0.340811\pi\)
\(84\) 145.296 0.188727
\(85\) −1269.66 −1.62016
\(86\) −839.926 −1.05316
\(87\) 690.383 0.850768
\(88\) 110.081 0.133348
\(89\) 984.294 1.17230 0.586152 0.810201i \(-0.300642\pi\)
0.586152 + 0.810201i \(0.300642\pi\)
\(90\) 522.192 0.611598
\(91\) −152.719 −0.175926
\(92\) 954.273 1.08141
\(93\) −163.682 −0.182506
\(94\) −2147.92 −2.35682
\(95\) −1738.37 −1.87740
\(96\) −749.032 −0.796331
\(97\) −760.823 −0.796390 −0.398195 0.917301i \(-0.630363\pi\)
−0.398195 + 0.917301i \(0.630363\pi\)
\(98\) 1177.51 1.21374
\(99\) 417.364 0.423703
\(100\) 692.712 0.692712
\(101\) 764.006 0.752688 0.376344 0.926480i \(-0.377181\pi\)
0.376344 + 0.926480i \(0.377181\pi\)
\(102\) 1010.65 0.981070
\(103\) −582.206 −0.556956 −0.278478 0.960443i \(-0.589830\pi\)
−0.278478 + 0.960443i \(0.589830\pi\)
\(104\) 55.3526 0.0521901
\(105\) −290.544 −0.270040
\(106\) 1097.55 1.00570
\(107\) 451.239 0.407691 0.203845 0.979003i \(-0.434656\pi\)
0.203845 + 0.979003i \(0.434656\pi\)
\(108\) −199.665 −0.177896
\(109\) 416.569 0.366055 0.183028 0.983108i \(-0.441410\pi\)
0.183028 + 0.983108i \(0.441410\pi\)
\(110\) 2690.67 2.33223
\(111\) −129.113 −0.110404
\(112\) 448.455 0.378348
\(113\) −1206.44 −1.00436 −0.502180 0.864763i \(-0.667469\pi\)
−0.502180 + 0.864763i \(0.667469\pi\)
\(114\) 1383.74 1.13684
\(115\) −1908.23 −1.54734
\(116\) −1701.80 −1.36214
\(117\) 209.866 0.165830
\(118\) −2661.63 −2.07646
\(119\) −562.319 −0.433174
\(120\) 105.307 0.0801097
\(121\) 819.525 0.615721
\(122\) 641.961 0.476397
\(123\) 596.682 0.437406
\(124\) 403.476 0.292204
\(125\) 463.253 0.331477
\(126\) 231.274 0.163520
\(127\) −1451.82 −1.01439 −0.507197 0.861830i \(-0.669318\pi\)
−0.507197 + 0.861830i \(0.669318\pi\)
\(128\) −302.973 −0.209213
\(129\) −642.203 −0.438317
\(130\) 1352.97 0.912792
\(131\) −1201.41 −0.801281 −0.400640 0.916235i \(-0.631212\pi\)
−0.400640 + 0.916235i \(0.631212\pi\)
\(132\) −1028.80 −0.678377
\(133\) −769.905 −0.501949
\(134\) 3060.65 1.97313
\(135\) 399.265 0.254543
\(136\) 203.811 0.128505
\(137\) −994.959 −0.620475 −0.310237 0.950659i \(-0.600409\pi\)
−0.310237 + 0.950659i \(0.600409\pi\)
\(138\) 1518.96 0.936972
\(139\) −2294.67 −1.40023 −0.700114 0.714031i \(-0.746868\pi\)
−0.700114 + 0.714031i \(0.746868\pi\)
\(140\) 716.192 0.432352
\(141\) −1642.29 −0.980891
\(142\) −2523.72 −1.49145
\(143\) 1081.36 0.632365
\(144\) −616.265 −0.356635
\(145\) 3403.03 1.94901
\(146\) 2224.33 1.26087
\(147\) 900.321 0.505151
\(148\) 318.263 0.176764
\(149\) −66.9449 −0.0368077 −0.0184038 0.999831i \(-0.505858\pi\)
−0.0184038 + 0.999831i \(0.505858\pi\)
\(150\) 1102.62 0.600189
\(151\) 1284.29 0.692148 0.346074 0.938207i \(-0.387515\pi\)
0.346074 + 0.938207i \(0.387515\pi\)
\(152\) 279.050 0.148908
\(153\) 772.737 0.408314
\(154\) 1191.67 0.623555
\(155\) −806.820 −0.418099
\(156\) −517.320 −0.265505
\(157\) 3167.73 1.61027 0.805134 0.593093i \(-0.202093\pi\)
0.805134 + 0.593093i \(0.202093\pi\)
\(158\) −301.992 −0.152058
\(159\) 839.183 0.418563
\(160\) −3692.13 −1.82430
\(161\) −845.138 −0.413703
\(162\) −317.815 −0.154135
\(163\) −338.948 −0.162874 −0.0814370 0.996678i \(-0.525951\pi\)
−0.0814370 + 0.996678i \(0.525951\pi\)
\(164\) −1470.82 −0.700316
\(165\) 2057.27 0.970655
\(166\) −2845.40 −1.33040
\(167\) 1772.47 0.821304 0.410652 0.911792i \(-0.365301\pi\)
0.410652 + 0.911792i \(0.365301\pi\)
\(168\) 46.6394 0.0214185
\(169\) −1653.25 −0.752503
\(170\) 4981.69 2.24752
\(171\) 1058.00 0.473143
\(172\) 1583.03 0.701774
\(173\) −960.710 −0.422205 −0.211102 0.977464i \(-0.567705\pi\)
−0.211102 + 0.977464i \(0.567705\pi\)
\(174\) −2708.82 −1.18020
\(175\) −613.490 −0.265003
\(176\) −3175.39 −1.35997
\(177\) −2035.07 −0.864208
\(178\) −3862.02 −1.62624
\(179\) 2462.03 1.02805 0.514024 0.857776i \(-0.328154\pi\)
0.514024 + 0.857776i \(0.328154\pi\)
\(180\) −984.189 −0.407540
\(181\) 2387.03 0.980255 0.490128 0.871651i \(-0.336950\pi\)
0.490128 + 0.871651i \(0.336950\pi\)
\(182\) 599.216 0.244048
\(183\) 490.840 0.198273
\(184\) 306.318 0.122729
\(185\) −636.421 −0.252922
\(186\) 642.230 0.253175
\(187\) 3981.63 1.55704
\(188\) 4048.25 1.57047
\(189\) 176.831 0.0680557
\(190\) 6820.74 2.60436
\(191\) 3188.19 1.20780 0.603899 0.797061i \(-0.293613\pi\)
0.603899 + 0.797061i \(0.293613\pi\)
\(192\) 1295.56 0.486975
\(193\) 387.169 0.144399 0.0721996 0.997390i \(-0.476998\pi\)
0.0721996 + 0.997390i \(0.476998\pi\)
\(194\) 2985.20 1.10477
\(195\) 1034.47 0.379897
\(196\) −2219.29 −0.808781
\(197\) −511.432 −0.184965 −0.0924823 0.995714i \(-0.529480\pi\)
−0.0924823 + 0.995714i \(0.529480\pi\)
\(198\) −1637.59 −0.587769
\(199\) 2642.38 0.941272 0.470636 0.882327i \(-0.344024\pi\)
0.470636 + 0.882327i \(0.344024\pi\)
\(200\) 222.358 0.0786153
\(201\) 2340.15 0.821203
\(202\) −2997.69 −1.04414
\(203\) 1507.17 0.521096
\(204\) −1904.80 −0.653738
\(205\) 2941.16 1.00205
\(206\) 2284.37 0.772620
\(207\) 1161.39 0.389961
\(208\) −1596.71 −0.532267
\(209\) 5451.50 1.80425
\(210\) 1139.99 0.374605
\(211\) 3585.37 1.16980 0.584898 0.811107i \(-0.301134\pi\)
0.584898 + 0.811107i \(0.301134\pi\)
\(212\) −2068.59 −0.670147
\(213\) −1929.62 −0.620729
\(214\) −1770.50 −0.565556
\(215\) −3165.55 −1.00413
\(216\) −64.0917 −0.0201893
\(217\) −357.333 −0.111785
\(218\) −1634.47 −0.507799
\(219\) 1700.71 0.524764
\(220\) −5071.17 −1.55408
\(221\) 2002.11 0.609397
\(222\) 506.592 0.153154
\(223\) 1218.19 0.365811 0.182906 0.983130i \(-0.441450\pi\)
0.182906 + 0.983130i \(0.441450\pi\)
\(224\) −1635.21 −0.487754
\(225\) 843.056 0.249794
\(226\) 4733.66 1.39327
\(227\) −1445.19 −0.422557 −0.211279 0.977426i \(-0.567763\pi\)
−0.211279 + 0.977426i \(0.567763\pi\)
\(228\) −2607.98 −0.757533
\(229\) 2876.63 0.830101 0.415050 0.909798i \(-0.363764\pi\)
0.415050 + 0.909798i \(0.363764\pi\)
\(230\) 7487.23 2.14649
\(231\) 911.144 0.259519
\(232\) −546.270 −0.154588
\(233\) 2519.58 0.708426 0.354213 0.935165i \(-0.384749\pi\)
0.354213 + 0.935165i \(0.384749\pi\)
\(234\) −823.440 −0.230043
\(235\) −8095.16 −2.24711
\(236\) 5016.44 1.38366
\(237\) −230.902 −0.0632856
\(238\) 2206.34 0.600907
\(239\) 6388.18 1.72894 0.864470 0.502684i \(-0.167654\pi\)
0.864470 + 0.502684i \(0.167654\pi\)
\(240\) −3037.69 −0.817009
\(241\) −2480.02 −0.662872 −0.331436 0.943478i \(-0.607533\pi\)
−0.331436 + 0.943478i \(0.607533\pi\)
\(242\) −3215.53 −0.854140
\(243\) −243.000 −0.0641500
\(244\) −1209.92 −0.317448
\(245\) 4437.86 1.15724
\(246\) −2341.17 −0.606778
\(247\) 2741.22 0.706152
\(248\) 129.514 0.0331619
\(249\) −2175.57 −0.553701
\(250\) −1817.64 −0.459831
\(251\) 2077.93 0.522542 0.261271 0.965266i \(-0.415858\pi\)
0.261271 + 0.965266i \(0.415858\pi\)
\(252\) −435.888 −0.108962
\(253\) 5984.20 1.48705
\(254\) 5696.42 1.40719
\(255\) 3808.97 0.935400
\(256\) 4643.60 1.13369
\(257\) −3713.06 −0.901223 −0.450611 0.892720i \(-0.648794\pi\)
−0.450611 + 0.892720i \(0.648794\pi\)
\(258\) 2519.78 0.608041
\(259\) −281.865 −0.0676225
\(260\) −2549.97 −0.608241
\(261\) −2071.15 −0.491191
\(262\) 4713.91 1.11155
\(263\) −5716.06 −1.34018 −0.670090 0.742279i \(-0.733745\pi\)
−0.670090 + 0.742279i \(0.733745\pi\)
\(264\) −330.242 −0.0769885
\(265\) 4136.50 0.958880
\(266\) 3020.84 0.696314
\(267\) −2952.88 −0.676830
\(268\) −5768.49 −1.31480
\(269\) −5156.84 −1.16884 −0.584420 0.811451i \(-0.698678\pi\)
−0.584420 + 0.811451i \(0.698678\pi\)
\(270\) −1566.58 −0.353106
\(271\) 10.5166 0.00235734 0.00117867 0.999999i \(-0.499625\pi\)
0.00117867 + 0.999999i \(0.499625\pi\)
\(272\) −5879.14 −1.31057
\(273\) 458.157 0.101571
\(274\) 3903.87 0.860735
\(275\) 4343.96 0.952548
\(276\) −2862.82 −0.624353
\(277\) −3777.76 −0.819435 −0.409718 0.912212i \(-0.634373\pi\)
−0.409718 + 0.912212i \(0.634373\pi\)
\(278\) 9003.49 1.94242
\(279\) 491.046 0.105370
\(280\) 229.895 0.0490673
\(281\) 6305.66 1.33866 0.669331 0.742964i \(-0.266581\pi\)
0.669331 + 0.742964i \(0.266581\pi\)
\(282\) 6443.76 1.36071
\(283\) −2614.26 −0.549122 −0.274561 0.961570i \(-0.588533\pi\)
−0.274561 + 0.961570i \(0.588533\pi\)
\(284\) 4756.52 0.993829
\(285\) 5215.10 1.08392
\(286\) −4242.89 −0.877229
\(287\) 1302.61 0.267912
\(288\) 2247.10 0.459762
\(289\) 2458.87 0.500483
\(290\) −13352.3 −2.70370
\(291\) 2282.47 0.459796
\(292\) −4192.26 −0.840182
\(293\) −655.808 −0.130760 −0.0653801 0.997860i \(-0.520826\pi\)
−0.0653801 + 0.997860i \(0.520826\pi\)
\(294\) −3532.54 −0.700755
\(295\) −10031.2 −1.97980
\(296\) 102.161 0.0200608
\(297\) −1252.09 −0.244625
\(298\) 262.668 0.0510603
\(299\) 3009.08 0.582005
\(300\) −2078.14 −0.399937
\(301\) −1401.99 −0.268470
\(302\) −5039.12 −0.960161
\(303\) −2292.02 −0.434564
\(304\) −8049.50 −1.51865
\(305\) 2419.45 0.454220
\(306\) −3031.95 −0.566421
\(307\) −639.986 −0.118977 −0.0594885 0.998229i \(-0.518947\pi\)
−0.0594885 + 0.998229i \(0.518947\pi\)
\(308\) −2245.97 −0.415507
\(309\) 1746.62 0.321559
\(310\) 3165.68 0.579995
\(311\) −1808.14 −0.329679 −0.164840 0.986320i \(-0.552711\pi\)
−0.164840 + 0.986320i \(0.552711\pi\)
\(312\) −166.058 −0.0301320
\(313\) −8084.23 −1.45990 −0.729949 0.683502i \(-0.760456\pi\)
−0.729949 + 0.683502i \(0.760456\pi\)
\(314\) −12429.0 −2.23379
\(315\) 871.633 0.155908
\(316\) 569.173 0.101324
\(317\) −7187.04 −1.27339 −0.636695 0.771116i \(-0.719699\pi\)
−0.636695 + 0.771116i \(0.719699\pi\)
\(318\) −3292.66 −0.580639
\(319\) −10671.9 −1.87307
\(320\) 6386.09 1.11560
\(321\) −1353.72 −0.235380
\(322\) 3316.02 0.573897
\(323\) 10093.3 1.73872
\(324\) 598.996 0.102708
\(325\) 2184.31 0.372811
\(326\) 1329.91 0.225942
\(327\) −1249.71 −0.211342
\(328\) −472.128 −0.0794784
\(329\) −3585.27 −0.600797
\(330\) −8072.00 −1.34651
\(331\) 11873.0 1.97159 0.985797 0.167944i \(-0.0537127\pi\)
0.985797 + 0.167944i \(0.0537127\pi\)
\(332\) 5362.80 0.886512
\(333\) 387.338 0.0637417
\(334\) −6954.54 −1.13933
\(335\) 11535.1 1.88128
\(336\) −1345.36 −0.218439
\(337\) −337.000 −0.0544735
\(338\) 6486.77 1.04389
\(339\) 3619.33 0.579868
\(340\) −9389.13 −1.49764
\(341\) 2530.18 0.401809
\(342\) −4151.23 −0.656353
\(343\) 4211.89 0.663034
\(344\) 508.147 0.0796438
\(345\) 5724.70 0.893355
\(346\) 3769.49 0.585690
\(347\) −8308.23 −1.28533 −0.642665 0.766148i \(-0.722171\pi\)
−0.642665 + 0.766148i \(0.722171\pi\)
\(348\) 5105.39 0.786430
\(349\) 1423.22 0.218290 0.109145 0.994026i \(-0.465189\pi\)
0.109145 + 0.994026i \(0.465189\pi\)
\(350\) 2407.12 0.367617
\(351\) −629.598 −0.0957420
\(352\) 11578.5 1.75322
\(353\) −5587.90 −0.842532 −0.421266 0.906937i \(-0.638414\pi\)
−0.421266 + 0.906937i \(0.638414\pi\)
\(354\) 7984.88 1.19885
\(355\) −9511.48 −1.42202
\(356\) 7278.87 1.08365
\(357\) 1686.96 0.250093
\(358\) −9660.13 −1.42613
\(359\) −4075.45 −0.599148 −0.299574 0.954073i \(-0.596845\pi\)
−0.299574 + 0.954073i \(0.596845\pi\)
\(360\) −315.921 −0.0462514
\(361\) 6960.36 1.01478
\(362\) −9365.85 −1.35983
\(363\) −2458.57 −0.355487
\(364\) −1129.36 −0.162622
\(365\) 8383.13 1.20217
\(366\) −1925.88 −0.275048
\(367\) 5626.07 0.800214 0.400107 0.916468i \(-0.368973\pi\)
0.400107 + 0.916468i \(0.368973\pi\)
\(368\) −8836.07 −1.25166
\(369\) −1790.04 −0.252537
\(370\) 2497.09 0.350859
\(371\) 1832.01 0.256370
\(372\) −1210.43 −0.168704
\(373\) −2799.44 −0.388604 −0.194302 0.980942i \(-0.562244\pi\)
−0.194302 + 0.980942i \(0.562244\pi\)
\(374\) −15622.5 −2.15995
\(375\) −1389.76 −0.191378
\(376\) 1299.47 0.178232
\(377\) −5366.22 −0.733088
\(378\) −693.821 −0.0944082
\(379\) 12841.0 1.74037 0.870184 0.492726i \(-0.164000\pi\)
0.870184 + 0.492726i \(0.164000\pi\)
\(380\) −12855.2 −1.73542
\(381\) 4355.45 0.585660
\(382\) −12509.3 −1.67548
\(383\) 6318.66 0.842998 0.421499 0.906829i \(-0.361504\pi\)
0.421499 + 0.906829i \(0.361504\pi\)
\(384\) 908.920 0.120789
\(385\) 4491.21 0.594528
\(386\) −1519.12 −0.200313
\(387\) 1926.61 0.253062
\(388\) −5626.29 −0.736164
\(389\) 7291.35 0.950350 0.475175 0.879891i \(-0.342385\pi\)
0.475175 + 0.879891i \(0.342385\pi\)
\(390\) −4058.90 −0.527001
\(391\) 11079.6 1.43304
\(392\) −712.384 −0.0917879
\(393\) 3604.23 0.462620
\(394\) 2006.68 0.256586
\(395\) −1138.16 −0.144980
\(396\) 3086.41 0.391661
\(397\) −8403.88 −1.06241 −0.531207 0.847242i \(-0.678261\pi\)
−0.531207 + 0.847242i \(0.678261\pi\)
\(398\) −10367.8 −1.30575
\(399\) 2309.72 0.289801
\(400\) −6414.15 −0.801768
\(401\) −3146.51 −0.391844 −0.195922 0.980620i \(-0.562770\pi\)
−0.195922 + 0.980620i \(0.562770\pi\)
\(402\) −9181.94 −1.13919
\(403\) 1272.27 0.157261
\(404\) 5649.83 0.695767
\(405\) −1197.79 −0.146960
\(406\) −5913.60 −0.722875
\(407\) 1995.81 0.243068
\(408\) −611.433 −0.0741922
\(409\) −14642.5 −1.77023 −0.885116 0.465371i \(-0.845921\pi\)
−0.885116 + 0.465371i \(0.845921\pi\)
\(410\) −11540.1 −1.39006
\(411\) 2984.88 0.358231
\(412\) −4305.42 −0.514837
\(413\) −4442.74 −0.529329
\(414\) −4556.87 −0.540961
\(415\) −10723.8 −1.26846
\(416\) 5822.09 0.686181
\(417\) 6884.02 0.808422
\(418\) −21389.8 −2.50289
\(419\) −15631.1 −1.82250 −0.911252 0.411848i \(-0.864883\pi\)
−0.911252 + 0.411848i \(0.864883\pi\)
\(420\) −2148.58 −0.249619
\(421\) 5623.63 0.651019 0.325509 0.945539i \(-0.394464\pi\)
0.325509 + 0.945539i \(0.394464\pi\)
\(422\) −14067.7 −1.62276
\(423\) 4926.87 0.566318
\(424\) −664.009 −0.0760545
\(425\) 8042.72 0.917951
\(426\) 7571.15 0.861088
\(427\) 1071.55 0.121442
\(428\) 3336.92 0.376860
\(429\) −3244.09 −0.365096
\(430\) 12420.5 1.39295
\(431\) 1957.99 0.218824 0.109412 0.993996i \(-0.465103\pi\)
0.109412 + 0.993996i \(0.465103\pi\)
\(432\) 1848.80 0.205903
\(433\) 3436.49 0.381402 0.190701 0.981648i \(-0.438924\pi\)
0.190701 + 0.981648i \(0.438924\pi\)
\(434\) 1402.05 0.155070
\(435\) −10209.1 −1.12526
\(436\) 3080.53 0.338373
\(437\) 15169.7 1.66056
\(438\) −6672.99 −0.727963
\(439\) 15147.3 1.64679 0.823397 0.567466i \(-0.192076\pi\)
0.823397 + 0.567466i \(0.192076\pi\)
\(440\) −1627.83 −0.176372
\(441\) −2700.96 −0.291649
\(442\) −7855.59 −0.845367
\(443\) −5013.85 −0.537731 −0.268866 0.963178i \(-0.586649\pi\)
−0.268866 + 0.963178i \(0.586649\pi\)
\(444\) −954.789 −0.102055
\(445\) −14555.3 −1.55054
\(446\) −4779.74 −0.507460
\(447\) 200.835 0.0212509
\(448\) 2828.34 0.298273
\(449\) −13335.6 −1.40166 −0.700830 0.713328i \(-0.747187\pi\)
−0.700830 + 0.713328i \(0.747187\pi\)
\(450\) −3307.85 −0.346519
\(451\) −9223.45 −0.963005
\(452\) −8921.67 −0.928407
\(453\) −3852.88 −0.399612
\(454\) 5670.41 0.586179
\(455\) 2258.35 0.232688
\(456\) −837.150 −0.0859718
\(457\) −8086.28 −0.827703 −0.413852 0.910344i \(-0.635817\pi\)
−0.413852 + 0.910344i \(0.635817\pi\)
\(458\) −11286.9 −1.15153
\(459\) −2318.21 −0.235740
\(460\) −14111.4 −1.43032
\(461\) 1182.39 0.119457 0.0597283 0.998215i \(-0.480977\pi\)
0.0597283 + 0.998215i \(0.480977\pi\)
\(462\) −3575.01 −0.360010
\(463\) −14246.8 −1.43003 −0.715014 0.699110i \(-0.753580\pi\)
−0.715014 + 0.699110i \(0.753580\pi\)
\(464\) 15757.7 1.57658
\(465\) 2420.46 0.241390
\(466\) −9885.94 −0.982741
\(467\) −7653.01 −0.758327 −0.379164 0.925330i \(-0.623788\pi\)
−0.379164 + 0.925330i \(0.623788\pi\)
\(468\) 1551.96 0.153289
\(469\) 5108.78 0.502988
\(470\) 31762.6 3.11723
\(471\) −9503.18 −0.929689
\(472\) 1610.26 0.157030
\(473\) 9927.13 0.965010
\(474\) 905.977 0.0877909
\(475\) 11011.8 1.06370
\(476\) −4158.35 −0.400415
\(477\) −2517.55 −0.241658
\(478\) −25065.0 −2.39842
\(479\) −4361.64 −0.416051 −0.208026 0.978123i \(-0.566704\pi\)
−0.208026 + 0.978123i \(0.566704\pi\)
\(480\) 11076.4 1.05326
\(481\) 1003.57 0.0951326
\(482\) 9730.72 0.919548
\(483\) 2535.41 0.238852
\(484\) 6060.39 0.569158
\(485\) 11250.7 1.05334
\(486\) 953.446 0.0889901
\(487\) 19190.9 1.78568 0.892839 0.450376i \(-0.148710\pi\)
0.892839 + 0.450376i \(0.148710\pi\)
\(488\) −388.380 −0.0360269
\(489\) 1016.84 0.0940353
\(490\) −17412.6 −1.60535
\(491\) 1264.48 0.116223 0.0581114 0.998310i \(-0.481492\pi\)
0.0581114 + 0.998310i \(0.481492\pi\)
\(492\) 4412.47 0.404328
\(493\) −19758.7 −1.80504
\(494\) −10755.6 −0.979587
\(495\) −6171.80 −0.560408
\(496\) −3735.98 −0.338206
\(497\) −4212.54 −0.380198
\(498\) 8536.19 0.768104
\(499\) −10159.2 −0.911399 −0.455699 0.890134i \(-0.650611\pi\)
−0.455699 + 0.890134i \(0.650611\pi\)
\(500\) 3425.76 0.306409
\(501\) −5317.40 −0.474180
\(502\) −8153.08 −0.724880
\(503\) 9185.99 0.814280 0.407140 0.913366i \(-0.366526\pi\)
0.407140 + 0.913366i \(0.366526\pi\)
\(504\) −139.918 −0.0123660
\(505\) −11297.8 −0.995537
\(506\) −23479.9 −2.06286
\(507\) 4959.75 0.434458
\(508\) −10736.2 −0.937681
\(509\) 13806.5 1.20228 0.601141 0.799143i \(-0.294713\pi\)
0.601141 + 0.799143i \(0.294713\pi\)
\(510\) −14945.1 −1.29760
\(511\) 3712.81 0.321419
\(512\) −15796.1 −1.36346
\(513\) −3174.01 −0.273169
\(514\) 14568.7 1.25019
\(515\) 8609.42 0.736653
\(516\) −4749.10 −0.405169
\(517\) 25386.4 2.15956
\(518\) 1105.94 0.0938072
\(519\) 2882.13 0.243760
\(520\) −818.531 −0.0690288
\(521\) −7767.10 −0.653134 −0.326567 0.945174i \(-0.605892\pi\)
−0.326567 + 0.945174i \(0.605892\pi\)
\(522\) 8126.46 0.681389
\(523\) 11785.0 0.985317 0.492659 0.870223i \(-0.336025\pi\)
0.492659 + 0.870223i \(0.336025\pi\)
\(524\) −8884.45 −0.740685
\(525\) 1840.47 0.152999
\(526\) 22427.8 1.85912
\(527\) 4684.55 0.387215
\(528\) 9526.18 0.785177
\(529\) 4485.06 0.368625
\(530\) −16230.2 −1.33018
\(531\) 6105.20 0.498951
\(532\) −5693.46 −0.463990
\(533\) −4637.90 −0.376903
\(534\) 11586.1 0.938911
\(535\) −6672.73 −0.539229
\(536\) −1851.66 −0.149216
\(537\) −7386.08 −0.593544
\(538\) 20233.6 1.62144
\(539\) −13917.1 −1.11215
\(540\) 2952.57 0.235293
\(541\) 653.476 0.0519319 0.0259659 0.999663i \(-0.491734\pi\)
0.0259659 + 0.999663i \(0.491734\pi\)
\(542\) −41.2635 −0.00327015
\(543\) −7161.08 −0.565951
\(544\) 21437.2 1.68954
\(545\) −6160.05 −0.484160
\(546\) −1797.65 −0.140901
\(547\) −377.550 −0.0295116 −0.0147558 0.999891i \(-0.504697\pi\)
−0.0147558 + 0.999891i \(0.504697\pi\)
\(548\) −7357.73 −0.573552
\(549\) −1472.52 −0.114473
\(550\) −17044.2 −1.32139
\(551\) −27052.8 −2.09163
\(552\) −918.953 −0.0708573
\(553\) −504.080 −0.0387625
\(554\) 14822.6 1.13674
\(555\) 1909.26 0.146025
\(556\) −16969.1 −1.29434
\(557\) 24625.5 1.87328 0.936639 0.350296i \(-0.113919\pi\)
0.936639 + 0.350296i \(0.113919\pi\)
\(558\) −1926.69 −0.146171
\(559\) 4991.73 0.377688
\(560\) −6631.57 −0.500419
\(561\) −11944.9 −0.898955
\(562\) −24741.2 −1.85702
\(563\) 12242.1 0.916419 0.458210 0.888844i \(-0.348491\pi\)
0.458210 + 0.888844i \(0.348491\pi\)
\(564\) −12144.7 −0.906712
\(565\) 17840.4 1.32841
\(566\) 10257.4 0.761753
\(567\) −530.492 −0.0392920
\(568\) 1526.82 0.112789
\(569\) 5235.14 0.385709 0.192854 0.981227i \(-0.438225\pi\)
0.192854 + 0.981227i \(0.438225\pi\)
\(570\) −20462.2 −1.50363
\(571\) −18525.1 −1.35771 −0.678855 0.734272i \(-0.737523\pi\)
−0.678855 + 0.734272i \(0.737523\pi\)
\(572\) 7996.70 0.584543
\(573\) −9564.57 −0.697322
\(574\) −5110.99 −0.371652
\(575\) 12087.8 0.876690
\(576\) −3886.69 −0.281155
\(577\) 1870.70 0.134971 0.0674856 0.997720i \(-0.478502\pi\)
0.0674856 + 0.997720i \(0.478502\pi\)
\(578\) −9647.76 −0.694280
\(579\) −1161.51 −0.0833689
\(580\) 25165.5 1.80162
\(581\) −4749.48 −0.339142
\(582\) −8955.60 −0.637838
\(583\) −12972.0 −0.921520
\(584\) −1345.70 −0.0953516
\(585\) −3103.41 −0.219334
\(586\) 2573.16 0.181393
\(587\) 19930.0 1.40136 0.700681 0.713475i \(-0.252880\pi\)
0.700681 + 0.713475i \(0.252880\pi\)
\(588\) 6657.88 0.466950
\(589\) 6413.91 0.448694
\(590\) 39359.0 2.74642
\(591\) 1534.30 0.106789
\(592\) −2946.95 −0.204593
\(593\) 10254.1 0.710094 0.355047 0.934848i \(-0.384465\pi\)
0.355047 + 0.934848i \(0.384465\pi\)
\(594\) 4912.76 0.339349
\(595\) 8315.34 0.572934
\(596\) −495.058 −0.0340241
\(597\) −7927.13 −0.543444
\(598\) −11806.6 −0.807368
\(599\) 8945.20 0.610169 0.305084 0.952325i \(-0.401315\pi\)
0.305084 + 0.952325i \(0.401315\pi\)
\(600\) −667.073 −0.0453886
\(601\) 21885.1 1.48538 0.742689 0.669637i \(-0.233550\pi\)
0.742689 + 0.669637i \(0.233550\pi\)
\(602\) 5500.91 0.372426
\(603\) −7020.46 −0.474122
\(604\) 9497.37 0.639806
\(605\) −12118.8 −0.814379
\(606\) 8993.07 0.602836
\(607\) 15323.4 1.02464 0.512321 0.858794i \(-0.328786\pi\)
0.512321 + 0.858794i \(0.328786\pi\)
\(608\) 29351.0 1.95780
\(609\) −4521.51 −0.300855
\(610\) −9493.06 −0.630103
\(611\) 12765.2 0.845213
\(612\) 5714.39 0.377436
\(613\) 21199.5 1.39680 0.698401 0.715707i \(-0.253895\pi\)
0.698401 + 0.715707i \(0.253895\pi\)
\(614\) 2511.08 0.165047
\(615\) −8823.48 −0.578532
\(616\) −720.948 −0.0471556
\(617\) 17302.6 1.12898 0.564488 0.825441i \(-0.309074\pi\)
0.564488 + 0.825441i \(0.309074\pi\)
\(618\) −6853.11 −0.446072
\(619\) −29715.1 −1.92948 −0.964742 0.263196i \(-0.915223\pi\)
−0.964742 + 0.263196i \(0.915223\pi\)
\(620\) −5966.44 −0.386481
\(621\) −3484.16 −0.225144
\(622\) 7094.50 0.457337
\(623\) −6446.42 −0.414559
\(624\) 4790.12 0.307305
\(625\) −18559.5 −1.18781
\(626\) 31719.7 2.02520
\(627\) −16354.5 −1.04168
\(628\) 23425.4 1.48849
\(629\) 3695.19 0.234240
\(630\) −3419.98 −0.216278
\(631\) 1679.57 0.105963 0.0529816 0.998595i \(-0.483128\pi\)
0.0529816 + 0.998595i \(0.483128\pi\)
\(632\) 182.702 0.0114992
\(633\) −10756.1 −0.675382
\(634\) 28199.4 1.76647
\(635\) 21468.9 1.34168
\(636\) 6205.77 0.386910
\(637\) −6998.03 −0.435278
\(638\) 41872.7 2.59836
\(639\) 5788.86 0.358378
\(640\) 4480.25 0.276715
\(641\) −13554.0 −0.835183 −0.417592 0.908635i \(-0.637126\pi\)
−0.417592 + 0.908635i \(0.637126\pi\)
\(642\) 5311.51 0.326524
\(643\) −1425.09 −0.0874031 −0.0437015 0.999045i \(-0.513915\pi\)
−0.0437015 + 0.999045i \(0.513915\pi\)
\(644\) −6249.80 −0.382417
\(645\) 9496.64 0.579736
\(646\) −39602.5 −2.41198
\(647\) −447.780 −0.0272088 −0.0136044 0.999907i \(-0.504331\pi\)
−0.0136044 + 0.999907i \(0.504331\pi\)
\(648\) 192.275 0.0116563
\(649\) 31457.9 1.90266
\(650\) −8570.45 −0.517170
\(651\) 1072.00 0.0645390
\(652\) −2506.52 −0.150557
\(653\) 28906.3 1.73230 0.866148 0.499787i \(-0.166588\pi\)
0.866148 + 0.499787i \(0.166588\pi\)
\(654\) 4903.40 0.293178
\(655\) 17766.0 1.05981
\(656\) 13619.0 0.810570
\(657\) −5102.13 −0.302973
\(658\) 14067.3 0.833437
\(659\) 23567.0 1.39308 0.696539 0.717519i \(-0.254722\pi\)
0.696539 + 0.717519i \(0.254722\pi\)
\(660\) 15213.5 0.897251
\(661\) 3928.17 0.231147 0.115573 0.993299i \(-0.463129\pi\)
0.115573 + 0.993299i \(0.463129\pi\)
\(662\) −46585.3 −2.73503
\(663\) −6006.34 −0.351835
\(664\) 1721.44 0.100609
\(665\) 11385.0 0.663900
\(666\) −1519.78 −0.0884237
\(667\) −29696.3 −1.72391
\(668\) 13107.4 0.759193
\(669\) −3654.56 −0.211201
\(670\) −45259.6 −2.60975
\(671\) −7587.36 −0.436523
\(672\) 4905.62 0.281605
\(673\) −11501.5 −0.658768 −0.329384 0.944196i \(-0.606841\pi\)
−0.329384 + 0.944196i \(0.606841\pi\)
\(674\) 1322.27 0.0755666
\(675\) −2529.17 −0.144219
\(676\) −12225.8 −0.695596
\(677\) 15479.8 0.878784 0.439392 0.898296i \(-0.355194\pi\)
0.439392 + 0.898296i \(0.355194\pi\)
\(678\) −14201.0 −0.804403
\(679\) 4982.84 0.281626
\(680\) −3013.87 −0.169966
\(681\) 4335.56 0.243963
\(682\) −9927.54 −0.557397
\(683\) 16028.0 0.897945 0.448972 0.893546i \(-0.351790\pi\)
0.448972 + 0.893546i \(0.351790\pi\)
\(684\) 7823.93 0.437362
\(685\) 14713.0 0.820667
\(686\) −16526.0 −0.919773
\(687\) −8629.89 −0.479259
\(688\) −14658.1 −0.812257
\(689\) −6522.81 −0.360667
\(690\) −22461.7 −1.23928
\(691\) −9452.10 −0.520369 −0.260184 0.965559i \(-0.583783\pi\)
−0.260184 + 0.965559i \(0.583783\pi\)
\(692\) −7104.46 −0.390276
\(693\) −2733.43 −0.149833
\(694\) 32598.6 1.78303
\(695\) 33932.7 1.85200
\(696\) 1638.81 0.0892513
\(697\) −17077.0 −0.928028
\(698\) −5584.20 −0.302815
\(699\) −7558.74 −0.409010
\(700\) −4536.76 −0.244962
\(701\) 7678.28 0.413701 0.206851 0.978373i \(-0.433679\pi\)
0.206851 + 0.978373i \(0.433679\pi\)
\(702\) 2470.32 0.132815
\(703\) 5059.31 0.271430
\(704\) −20026.7 −1.07214
\(705\) 24285.5 1.29737
\(706\) 21925.0 1.16878
\(707\) −5003.69 −0.266171
\(708\) −15049.3 −0.798854
\(709\) 14526.9 0.769491 0.384746 0.923023i \(-0.374289\pi\)
0.384746 + 0.923023i \(0.374289\pi\)
\(710\) 37319.7 1.97265
\(711\) 692.705 0.0365379
\(712\) 2336.49 0.122983
\(713\) 7040.66 0.369810
\(714\) −6619.02 −0.346934
\(715\) −15990.8 −0.836393
\(716\) 18206.7 0.950303
\(717\) −19164.5 −0.998205
\(718\) 15990.6 0.831149
\(719\) −22424.9 −1.16315 −0.581577 0.813491i \(-0.697564\pi\)
−0.581577 + 0.813491i \(0.697564\pi\)
\(720\) 9113.08 0.471701
\(721\) 3813.03 0.196955
\(722\) −27310.0 −1.40772
\(723\) 7440.06 0.382709
\(724\) 17652.1 0.906125
\(725\) −21556.7 −1.10427
\(726\) 9646.58 0.493138
\(727\) −14350.5 −0.732093 −0.366046 0.930597i \(-0.619289\pi\)
−0.366046 + 0.930597i \(0.619289\pi\)
\(728\) −362.520 −0.0184559
\(729\) 729.000 0.0370370
\(730\) −32892.5 −1.66768
\(731\) 18379.8 0.929960
\(732\) 3629.77 0.183279
\(733\) 15024.2 0.757071 0.378535 0.925587i \(-0.376428\pi\)
0.378535 + 0.925587i \(0.376428\pi\)
\(734\) −22074.7 −1.11007
\(735\) −13313.6 −0.668134
\(736\) 32219.1 1.61360
\(737\) −36173.9 −1.80798
\(738\) 7023.50 0.350324
\(739\) −37847.2 −1.88394 −0.941970 0.335697i \(-0.891028\pi\)
−0.941970 + 0.335697i \(0.891028\pi\)
\(740\) −4706.34 −0.233795
\(741\) −8223.65 −0.407697
\(742\) −7188.18 −0.355642
\(743\) 22381.6 1.10512 0.552558 0.833475i \(-0.313652\pi\)
0.552558 + 0.833475i \(0.313652\pi\)
\(744\) −388.543 −0.0191461
\(745\) 989.954 0.0486834
\(746\) 10984.0 0.539079
\(747\) 6526.72 0.319679
\(748\) 29444.2 1.43929
\(749\) −2955.29 −0.144171
\(750\) 5452.92 0.265483
\(751\) 20159.1 0.979513 0.489757 0.871859i \(-0.337086\pi\)
0.489757 + 0.871859i \(0.337086\pi\)
\(752\) −37484.6 −1.81772
\(753\) −6233.80 −0.301690
\(754\) 21055.1 1.01695
\(755\) −18991.6 −0.915465
\(756\) 1307.66 0.0629091
\(757\) −31425.6 −1.50883 −0.754413 0.656399i \(-0.772079\pi\)
−0.754413 + 0.656399i \(0.772079\pi\)
\(758\) −50383.7 −2.41427
\(759\) −17952.6 −0.858548
\(760\) −4126.48 −0.196951
\(761\) −27384.6 −1.30446 −0.652228 0.758023i \(-0.726166\pi\)
−0.652228 + 0.758023i \(0.726166\pi\)
\(762\) −17089.3 −0.812439
\(763\) −2728.22 −0.129447
\(764\) 23576.7 1.11646
\(765\) −11426.9 −0.540054
\(766\) −24792.2 −1.16942
\(767\) 15818.2 0.744670
\(768\) −13930.8 −0.654537
\(769\) 18052.5 0.846541 0.423270 0.906003i \(-0.360882\pi\)
0.423270 + 0.906003i \(0.360882\pi\)
\(770\) −17621.9 −0.824740
\(771\) 11139.2 0.520321
\(772\) 2863.12 0.133479
\(773\) −31434.2 −1.46262 −0.731312 0.682043i \(-0.761092\pi\)
−0.731312 + 0.682043i \(0.761092\pi\)
\(774\) −7559.34 −0.351053
\(775\) 5110.85 0.236887
\(776\) −1806.02 −0.0835467
\(777\) 845.594 0.0390419
\(778\) −28608.7 −1.31834
\(779\) −23381.1 −1.07537
\(780\) 7649.92 0.351168
\(781\) 29827.9 1.36662
\(782\) −43472.3 −1.98794
\(783\) 6213.44 0.283589
\(784\) 20549.5 0.936110
\(785\) −46843.1 −2.12981
\(786\) −14141.7 −0.641755
\(787\) 10803.1 0.489310 0.244655 0.969610i \(-0.421325\pi\)
0.244655 + 0.969610i \(0.421325\pi\)
\(788\) −3782.04 −0.170977
\(789\) 17148.2 0.773754
\(790\) 4465.74 0.201119
\(791\) 7901.34 0.355170
\(792\) 990.725 0.0444493
\(793\) −3815.21 −0.170847
\(794\) 32973.9 1.47380
\(795\) −12409.5 −0.553609
\(796\) 19540.4 0.870090
\(797\) 1835.25 0.0815659 0.0407829 0.999168i \(-0.487015\pi\)
0.0407829 + 0.999168i \(0.487015\pi\)
\(798\) −9062.51 −0.402017
\(799\) 47002.1 2.08112
\(800\) 23388.0 1.03361
\(801\) 8858.65 0.390768
\(802\) 12345.8 0.543573
\(803\) −26289.4 −1.15533
\(804\) 17305.5 0.759101
\(805\) 12497.6 0.547181
\(806\) −4991.93 −0.218156
\(807\) 15470.5 0.674830
\(808\) 1813.57 0.0789620
\(809\) 451.777 0.0196337 0.00981684 0.999952i \(-0.496875\pi\)
0.00981684 + 0.999952i \(0.496875\pi\)
\(810\) 4699.73 0.203866
\(811\) 36021.1 1.55965 0.779823 0.626000i \(-0.215309\pi\)
0.779823 + 0.626000i \(0.215309\pi\)
\(812\) 11145.5 0.481689
\(813\) −31.5498 −0.00136101
\(814\) −7830.86 −0.337189
\(815\) 5012.22 0.215424
\(816\) 17637.4 0.756659
\(817\) 25164.9 1.07761
\(818\) 57452.0 2.45570
\(819\) −1374.47 −0.0586421
\(820\) 21749.9 0.926268
\(821\) −29084.4 −1.23636 −0.618181 0.786036i \(-0.712130\pi\)
−0.618181 + 0.786036i \(0.712130\pi\)
\(822\) −11711.6 −0.496945
\(823\) 15063.0 0.637987 0.318993 0.947757i \(-0.396655\pi\)
0.318993 + 0.947757i \(0.396655\pi\)
\(824\) −1382.02 −0.0584284
\(825\) −13031.9 −0.549954
\(826\) 17431.7 0.734295
\(827\) 18118.8 0.761852 0.380926 0.924606i \(-0.375605\pi\)
0.380926 + 0.924606i \(0.375605\pi\)
\(828\) 8588.46 0.360470
\(829\) 41061.9 1.72031 0.860157 0.510029i \(-0.170365\pi\)
0.860157 + 0.510029i \(0.170365\pi\)
\(830\) 42076.6 1.75964
\(831\) 11333.3 0.473101
\(832\) −10070.2 −0.419616
\(833\) −25767.1 −1.07176
\(834\) −27010.5 −1.12146
\(835\) −26210.5 −1.08629
\(836\) 40313.9 1.66781
\(837\) −1473.14 −0.0608352
\(838\) 61331.0 2.52821
\(839\) −23657.8 −0.973489 −0.486745 0.873544i \(-0.661816\pi\)
−0.486745 + 0.873544i \(0.661816\pi\)
\(840\) −689.685 −0.0283290
\(841\) 28569.7 1.17142
\(842\) −22065.1 −0.903105
\(843\) −18917.0 −0.772877
\(844\) 26513.8 1.08133
\(845\) 24447.6 0.995293
\(846\) −19331.3 −0.785607
\(847\) −5367.30 −0.217736
\(848\) 19154.0 0.775652
\(849\) 7842.78 0.317036
\(850\) −31556.8 −1.27340
\(851\) 5553.69 0.223711
\(852\) −14269.6 −0.573788
\(853\) −20282.3 −0.814130 −0.407065 0.913399i \(-0.633448\pi\)
−0.407065 + 0.913399i \(0.633448\pi\)
\(854\) −4204.38 −0.168467
\(855\) −15645.3 −0.625799
\(856\) 1071.14 0.0427695
\(857\) 16170.4 0.644540 0.322270 0.946648i \(-0.395554\pi\)
0.322270 + 0.946648i \(0.395554\pi\)
\(858\) 12728.7 0.506468
\(859\) 12437.0 0.494000 0.247000 0.969015i \(-0.420555\pi\)
0.247000 + 0.969015i \(0.420555\pi\)
\(860\) −23409.2 −0.928196
\(861\) −3907.83 −0.154679
\(862\) −7682.48 −0.303557
\(863\) −48647.3 −1.91886 −0.959429 0.281951i \(-0.909018\pi\)
−0.959429 + 0.281951i \(0.909018\pi\)
\(864\) −6741.29 −0.265444
\(865\) 14206.6 0.558426
\(866\) −13483.6 −0.529088
\(867\) −7376.62 −0.288954
\(868\) −2642.48 −0.103331
\(869\) 3569.26 0.139331
\(870\) 40056.9 1.56098
\(871\) −18189.6 −0.707613
\(872\) 988.837 0.0384017
\(873\) −6847.41 −0.265463
\(874\) −59520.7 −2.30357
\(875\) −3033.97 −0.117219
\(876\) 12576.8 0.485079
\(877\) −17642.2 −0.679288 −0.339644 0.940554i \(-0.610307\pi\)
−0.339644 + 0.940554i \(0.610307\pi\)
\(878\) −59432.8 −2.28446
\(879\) 1967.42 0.0754944
\(880\) 46956.4 1.79875
\(881\) −3691.47 −0.141168 −0.0705838 0.997506i \(-0.522486\pi\)
−0.0705838 + 0.997506i \(0.522486\pi\)
\(882\) 10597.6 0.404581
\(883\) 21575.1 0.822265 0.411133 0.911576i \(-0.365133\pi\)
0.411133 + 0.911576i \(0.365133\pi\)
\(884\) 14805.6 0.563312
\(885\) 30093.7 1.14304
\(886\) 19672.6 0.745951
\(887\) −26651.9 −1.00889 −0.504444 0.863444i \(-0.668303\pi\)
−0.504444 + 0.863444i \(0.668303\pi\)
\(888\) −306.483 −0.0115821
\(889\) 9508.36 0.358718
\(890\) 57110.0 2.15094
\(891\) 3756.27 0.141234
\(892\) 9008.51 0.338147
\(893\) 64353.5 2.41154
\(894\) −788.005 −0.0294797
\(895\) −36407.5 −1.35974
\(896\) 1984.26 0.0739837
\(897\) −9027.24 −0.336021
\(898\) 52324.1 1.94441
\(899\) −12555.9 −0.465810
\(900\) 6234.41 0.230904
\(901\) −24017.3 −0.888050
\(902\) 36189.6 1.33590
\(903\) 4205.97 0.155001
\(904\) −2863.82 −0.105364
\(905\) −35298.4 −1.29653
\(906\) 15117.4 0.554349
\(907\) −12962.7 −0.474552 −0.237276 0.971442i \(-0.576255\pi\)
−0.237276 + 0.971442i \(0.576255\pi\)
\(908\) −10687.2 −0.390602
\(909\) 6876.05 0.250896
\(910\) −8860.96 −0.322789
\(911\) 23784.0 0.864981 0.432490 0.901639i \(-0.357635\pi\)
0.432490 + 0.901639i \(0.357635\pi\)
\(912\) 24148.5 0.876795
\(913\) 33629.9 1.21904
\(914\) 31727.7 1.14821
\(915\) −7258.34 −0.262244
\(916\) 21272.7 0.767326
\(917\) 7868.38 0.283355
\(918\) 9095.84 0.327023
\(919\) 21180.0 0.760243 0.380121 0.924937i \(-0.375882\pi\)
0.380121 + 0.924937i \(0.375882\pi\)
\(920\) −4529.70 −0.162326
\(921\) 1919.96 0.0686914
\(922\) −4639.29 −0.165712
\(923\) 14998.6 0.534869
\(924\) 6737.92 0.239893
\(925\) 4031.45 0.143301
\(926\) 55899.3 1.98376
\(927\) −5239.85 −0.185652
\(928\) −57457.6 −2.03248
\(929\) −20064.4 −0.708601 −0.354301 0.935132i \(-0.615281\pi\)
−0.354301 + 0.935132i \(0.615281\pi\)
\(930\) −9497.03 −0.334860
\(931\) −35279.3 −1.24193
\(932\) 18632.3 0.654852
\(933\) 5424.42 0.190340
\(934\) 30027.7 1.05197
\(935\) −58878.8 −2.05940
\(936\) 498.173 0.0173967
\(937\) 37342.0 1.30193 0.650965 0.759108i \(-0.274364\pi\)
0.650965 + 0.759108i \(0.274364\pi\)
\(938\) −20045.0 −0.697754
\(939\) 24252.7 0.842872
\(940\) −59863.8 −2.07717
\(941\) 21762.7 0.753925 0.376963 0.926228i \(-0.376969\pi\)
0.376963 + 0.926228i \(0.376969\pi\)
\(942\) 37287.1 1.28968
\(943\) −25665.8 −0.886314
\(944\) −46449.6 −1.60149
\(945\) −2614.90 −0.0900134
\(946\) −38950.5 −1.33868
\(947\) 51864.3 1.77969 0.889843 0.456267i \(-0.150814\pi\)
0.889843 + 0.456267i \(0.150814\pi\)
\(948\) −1707.52 −0.0584997
\(949\) −13219.3 −0.452178
\(950\) −43206.4 −1.47558
\(951\) 21561.1 0.735192
\(952\) −1334.81 −0.0454428
\(953\) 35726.9 1.21438 0.607191 0.794556i \(-0.292296\pi\)
0.607191 + 0.794556i \(0.292296\pi\)
\(954\) 9877.97 0.335232
\(955\) −47145.7 −1.59748
\(956\) 47240.6 1.59819
\(957\) 32015.6 1.08142
\(958\) 17113.5 0.577154
\(959\) 6516.26 0.219417
\(960\) −19158.3 −0.644094
\(961\) −26814.1 −0.900075
\(962\) −3937.65 −0.131970
\(963\) 4061.15 0.135897
\(964\) −18339.8 −0.612743
\(965\) −5725.30 −0.190989
\(966\) −9948.07 −0.331339
\(967\) −19765.5 −0.657306 −0.328653 0.944451i \(-0.606595\pi\)
−0.328653 + 0.944451i \(0.606595\pi\)
\(968\) 1945.36 0.0645933
\(969\) −30279.9 −1.00385
\(970\) −44143.9 −1.46121
\(971\) 7309.79 0.241589 0.120794 0.992678i \(-0.461456\pi\)
0.120794 + 0.992678i \(0.461456\pi\)
\(972\) −1796.99 −0.0592988
\(973\) 15028.5 0.495160
\(974\) −75298.5 −2.47713
\(975\) −6552.92 −0.215242
\(976\) 11203.2 0.367425
\(977\) −2680.70 −0.0877823 −0.0438911 0.999036i \(-0.513975\pi\)
−0.0438911 + 0.999036i \(0.513975\pi\)
\(978\) −3989.74 −0.130448
\(979\) 45645.4 1.49013
\(980\) 32818.0 1.06973
\(981\) 3749.12 0.122018
\(982\) −4961.39 −0.161226
\(983\) 42906.7 1.39218 0.696090 0.717955i \(-0.254921\pi\)
0.696090 + 0.717955i \(0.254921\pi\)
\(984\) 1416.38 0.0458868
\(985\) 7562.85 0.244642
\(986\) 77526.0 2.50399
\(987\) 10755.8 0.346870
\(988\) 20271.3 0.652750
\(989\) 27623.9 0.888159
\(990\) 24216.0 0.777409
\(991\) 55984.3 1.79455 0.897275 0.441473i \(-0.145544\pi\)
0.897275 + 0.441473i \(0.145544\pi\)
\(992\) 13622.5 0.436004
\(993\) −35618.9 −1.13830
\(994\) 16528.5 0.527417
\(995\) −39074.4 −1.24497
\(996\) −16088.4 −0.511828
\(997\) 9218.93 0.292845 0.146422 0.989222i \(-0.453224\pi\)
0.146422 + 0.989222i \(0.453224\pi\)
\(998\) 39861.1 1.26431
\(999\) −1162.01 −0.0368013
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1011.4.a.c.1.10 46
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1011.4.a.c.1.10 46 1.1 even 1 trivial