Properties

Label 2-1011-1.1-c3-0-37
Degree $2$
Conductor $1011$
Sign $1$
Analytic cond. $59.6509$
Root an. cond. $7.72340$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.92·2-s − 3·3-s + 7.39·4-s − 14.7·5-s + 11.7·6-s − 6.54·7-s + 2.37·8-s + 9·9-s + 58.0·10-s + 46.3·11-s − 22.1·12-s + 23.3·13-s + 25.6·14-s + 44.3·15-s − 68.4·16-s + 85.8·17-s − 35.3·18-s + 117.·19-s − 109.·20-s + 19.6·21-s − 181.·22-s + 129.·23-s − 7.12·24-s + 93.6·25-s − 91.4·26-s − 27·27-s − 48.4·28-s + ⋯
L(s)  = 1  − 1.38·2-s − 0.577·3-s + 0.924·4-s − 1.32·5-s + 0.800·6-s − 0.353·7-s + 0.104·8-s + 0.333·9-s + 1.83·10-s + 1.27·11-s − 0.533·12-s + 0.497·13-s + 0.490·14-s + 0.763·15-s − 1.06·16-s + 1.22·17-s − 0.462·18-s + 1.41·19-s − 1.22·20-s + 0.204·21-s − 1.76·22-s + 1.16·23-s − 0.0605·24-s + 0.749·25-s − 0.690·26-s − 0.192·27-s − 0.326·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1011 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1011 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1011\)    =    \(3 \cdot 337\)
Sign: $1$
Analytic conductor: \(59.6509\)
Root analytic conductor: \(7.72340\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1011,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6550188015\)
\(L(\frac12)\) \(\approx\) \(0.6550188015\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
337 \( 1 + 337T \)
good2 \( 1 + 3.92T + 8T^{2} \)
5 \( 1 + 14.7T + 125T^{2} \)
7 \( 1 + 6.54T + 343T^{2} \)
11 \( 1 - 46.3T + 1.33e3T^{2} \)
13 \( 1 - 23.3T + 2.19e3T^{2} \)
17 \( 1 - 85.8T + 4.91e3T^{2} \)
19 \( 1 - 117.T + 6.85e3T^{2} \)
23 \( 1 - 129.T + 1.21e4T^{2} \)
29 \( 1 + 230.T + 2.43e4T^{2} \)
31 \( 1 - 54.5T + 2.97e4T^{2} \)
37 \( 1 - 43.0T + 5.06e4T^{2} \)
41 \( 1 + 198.T + 6.89e4T^{2} \)
43 \( 1 - 214.T + 7.95e4T^{2} \)
47 \( 1 - 547.T + 1.03e5T^{2} \)
53 \( 1 + 279.T + 1.48e5T^{2} \)
59 \( 1 - 678.T + 2.05e5T^{2} \)
61 \( 1 + 163.T + 2.26e5T^{2} \)
67 \( 1 + 780.T + 3.00e5T^{2} \)
71 \( 1 - 643.T + 3.57e5T^{2} \)
73 \( 1 + 566.T + 3.89e5T^{2} \)
79 \( 1 - 76.9T + 4.93e5T^{2} \)
83 \( 1 - 725.T + 5.71e5T^{2} \)
89 \( 1 - 984.T + 7.04e5T^{2} \)
97 \( 1 + 760.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.408873700480700858363028977855, −8.933655728330018658465269787591, −7.79290093282959412231875678251, −7.40701057575083344605096433410, −6.55441888348865193674155558607, −5.35319560175500931376712931038, −4.10809286363244382880727877339, −3.31162376260262803661968671374, −1.32764627902827761150029119957, −0.64036560285054454949872817576, 0.64036560285054454949872817576, 1.32764627902827761150029119957, 3.31162376260262803661968671374, 4.10809286363244382880727877339, 5.35319560175500931376712931038, 6.55441888348865193674155558607, 7.40701057575083344605096433410, 7.79290093282959412231875678251, 8.933655728330018658465269787591, 9.408873700480700858363028977855

Graph of the $Z$-function along the critical line